xref: /openbmc/linux/drivers/nvme/host/core.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int _nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 }
175 
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178 	struct nvme_ctrl *ctrl =
179 		container_of(work, struct nvme_ctrl, delete_work);
180 
181 	nvme_do_delete_ctrl(ctrl);
182 }
183 
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		return -EBUSY;
188 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189 		return -EBUSY;
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193 
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196 	/*
197 	 * Keep a reference until nvme_do_delete_ctrl() complete,
198 	 * since ->delete_ctrl can free the controller.
199 	 */
200 	nvme_get_ctrl(ctrl);
201 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 		nvme_do_delete_ctrl(ctrl);
203 	nvme_put_ctrl(ctrl);
204 }
205 
206 static blk_status_t nvme_error_status(u16 status)
207 {
208 	switch (status & 0x7ff) {
209 	case NVME_SC_SUCCESS:
210 		return BLK_STS_OK;
211 	case NVME_SC_CAP_EXCEEDED:
212 		return BLK_STS_NOSPC;
213 	case NVME_SC_LBA_RANGE:
214 	case NVME_SC_CMD_INTERRUPTED:
215 	case NVME_SC_NS_NOT_READY:
216 		return BLK_STS_TARGET;
217 	case NVME_SC_BAD_ATTRIBUTES:
218 	case NVME_SC_ONCS_NOT_SUPPORTED:
219 	case NVME_SC_INVALID_OPCODE:
220 	case NVME_SC_INVALID_FIELD:
221 	case NVME_SC_INVALID_NS:
222 		return BLK_STS_NOTSUPP;
223 	case NVME_SC_WRITE_FAULT:
224 	case NVME_SC_READ_ERROR:
225 	case NVME_SC_UNWRITTEN_BLOCK:
226 	case NVME_SC_ACCESS_DENIED:
227 	case NVME_SC_READ_ONLY:
228 	case NVME_SC_COMPARE_FAILED:
229 		return BLK_STS_MEDIUM;
230 	case NVME_SC_GUARD_CHECK:
231 	case NVME_SC_APPTAG_CHECK:
232 	case NVME_SC_REFTAG_CHECK:
233 	case NVME_SC_INVALID_PI:
234 		return BLK_STS_PROTECTION;
235 	case NVME_SC_RESERVATION_CONFLICT:
236 		return BLK_STS_NEXUS;
237 	case NVME_SC_HOST_PATH_ERROR:
238 		return BLK_STS_TRANSPORT;
239 	default:
240 		return BLK_STS_IOERR;
241 	}
242 }
243 
244 static void nvme_retry_req(struct request *req)
245 {
246 	struct nvme_ns *ns = req->q->queuedata;
247 	unsigned long delay = 0;
248 	u16 crd;
249 
250 	/* The mask and shift result must be <= 3 */
251 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
252 	if (ns && crd)
253 		delay = ns->ctrl->crdt[crd - 1] * 100;
254 
255 	nvme_req(req)->retries++;
256 	blk_mq_requeue_request(req, false);
257 	blk_mq_delay_kick_requeue_list(req->q, delay);
258 }
259 
260 enum nvme_disposition {
261 	COMPLETE,
262 	RETRY,
263 	FAILOVER,
264 };
265 
266 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
267 {
268 	if (likely(nvme_req(req)->status == 0))
269 		return COMPLETE;
270 
271 	if (blk_noretry_request(req) ||
272 	    (nvme_req(req)->status & NVME_SC_DNR) ||
273 	    nvme_req(req)->retries >= nvme_max_retries)
274 		return COMPLETE;
275 
276 	if (req->cmd_flags & REQ_NVME_MPATH) {
277 		if (nvme_is_path_error(nvme_req(req)->status) ||
278 		    blk_queue_dying(req->q))
279 			return FAILOVER;
280 	} else {
281 		if (blk_queue_dying(req->q))
282 			return COMPLETE;
283 	}
284 
285 	return RETRY;
286 }
287 
288 static inline void nvme_end_req(struct request *req)
289 {
290 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
291 
292 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
293 	    req_op(req) == REQ_OP_ZONE_APPEND)
294 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
295 			le64_to_cpu(nvme_req(req)->result.u64));
296 
297 	nvme_trace_bio_complete(req, status);
298 	blk_mq_end_request(req, status);
299 }
300 
301 void nvme_complete_rq(struct request *req)
302 {
303 	trace_nvme_complete_rq(req);
304 	nvme_cleanup_cmd(req);
305 
306 	if (nvme_req(req)->ctrl->kas)
307 		nvme_req(req)->ctrl->comp_seen = true;
308 
309 	switch (nvme_decide_disposition(req)) {
310 	case COMPLETE:
311 		nvme_end_req(req);
312 		return;
313 	case RETRY:
314 		nvme_retry_req(req);
315 		return;
316 	case FAILOVER:
317 		nvme_failover_req(req);
318 		return;
319 	}
320 }
321 EXPORT_SYMBOL_GPL(nvme_complete_rq);
322 
323 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
324 {
325 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
326 				"Cancelling I/O %d", req->tag);
327 
328 	/* don't abort one completed request */
329 	if (blk_mq_request_completed(req))
330 		return true;
331 
332 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
333 	blk_mq_complete_request(req);
334 	return true;
335 }
336 EXPORT_SYMBOL_GPL(nvme_cancel_request);
337 
338 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
339 		enum nvme_ctrl_state new_state)
340 {
341 	enum nvme_ctrl_state old_state;
342 	unsigned long flags;
343 	bool changed = false;
344 
345 	spin_lock_irqsave(&ctrl->lock, flags);
346 
347 	old_state = ctrl->state;
348 	switch (new_state) {
349 	case NVME_CTRL_LIVE:
350 		switch (old_state) {
351 		case NVME_CTRL_NEW:
352 		case NVME_CTRL_RESETTING:
353 		case NVME_CTRL_CONNECTING:
354 			changed = true;
355 			fallthrough;
356 		default:
357 			break;
358 		}
359 		break;
360 	case NVME_CTRL_RESETTING:
361 		switch (old_state) {
362 		case NVME_CTRL_NEW:
363 		case NVME_CTRL_LIVE:
364 			changed = true;
365 			fallthrough;
366 		default:
367 			break;
368 		}
369 		break;
370 	case NVME_CTRL_CONNECTING:
371 		switch (old_state) {
372 		case NVME_CTRL_NEW:
373 		case NVME_CTRL_RESETTING:
374 			changed = true;
375 			fallthrough;
376 		default:
377 			break;
378 		}
379 		break;
380 	case NVME_CTRL_DELETING:
381 		switch (old_state) {
382 		case NVME_CTRL_LIVE:
383 		case NVME_CTRL_RESETTING:
384 		case NVME_CTRL_CONNECTING:
385 			changed = true;
386 			fallthrough;
387 		default:
388 			break;
389 		}
390 		break;
391 	case NVME_CTRL_DELETING_NOIO:
392 		switch (old_state) {
393 		case NVME_CTRL_DELETING:
394 		case NVME_CTRL_DEAD:
395 			changed = true;
396 			fallthrough;
397 		default:
398 			break;
399 		}
400 		break;
401 	case NVME_CTRL_DEAD:
402 		switch (old_state) {
403 		case NVME_CTRL_DELETING:
404 			changed = true;
405 			fallthrough;
406 		default:
407 			break;
408 		}
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	if (changed) {
415 		ctrl->state = new_state;
416 		wake_up_all(&ctrl->state_wq);
417 	}
418 
419 	spin_unlock_irqrestore(&ctrl->lock, flags);
420 	if (changed && ctrl->state == NVME_CTRL_LIVE)
421 		nvme_kick_requeue_lists(ctrl);
422 	return changed;
423 }
424 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
425 
426 /*
427  * Returns true for sink states that can't ever transition back to live.
428  */
429 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
430 {
431 	switch (ctrl->state) {
432 	case NVME_CTRL_NEW:
433 	case NVME_CTRL_LIVE:
434 	case NVME_CTRL_RESETTING:
435 	case NVME_CTRL_CONNECTING:
436 		return false;
437 	case NVME_CTRL_DELETING:
438 	case NVME_CTRL_DELETING_NOIO:
439 	case NVME_CTRL_DEAD:
440 		return true;
441 	default:
442 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
443 		return true;
444 	}
445 }
446 
447 /*
448  * Waits for the controller state to be resetting, or returns false if it is
449  * not possible to ever transition to that state.
450  */
451 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
452 {
453 	wait_event(ctrl->state_wq,
454 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
455 		   nvme_state_terminal(ctrl));
456 	return ctrl->state == NVME_CTRL_RESETTING;
457 }
458 EXPORT_SYMBOL_GPL(nvme_wait_reset);
459 
460 static void nvme_free_ns_head(struct kref *ref)
461 {
462 	struct nvme_ns_head *head =
463 		container_of(ref, struct nvme_ns_head, ref);
464 
465 	nvme_mpath_remove_disk(head);
466 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
467 	cleanup_srcu_struct(&head->srcu);
468 	nvme_put_subsystem(head->subsys);
469 	kfree(head);
470 }
471 
472 static void nvme_put_ns_head(struct nvme_ns_head *head)
473 {
474 	kref_put(&head->ref, nvme_free_ns_head);
475 }
476 
477 static void nvme_free_ns(struct kref *kref)
478 {
479 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
480 
481 	if (ns->ndev)
482 		nvme_nvm_unregister(ns);
483 
484 	put_disk(ns->disk);
485 	nvme_put_ns_head(ns->head);
486 	nvme_put_ctrl(ns->ctrl);
487 	kfree(ns);
488 }
489 
490 void nvme_put_ns(struct nvme_ns *ns)
491 {
492 	kref_put(&ns->kref, nvme_free_ns);
493 }
494 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
495 
496 static inline void nvme_clear_nvme_request(struct request *req)
497 {
498 	if (!(req->rq_flags & RQF_DONTPREP)) {
499 		nvme_req(req)->retries = 0;
500 		nvme_req(req)->flags = 0;
501 		req->rq_flags |= RQF_DONTPREP;
502 	}
503 }
504 
505 struct request *nvme_alloc_request(struct request_queue *q,
506 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
507 {
508 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
509 	struct request *req;
510 
511 	if (qid == NVME_QID_ANY) {
512 		req = blk_mq_alloc_request(q, op, flags);
513 	} else {
514 		req = blk_mq_alloc_request_hctx(q, op, flags,
515 				qid ? qid - 1 : 0);
516 	}
517 	if (IS_ERR(req))
518 		return req;
519 
520 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
521 	nvme_clear_nvme_request(req);
522 	nvme_req(req)->cmd = cmd;
523 
524 	return req;
525 }
526 EXPORT_SYMBOL_GPL(nvme_alloc_request);
527 
528 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
529 {
530 	struct nvme_command c;
531 
532 	memset(&c, 0, sizeof(c));
533 
534 	c.directive.opcode = nvme_admin_directive_send;
535 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
536 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
537 	c.directive.dtype = NVME_DIR_IDENTIFY;
538 	c.directive.tdtype = NVME_DIR_STREAMS;
539 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
540 
541 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
542 }
543 
544 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
545 {
546 	return nvme_toggle_streams(ctrl, false);
547 }
548 
549 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
550 {
551 	return nvme_toggle_streams(ctrl, true);
552 }
553 
554 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
555 				  struct streams_directive_params *s, u32 nsid)
556 {
557 	struct nvme_command c;
558 
559 	memset(&c, 0, sizeof(c));
560 	memset(s, 0, sizeof(*s));
561 
562 	c.directive.opcode = nvme_admin_directive_recv;
563 	c.directive.nsid = cpu_to_le32(nsid);
564 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
565 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
566 	c.directive.dtype = NVME_DIR_STREAMS;
567 
568 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
569 }
570 
571 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
572 {
573 	struct streams_directive_params s;
574 	int ret;
575 
576 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
577 		return 0;
578 	if (!streams)
579 		return 0;
580 
581 	ret = nvme_enable_streams(ctrl);
582 	if (ret)
583 		return ret;
584 
585 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
586 	if (ret)
587 		goto out_disable_stream;
588 
589 	ctrl->nssa = le16_to_cpu(s.nssa);
590 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
591 		dev_info(ctrl->device, "too few streams (%u) available\n",
592 					ctrl->nssa);
593 		goto out_disable_stream;
594 	}
595 
596 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
597 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
598 	return 0;
599 
600 out_disable_stream:
601 	nvme_disable_streams(ctrl);
602 	return ret;
603 }
604 
605 /*
606  * Check if 'req' has a write hint associated with it. If it does, assign
607  * a valid namespace stream to the write.
608  */
609 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
610 				     struct request *req, u16 *control,
611 				     u32 *dsmgmt)
612 {
613 	enum rw_hint streamid = req->write_hint;
614 
615 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
616 		streamid = 0;
617 	else {
618 		streamid--;
619 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
620 			return;
621 
622 		*control |= NVME_RW_DTYPE_STREAMS;
623 		*dsmgmt |= streamid << 16;
624 	}
625 
626 	if (streamid < ARRAY_SIZE(req->q->write_hints))
627 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
628 }
629 
630 static void nvme_setup_passthrough(struct request *req,
631 		struct nvme_command *cmd)
632 {
633 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
634 	/* passthru commands should let the driver set the SGL flags */
635 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
636 }
637 
638 static inline void nvme_setup_flush(struct nvme_ns *ns,
639 		struct nvme_command *cmnd)
640 {
641 	cmnd->common.opcode = nvme_cmd_flush;
642 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
643 }
644 
645 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
646 		struct nvme_command *cmnd)
647 {
648 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
649 	struct nvme_dsm_range *range;
650 	struct bio *bio;
651 
652 	/*
653 	 * Some devices do not consider the DSM 'Number of Ranges' field when
654 	 * determining how much data to DMA. Always allocate memory for maximum
655 	 * number of segments to prevent device reading beyond end of buffer.
656 	 */
657 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
658 
659 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
660 	if (!range) {
661 		/*
662 		 * If we fail allocation our range, fallback to the controller
663 		 * discard page. If that's also busy, it's safe to return
664 		 * busy, as we know we can make progress once that's freed.
665 		 */
666 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
667 			return BLK_STS_RESOURCE;
668 
669 		range = page_address(ns->ctrl->discard_page);
670 	}
671 
672 	__rq_for_each_bio(bio, req) {
673 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
674 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
675 
676 		if (n < segments) {
677 			range[n].cattr = cpu_to_le32(0);
678 			range[n].nlb = cpu_to_le32(nlb);
679 			range[n].slba = cpu_to_le64(slba);
680 		}
681 		n++;
682 	}
683 
684 	if (WARN_ON_ONCE(n != segments)) {
685 		if (virt_to_page(range) == ns->ctrl->discard_page)
686 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
687 		else
688 			kfree(range);
689 		return BLK_STS_IOERR;
690 	}
691 
692 	cmnd->dsm.opcode = nvme_cmd_dsm;
693 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
694 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
695 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
696 
697 	req->special_vec.bv_page = virt_to_page(range);
698 	req->special_vec.bv_offset = offset_in_page(range);
699 	req->special_vec.bv_len = alloc_size;
700 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
701 
702 	return BLK_STS_OK;
703 }
704 
705 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
706 		struct request *req, struct nvme_command *cmnd)
707 {
708 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
709 		return nvme_setup_discard(ns, req, cmnd);
710 
711 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
712 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
713 	cmnd->write_zeroes.slba =
714 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
715 	cmnd->write_zeroes.length =
716 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
717 	cmnd->write_zeroes.control = 0;
718 	return BLK_STS_OK;
719 }
720 
721 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
722 		struct request *req, struct nvme_command *cmnd,
723 		enum nvme_opcode op)
724 {
725 	struct nvme_ctrl *ctrl = ns->ctrl;
726 	u16 control = 0;
727 	u32 dsmgmt = 0;
728 
729 	if (req->cmd_flags & REQ_FUA)
730 		control |= NVME_RW_FUA;
731 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
732 		control |= NVME_RW_LR;
733 
734 	if (req->cmd_flags & REQ_RAHEAD)
735 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
736 
737 	cmnd->rw.opcode = op;
738 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
739 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
740 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
741 
742 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
743 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
744 
745 	if (ns->ms) {
746 		/*
747 		 * If formated with metadata, the block layer always provides a
748 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
749 		 * we enable the PRACT bit for protection information or set the
750 		 * namespace capacity to zero to prevent any I/O.
751 		 */
752 		if (!blk_integrity_rq(req)) {
753 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
754 				return BLK_STS_NOTSUPP;
755 			control |= NVME_RW_PRINFO_PRACT;
756 		}
757 
758 		switch (ns->pi_type) {
759 		case NVME_NS_DPS_PI_TYPE3:
760 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
761 			break;
762 		case NVME_NS_DPS_PI_TYPE1:
763 		case NVME_NS_DPS_PI_TYPE2:
764 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
765 					NVME_RW_PRINFO_PRCHK_REF;
766 			if (op == nvme_cmd_zone_append)
767 				control |= NVME_RW_APPEND_PIREMAP;
768 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
769 			break;
770 		}
771 	}
772 
773 	cmnd->rw.control = cpu_to_le16(control);
774 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
775 	return 0;
776 }
777 
778 void nvme_cleanup_cmd(struct request *req)
779 {
780 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
781 		struct nvme_ns *ns = req->rq_disk->private_data;
782 		struct page *page = req->special_vec.bv_page;
783 
784 		if (page == ns->ctrl->discard_page)
785 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786 		else
787 			kfree(page_address(page) + req->special_vec.bv_offset);
788 	}
789 }
790 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
791 
792 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
793 		struct nvme_command *cmd)
794 {
795 	blk_status_t ret = BLK_STS_OK;
796 
797 	nvme_clear_nvme_request(req);
798 
799 	memset(cmd, 0, sizeof(*cmd));
800 	switch (req_op(req)) {
801 	case REQ_OP_DRV_IN:
802 	case REQ_OP_DRV_OUT:
803 		nvme_setup_passthrough(req, cmd);
804 		break;
805 	case REQ_OP_FLUSH:
806 		nvme_setup_flush(ns, cmd);
807 		break;
808 	case REQ_OP_ZONE_RESET_ALL:
809 	case REQ_OP_ZONE_RESET:
810 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
811 		break;
812 	case REQ_OP_ZONE_OPEN:
813 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
814 		break;
815 	case REQ_OP_ZONE_CLOSE:
816 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
817 		break;
818 	case REQ_OP_ZONE_FINISH:
819 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
820 		break;
821 	case REQ_OP_WRITE_ZEROES:
822 		ret = nvme_setup_write_zeroes(ns, req, cmd);
823 		break;
824 	case REQ_OP_DISCARD:
825 		ret = nvme_setup_discard(ns, req, cmd);
826 		break;
827 	case REQ_OP_READ:
828 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
829 		break;
830 	case REQ_OP_WRITE:
831 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
832 		break;
833 	case REQ_OP_ZONE_APPEND:
834 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
835 		break;
836 	default:
837 		WARN_ON_ONCE(1);
838 		return BLK_STS_IOERR;
839 	}
840 
841 	cmd->common.command_id = req->tag;
842 	trace_nvme_setup_cmd(req, cmd);
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
846 
847 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
848 {
849 	struct completion *waiting = rq->end_io_data;
850 
851 	rq->end_io_data = NULL;
852 	complete(waiting);
853 }
854 
855 static void nvme_execute_rq_polled(struct request_queue *q,
856 		struct gendisk *bd_disk, struct request *rq, int at_head)
857 {
858 	DECLARE_COMPLETION_ONSTACK(wait);
859 
860 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
861 
862 	rq->cmd_flags |= REQ_HIPRI;
863 	rq->end_io_data = &wait;
864 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
865 
866 	while (!completion_done(&wait)) {
867 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
868 		cond_resched();
869 	}
870 }
871 
872 /*
873  * Returns 0 on success.  If the result is negative, it's a Linux error code;
874  * if the result is positive, it's an NVM Express status code
875  */
876 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
877 		union nvme_result *result, void *buffer, unsigned bufflen,
878 		unsigned timeout, int qid, int at_head,
879 		blk_mq_req_flags_t flags, bool poll)
880 {
881 	struct request *req;
882 	int ret;
883 
884 	req = nvme_alloc_request(q, cmd, flags, qid);
885 	if (IS_ERR(req))
886 		return PTR_ERR(req);
887 
888 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
889 
890 	if (buffer && bufflen) {
891 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
892 		if (ret)
893 			goto out;
894 	}
895 
896 	if (poll)
897 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
898 	else
899 		blk_execute_rq(req->q, NULL, req, at_head);
900 	if (result)
901 		*result = nvme_req(req)->result;
902 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
903 		ret = -EINTR;
904 	else
905 		ret = nvme_req(req)->status;
906  out:
907 	blk_mq_free_request(req);
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
911 
912 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
913 		void *buffer, unsigned bufflen)
914 {
915 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
916 			NVME_QID_ANY, 0, 0, false);
917 }
918 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
919 
920 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
921 		unsigned len, u32 seed, bool write)
922 {
923 	struct bio_integrity_payload *bip;
924 	int ret = -ENOMEM;
925 	void *buf;
926 
927 	buf = kmalloc(len, GFP_KERNEL);
928 	if (!buf)
929 		goto out;
930 
931 	ret = -EFAULT;
932 	if (write && copy_from_user(buf, ubuf, len))
933 		goto out_free_meta;
934 
935 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
936 	if (IS_ERR(bip)) {
937 		ret = PTR_ERR(bip);
938 		goto out_free_meta;
939 	}
940 
941 	bip->bip_iter.bi_size = len;
942 	bip->bip_iter.bi_sector = seed;
943 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
944 			offset_in_page(buf));
945 	if (ret == len)
946 		return buf;
947 	ret = -ENOMEM;
948 out_free_meta:
949 	kfree(buf);
950 out:
951 	return ERR_PTR(ret);
952 }
953 
954 static u32 nvme_known_admin_effects(u8 opcode)
955 {
956 	switch (opcode) {
957 	case nvme_admin_format_nvm:
958 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
959 			NVME_CMD_EFFECTS_CSE_MASK;
960 	case nvme_admin_sanitize_nvm:
961 		return NVME_CMD_EFFECTS_CSE_MASK;
962 	default:
963 		break;
964 	}
965 	return 0;
966 }
967 
968 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
969 {
970 	u32 effects = 0;
971 
972 	if (ns) {
973 		if (ns->head->effects)
974 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
975 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
976 			dev_warn(ctrl->device,
977 				 "IO command:%02x has unhandled effects:%08x\n",
978 				 opcode, effects);
979 		return 0;
980 	}
981 
982 	if (ctrl->effects)
983 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
984 	effects |= nvme_known_admin_effects(opcode);
985 
986 	return effects;
987 }
988 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
989 
990 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
991 			       u8 opcode)
992 {
993 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
994 
995 	/*
996 	 * For simplicity, IO to all namespaces is quiesced even if the command
997 	 * effects say only one namespace is affected.
998 	 */
999 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1000 		mutex_lock(&ctrl->scan_lock);
1001 		mutex_lock(&ctrl->subsys->lock);
1002 		nvme_mpath_start_freeze(ctrl->subsys);
1003 		nvme_mpath_wait_freeze(ctrl->subsys);
1004 		nvme_start_freeze(ctrl);
1005 		nvme_wait_freeze(ctrl);
1006 	}
1007 	return effects;
1008 }
1009 
1010 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects)
1011 {
1012 	struct nvme_ns *ns;
1013 
1014 	down_read(&ctrl->namespaces_rwsem);
1015 	list_for_each_entry(ns, &ctrl->namespaces, list)
1016 		if (_nvme_revalidate_disk(ns->disk))
1017 			nvme_set_queue_dying(ns);
1018 		else if (blk_queue_is_zoned(ns->disk->queue)) {
1019 			/*
1020 			 * IO commands are required to fully revalidate a zoned
1021 			 * device. Force the command effects to trigger rescan
1022 			 * work so report zones can run in a context with
1023 			 * unfrozen IO queues.
1024 			 */
1025 			*effects |= NVME_CMD_EFFECTS_NCC;
1026 		}
1027 	up_read(&ctrl->namespaces_rwsem);
1028 }
1029 
1030 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1031 {
1032 	/*
1033 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1034 	 * prevent memory corruption if a logical block size was changed by
1035 	 * this command.
1036 	 */
1037 	if (effects & NVME_CMD_EFFECTS_LBCC)
1038 		nvme_update_formats(ctrl, &effects);
1039 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1040 		nvme_unfreeze(ctrl);
1041 		nvme_mpath_unfreeze(ctrl->subsys);
1042 		mutex_unlock(&ctrl->subsys->lock);
1043 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1044 		mutex_unlock(&ctrl->scan_lock);
1045 	}
1046 	if (effects & NVME_CMD_EFFECTS_CCC)
1047 		nvme_init_identify(ctrl);
1048 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1049 		nvme_queue_scan(ctrl);
1050 		flush_work(&ctrl->scan_work);
1051 	}
1052 }
1053 
1054 void nvme_execute_passthru_rq(struct request *rq)
1055 {
1056 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1057 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1058 	struct nvme_ns *ns = rq->q->queuedata;
1059 	struct gendisk *disk = ns ? ns->disk : NULL;
1060 	u32 effects;
1061 
1062 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1063 	blk_execute_rq(rq->q, disk, rq, 0);
1064 	nvme_passthru_end(ctrl, effects);
1065 }
1066 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1067 
1068 static int nvme_submit_user_cmd(struct request_queue *q,
1069 		struct nvme_command *cmd, void __user *ubuffer,
1070 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1071 		u32 meta_seed, u64 *result, unsigned timeout)
1072 {
1073 	bool write = nvme_is_write(cmd);
1074 	struct nvme_ns *ns = q->queuedata;
1075 	struct gendisk *disk = ns ? ns->disk : NULL;
1076 	struct request *req;
1077 	struct bio *bio = NULL;
1078 	void *meta = NULL;
1079 	int ret;
1080 
1081 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1082 	if (IS_ERR(req))
1083 		return PTR_ERR(req);
1084 
1085 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1086 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1087 
1088 	if (ubuffer && bufflen) {
1089 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1090 				GFP_KERNEL);
1091 		if (ret)
1092 			goto out;
1093 		bio = req->bio;
1094 		bio->bi_disk = disk;
1095 		if (disk && meta_buffer && meta_len) {
1096 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1097 					meta_seed, write);
1098 			if (IS_ERR(meta)) {
1099 				ret = PTR_ERR(meta);
1100 				goto out_unmap;
1101 			}
1102 			req->cmd_flags |= REQ_INTEGRITY;
1103 		}
1104 	}
1105 
1106 	nvme_execute_passthru_rq(req);
1107 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1108 		ret = -EINTR;
1109 	else
1110 		ret = nvme_req(req)->status;
1111 	if (result)
1112 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1113 	if (meta && !ret && !write) {
1114 		if (copy_to_user(meta_buffer, meta, meta_len))
1115 			ret = -EFAULT;
1116 	}
1117 	kfree(meta);
1118  out_unmap:
1119 	if (bio)
1120 		blk_rq_unmap_user(bio);
1121  out:
1122 	blk_mq_free_request(req);
1123 	return ret;
1124 }
1125 
1126 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1127 {
1128 	struct nvme_ctrl *ctrl = rq->end_io_data;
1129 	unsigned long flags;
1130 	bool startka = false;
1131 
1132 	blk_mq_free_request(rq);
1133 
1134 	if (status) {
1135 		dev_err(ctrl->device,
1136 			"failed nvme_keep_alive_end_io error=%d\n",
1137 				status);
1138 		return;
1139 	}
1140 
1141 	ctrl->comp_seen = false;
1142 	spin_lock_irqsave(&ctrl->lock, flags);
1143 	if (ctrl->state == NVME_CTRL_LIVE ||
1144 	    ctrl->state == NVME_CTRL_CONNECTING)
1145 		startka = true;
1146 	spin_unlock_irqrestore(&ctrl->lock, flags);
1147 	if (startka)
1148 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1149 }
1150 
1151 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1152 {
1153 	struct request *rq;
1154 
1155 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1156 			NVME_QID_ANY);
1157 	if (IS_ERR(rq))
1158 		return PTR_ERR(rq);
1159 
1160 	rq->timeout = ctrl->kato * HZ;
1161 	rq->end_io_data = ctrl;
1162 
1163 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1164 
1165 	return 0;
1166 }
1167 
1168 static void nvme_keep_alive_work(struct work_struct *work)
1169 {
1170 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1171 			struct nvme_ctrl, ka_work);
1172 	bool comp_seen = ctrl->comp_seen;
1173 
1174 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1175 		dev_dbg(ctrl->device,
1176 			"reschedule traffic based keep-alive timer\n");
1177 		ctrl->comp_seen = false;
1178 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1179 		return;
1180 	}
1181 
1182 	if (nvme_keep_alive(ctrl)) {
1183 		/* allocation failure, reset the controller */
1184 		dev_err(ctrl->device, "keep-alive failed\n");
1185 		nvme_reset_ctrl(ctrl);
1186 		return;
1187 	}
1188 }
1189 
1190 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1191 {
1192 	if (unlikely(ctrl->kato == 0))
1193 		return;
1194 
1195 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1196 }
1197 
1198 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1199 {
1200 	if (unlikely(ctrl->kato == 0))
1201 		return;
1202 
1203 	cancel_delayed_work_sync(&ctrl->ka_work);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1206 
1207 /*
1208  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1209  * flag, thus sending any new CNS opcodes has a big chance of not working.
1210  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1211  * (but not for any later version).
1212  */
1213 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1214 {
1215 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1216 		return ctrl->vs < NVME_VS(1, 2, 0);
1217 	return ctrl->vs < NVME_VS(1, 1, 0);
1218 }
1219 
1220 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1221 {
1222 	struct nvme_command c = { };
1223 	int error;
1224 
1225 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1226 	c.identify.opcode = nvme_admin_identify;
1227 	c.identify.cns = NVME_ID_CNS_CTRL;
1228 
1229 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1230 	if (!*id)
1231 		return -ENOMEM;
1232 
1233 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1234 			sizeof(struct nvme_id_ctrl));
1235 	if (error)
1236 		kfree(*id);
1237 	return error;
1238 }
1239 
1240 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1241 {
1242 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1243 }
1244 
1245 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1246 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1247 {
1248 	const char *warn_str = "ctrl returned bogus length:";
1249 	void *data = cur;
1250 
1251 	switch (cur->nidt) {
1252 	case NVME_NIDT_EUI64:
1253 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1254 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1255 				 warn_str, cur->nidl);
1256 			return -1;
1257 		}
1258 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1259 		return NVME_NIDT_EUI64_LEN;
1260 	case NVME_NIDT_NGUID:
1261 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1262 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1263 				 warn_str, cur->nidl);
1264 			return -1;
1265 		}
1266 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1267 		return NVME_NIDT_NGUID_LEN;
1268 	case NVME_NIDT_UUID:
1269 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1270 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1271 				 warn_str, cur->nidl);
1272 			return -1;
1273 		}
1274 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1275 		return NVME_NIDT_UUID_LEN;
1276 	case NVME_NIDT_CSI:
1277 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1278 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1279 				 warn_str, cur->nidl);
1280 			return -1;
1281 		}
1282 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1283 		*csi_seen = true;
1284 		return NVME_NIDT_CSI_LEN;
1285 	default:
1286 		/* Skip unknown types */
1287 		return cur->nidl;
1288 	}
1289 }
1290 
1291 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1292 		struct nvme_ns_ids *ids)
1293 {
1294 	struct nvme_command c = { };
1295 	bool csi_seen = false;
1296 	int status, pos, len;
1297 	void *data;
1298 
1299 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1300 		return 0;
1301 
1302 	c.identify.opcode = nvme_admin_identify;
1303 	c.identify.nsid = cpu_to_le32(nsid);
1304 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1305 
1306 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1307 	if (!data)
1308 		return -ENOMEM;
1309 
1310 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1311 				      NVME_IDENTIFY_DATA_SIZE);
1312 	if (status) {
1313 		dev_warn(ctrl->device,
1314 			"Identify Descriptors failed (%d)\n", status);
1315 		goto free_data;
1316 	}
1317 
1318 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1319 		struct nvme_ns_id_desc *cur = data + pos;
1320 
1321 		if (cur->nidl == 0)
1322 			break;
1323 
1324 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1325 		if (len < 0)
1326 			break;
1327 
1328 		len += sizeof(*cur);
1329 	}
1330 
1331 	if (nvme_multi_css(ctrl) && !csi_seen) {
1332 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1333 			 nsid);
1334 		status = -EINVAL;
1335 	}
1336 
1337 free_data:
1338 	kfree(data);
1339 	return status;
1340 }
1341 
1342 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1343 {
1344 	struct nvme_command c = { };
1345 
1346 	c.identify.opcode = nvme_admin_identify;
1347 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1348 	c.identify.nsid = cpu_to_le32(nsid);
1349 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1350 				    NVME_IDENTIFY_DATA_SIZE);
1351 }
1352 
1353 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1354 		unsigned nsid, struct nvme_id_ns **id)
1355 {
1356 	struct nvme_command c = { };
1357 	int error;
1358 
1359 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1360 	c.identify.opcode = nvme_admin_identify;
1361 	c.identify.nsid = cpu_to_le32(nsid);
1362 	c.identify.cns = NVME_ID_CNS_NS;
1363 
1364 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1365 	if (!*id)
1366 		return -ENOMEM;
1367 
1368 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1369 	if (error) {
1370 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1371 		kfree(*id);
1372 	}
1373 
1374 	return error;
1375 }
1376 
1377 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1378 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1379 {
1380 	union nvme_result res = { 0 };
1381 	struct nvme_command c;
1382 	int ret;
1383 
1384 	memset(&c, 0, sizeof(c));
1385 	c.features.opcode = op;
1386 	c.features.fid = cpu_to_le32(fid);
1387 	c.features.dword11 = cpu_to_le32(dword11);
1388 
1389 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1390 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1391 	if (ret >= 0 && result)
1392 		*result = le32_to_cpu(res.u32);
1393 	return ret;
1394 }
1395 
1396 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1397 		      unsigned int dword11, void *buffer, size_t buflen,
1398 		      u32 *result)
1399 {
1400 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1401 			     buflen, result);
1402 }
1403 EXPORT_SYMBOL_GPL(nvme_set_features);
1404 
1405 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1406 		      unsigned int dword11, void *buffer, size_t buflen,
1407 		      u32 *result)
1408 {
1409 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1410 			     buflen, result);
1411 }
1412 EXPORT_SYMBOL_GPL(nvme_get_features);
1413 
1414 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1415 {
1416 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1417 	u32 result;
1418 	int status, nr_io_queues;
1419 
1420 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1421 			&result);
1422 	if (status < 0)
1423 		return status;
1424 
1425 	/*
1426 	 * Degraded controllers might return an error when setting the queue
1427 	 * count.  We still want to be able to bring them online and offer
1428 	 * access to the admin queue, as that might be only way to fix them up.
1429 	 */
1430 	if (status > 0) {
1431 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1432 		*count = 0;
1433 	} else {
1434 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1435 		*count = min(*count, nr_io_queues);
1436 	}
1437 
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1441 
1442 #define NVME_AEN_SUPPORTED \
1443 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1444 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1445 
1446 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1447 {
1448 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1449 	int status;
1450 
1451 	if (!supported_aens)
1452 		return;
1453 
1454 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1455 			NULL, 0, &result);
1456 	if (status)
1457 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1458 			 supported_aens);
1459 
1460 	queue_work(nvme_wq, &ctrl->async_event_work);
1461 }
1462 
1463 /*
1464  * Convert integer values from ioctl structures to user pointers, silently
1465  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1466  * kernels.
1467  */
1468 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1469 {
1470 	if (in_compat_syscall())
1471 		ptrval = (compat_uptr_t)ptrval;
1472 	return (void __user *)ptrval;
1473 }
1474 
1475 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1476 {
1477 	struct nvme_user_io io;
1478 	struct nvme_command c;
1479 	unsigned length, meta_len;
1480 	void __user *metadata;
1481 
1482 	if (copy_from_user(&io, uio, sizeof(io)))
1483 		return -EFAULT;
1484 	if (io.flags)
1485 		return -EINVAL;
1486 
1487 	switch (io.opcode) {
1488 	case nvme_cmd_write:
1489 	case nvme_cmd_read:
1490 	case nvme_cmd_compare:
1491 		break;
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 
1496 	length = (io.nblocks + 1) << ns->lba_shift;
1497 	meta_len = (io.nblocks + 1) * ns->ms;
1498 	metadata = nvme_to_user_ptr(io.metadata);
1499 
1500 	if (ns->features & NVME_NS_EXT_LBAS) {
1501 		length += meta_len;
1502 		meta_len = 0;
1503 	} else if (meta_len) {
1504 		if ((io.metadata & 3) || !io.metadata)
1505 			return -EINVAL;
1506 	}
1507 
1508 	memset(&c, 0, sizeof(c));
1509 	c.rw.opcode = io.opcode;
1510 	c.rw.flags = io.flags;
1511 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1512 	c.rw.slba = cpu_to_le64(io.slba);
1513 	c.rw.length = cpu_to_le16(io.nblocks);
1514 	c.rw.control = cpu_to_le16(io.control);
1515 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1516 	c.rw.reftag = cpu_to_le32(io.reftag);
1517 	c.rw.apptag = cpu_to_le16(io.apptag);
1518 	c.rw.appmask = cpu_to_le16(io.appmask);
1519 
1520 	return nvme_submit_user_cmd(ns->queue, &c,
1521 			nvme_to_user_ptr(io.addr), length,
1522 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1523 }
1524 
1525 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1526 			struct nvme_passthru_cmd __user *ucmd)
1527 {
1528 	struct nvme_passthru_cmd cmd;
1529 	struct nvme_command c;
1530 	unsigned timeout = 0;
1531 	u64 result;
1532 	int status;
1533 
1534 	if (!capable(CAP_SYS_ADMIN))
1535 		return -EACCES;
1536 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1537 		return -EFAULT;
1538 	if (cmd.flags)
1539 		return -EINVAL;
1540 
1541 	memset(&c, 0, sizeof(c));
1542 	c.common.opcode = cmd.opcode;
1543 	c.common.flags = cmd.flags;
1544 	c.common.nsid = cpu_to_le32(cmd.nsid);
1545 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1546 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1547 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1548 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1549 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1550 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1551 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1552 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1553 
1554 	if (cmd.timeout_ms)
1555 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1556 
1557 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1558 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1559 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1560 			0, &result, timeout);
1561 
1562 	if (status >= 0) {
1563 		if (put_user(result, &ucmd->result))
1564 			return -EFAULT;
1565 	}
1566 
1567 	return status;
1568 }
1569 
1570 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1571 			struct nvme_passthru_cmd64 __user *ucmd)
1572 {
1573 	struct nvme_passthru_cmd64 cmd;
1574 	struct nvme_command c;
1575 	unsigned timeout = 0;
1576 	int status;
1577 
1578 	if (!capable(CAP_SYS_ADMIN))
1579 		return -EACCES;
1580 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1581 		return -EFAULT;
1582 	if (cmd.flags)
1583 		return -EINVAL;
1584 
1585 	memset(&c, 0, sizeof(c));
1586 	c.common.opcode = cmd.opcode;
1587 	c.common.flags = cmd.flags;
1588 	c.common.nsid = cpu_to_le32(cmd.nsid);
1589 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1590 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1591 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1592 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1593 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1594 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1595 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1596 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1597 
1598 	if (cmd.timeout_ms)
1599 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1600 
1601 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1602 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1603 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1604 			0, &cmd.result, timeout);
1605 
1606 	if (status >= 0) {
1607 		if (put_user(cmd.result, &ucmd->result))
1608 			return -EFAULT;
1609 	}
1610 
1611 	return status;
1612 }
1613 
1614 /*
1615  * Issue ioctl requests on the first available path.  Note that unlike normal
1616  * block layer requests we will not retry failed request on another controller.
1617  */
1618 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1619 		struct nvme_ns_head **head, int *srcu_idx)
1620 {
1621 #ifdef CONFIG_NVME_MULTIPATH
1622 	if (disk->fops == &nvme_ns_head_ops) {
1623 		struct nvme_ns *ns;
1624 
1625 		*head = disk->private_data;
1626 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1627 		ns = nvme_find_path(*head);
1628 		if (!ns)
1629 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1630 		return ns;
1631 	}
1632 #endif
1633 	*head = NULL;
1634 	*srcu_idx = -1;
1635 	return disk->private_data;
1636 }
1637 
1638 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1639 {
1640 	if (head)
1641 		srcu_read_unlock(&head->srcu, idx);
1642 }
1643 
1644 static bool is_ctrl_ioctl(unsigned int cmd)
1645 {
1646 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1647 		return true;
1648 	if (is_sed_ioctl(cmd))
1649 		return true;
1650 	return false;
1651 }
1652 
1653 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1654 				  void __user *argp,
1655 				  struct nvme_ns_head *head,
1656 				  int srcu_idx)
1657 {
1658 	struct nvme_ctrl *ctrl = ns->ctrl;
1659 	int ret;
1660 
1661 	nvme_get_ctrl(ns->ctrl);
1662 	nvme_put_ns_from_disk(head, srcu_idx);
1663 
1664 	switch (cmd) {
1665 	case NVME_IOCTL_ADMIN_CMD:
1666 		ret = nvme_user_cmd(ctrl, NULL, argp);
1667 		break;
1668 	case NVME_IOCTL_ADMIN64_CMD:
1669 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1670 		break;
1671 	default:
1672 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1673 		break;
1674 	}
1675 	nvme_put_ctrl(ctrl);
1676 	return ret;
1677 }
1678 
1679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1680 		unsigned int cmd, unsigned long arg)
1681 {
1682 	struct nvme_ns_head *head = NULL;
1683 	void __user *argp = (void __user *)arg;
1684 	struct nvme_ns *ns;
1685 	int srcu_idx, ret;
1686 
1687 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1688 	if (unlikely(!ns))
1689 		return -EWOULDBLOCK;
1690 
1691 	/*
1692 	 * Handle ioctls that apply to the controller instead of the namespace
1693 	 * seperately and drop the ns SRCU reference early.  This avoids a
1694 	 * deadlock when deleting namespaces using the passthrough interface.
1695 	 */
1696 	if (is_ctrl_ioctl(cmd))
1697 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1698 
1699 	switch (cmd) {
1700 	case NVME_IOCTL_ID:
1701 		force_successful_syscall_return();
1702 		ret = ns->head->ns_id;
1703 		break;
1704 	case NVME_IOCTL_IO_CMD:
1705 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1706 		break;
1707 	case NVME_IOCTL_SUBMIT_IO:
1708 		ret = nvme_submit_io(ns, argp);
1709 		break;
1710 	case NVME_IOCTL_IO64_CMD:
1711 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1712 		break;
1713 	default:
1714 		if (ns->ndev)
1715 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1716 		else
1717 			ret = -ENOTTY;
1718 	}
1719 
1720 	nvme_put_ns_from_disk(head, srcu_idx);
1721 	return ret;
1722 }
1723 
1724 #ifdef CONFIG_COMPAT
1725 struct nvme_user_io32 {
1726 	__u8	opcode;
1727 	__u8	flags;
1728 	__u16	control;
1729 	__u16	nblocks;
1730 	__u16	rsvd;
1731 	__u64	metadata;
1732 	__u64	addr;
1733 	__u64	slba;
1734 	__u32	dsmgmt;
1735 	__u32	reftag;
1736 	__u16	apptag;
1737 	__u16	appmask;
1738 } __attribute__((__packed__));
1739 
1740 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1741 
1742 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1743 		unsigned int cmd, unsigned long arg)
1744 {
1745 	/*
1746 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1747 	 * between 32 bit programs and 64 bit kernel.
1748 	 * The cause is that the results of sizeof(struct nvme_user_io),
1749 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1750 	 * are not same between 32 bit compiler and 64 bit compiler.
1751 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1752 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1753 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1754 	 * So there is nothing to do regarding to other IOCTL numbers.
1755 	 */
1756 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1757 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1758 
1759 	return nvme_ioctl(bdev, mode, cmd, arg);
1760 }
1761 #else
1762 #define nvme_compat_ioctl	NULL
1763 #endif /* CONFIG_COMPAT */
1764 
1765 static int nvme_open(struct block_device *bdev, fmode_t mode)
1766 {
1767 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1768 
1769 #ifdef CONFIG_NVME_MULTIPATH
1770 	/* should never be called due to GENHD_FL_HIDDEN */
1771 	if (WARN_ON_ONCE(ns->head->disk))
1772 		goto fail;
1773 #endif
1774 	if (!kref_get_unless_zero(&ns->kref))
1775 		goto fail;
1776 	if (!try_module_get(ns->ctrl->ops->module))
1777 		goto fail_put_ns;
1778 
1779 	return 0;
1780 
1781 fail_put_ns:
1782 	nvme_put_ns(ns);
1783 fail:
1784 	return -ENXIO;
1785 }
1786 
1787 static void nvme_release(struct gendisk *disk, fmode_t mode)
1788 {
1789 	struct nvme_ns *ns = disk->private_data;
1790 
1791 	module_put(ns->ctrl->ops->module);
1792 	nvme_put_ns(ns);
1793 }
1794 
1795 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1796 {
1797 	/* some standard values */
1798 	geo->heads = 1 << 6;
1799 	geo->sectors = 1 << 5;
1800 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1801 	return 0;
1802 }
1803 
1804 #ifdef CONFIG_BLK_DEV_INTEGRITY
1805 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1806 				u32 max_integrity_segments)
1807 {
1808 	struct blk_integrity integrity;
1809 
1810 	memset(&integrity, 0, sizeof(integrity));
1811 	switch (pi_type) {
1812 	case NVME_NS_DPS_PI_TYPE3:
1813 		integrity.profile = &t10_pi_type3_crc;
1814 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1815 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1816 		break;
1817 	case NVME_NS_DPS_PI_TYPE1:
1818 	case NVME_NS_DPS_PI_TYPE2:
1819 		integrity.profile = &t10_pi_type1_crc;
1820 		integrity.tag_size = sizeof(u16);
1821 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1822 		break;
1823 	default:
1824 		integrity.profile = NULL;
1825 		break;
1826 	}
1827 	integrity.tuple_size = ms;
1828 	blk_integrity_register(disk, &integrity);
1829 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1830 }
1831 #else
1832 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1833 				u32 max_integrity_segments)
1834 {
1835 }
1836 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1837 
1838 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1839 {
1840 	struct nvme_ctrl *ctrl = ns->ctrl;
1841 	struct request_queue *queue = disk->queue;
1842 	u32 size = queue_logical_block_size(queue);
1843 
1844 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1845 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1846 		return;
1847 	}
1848 
1849 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1850 		size *= ns->sws * ns->sgs;
1851 
1852 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1853 			NVME_DSM_MAX_RANGES);
1854 
1855 	queue->limits.discard_alignment = 0;
1856 	queue->limits.discard_granularity = size;
1857 
1858 	/* If discard is already enabled, don't reset queue limits */
1859 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1860 		return;
1861 
1862 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1863 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1864 
1865 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1866 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1867 }
1868 
1869 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1870 {
1871 	u64 max_blocks;
1872 
1873 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1874 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1875 		return;
1876 	/*
1877 	 * Even though NVMe spec explicitly states that MDTS is not
1878 	 * applicable to the write-zeroes:- "The restriction does not apply to
1879 	 * commands that do not transfer data between the host and the
1880 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1881 	 * In order to be more cautious use controller's max_hw_sectors value
1882 	 * to configure the maximum sectors for the write-zeroes which is
1883 	 * configured based on the controller's MDTS field in the
1884 	 * nvme_init_identify() if available.
1885 	 */
1886 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1887 		max_blocks = (u64)USHRT_MAX + 1;
1888 	else
1889 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1890 
1891 	blk_queue_max_write_zeroes_sectors(disk->queue,
1892 					   nvme_lba_to_sect(ns, max_blocks));
1893 }
1894 
1895 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1896 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1897 {
1898 	memset(ids, 0, sizeof(*ids));
1899 
1900 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1901 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1902 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1903 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1904 	if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl))
1905 		return nvme_identify_ns_descs(ctrl, nsid, ids);
1906 	return 0;
1907 }
1908 
1909 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1910 {
1911 	return !uuid_is_null(&ids->uuid) ||
1912 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1913 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1914 }
1915 
1916 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1917 {
1918 	return uuid_equal(&a->uuid, &b->uuid) &&
1919 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1920 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1921 		a->csi == b->csi;
1922 }
1923 
1924 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1925 				 u32 *phys_bs, u32 *io_opt)
1926 {
1927 	struct streams_directive_params s;
1928 	int ret;
1929 
1930 	if (!ctrl->nr_streams)
1931 		return 0;
1932 
1933 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1934 	if (ret)
1935 		return ret;
1936 
1937 	ns->sws = le32_to_cpu(s.sws);
1938 	ns->sgs = le16_to_cpu(s.sgs);
1939 
1940 	if (ns->sws) {
1941 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1942 		if (ns->sgs)
1943 			*io_opt = *phys_bs * ns->sgs;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static void nvme_update_disk_info(struct gendisk *disk,
1950 		struct nvme_ns *ns, struct nvme_id_ns *id)
1951 {
1952 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1953 	unsigned short bs = 1 << ns->lba_shift;
1954 	u32 atomic_bs, phys_bs, io_opt = 0;
1955 
1956 	if (ns->lba_shift > PAGE_SHIFT) {
1957 		/* unsupported block size, set capacity to 0 later */
1958 		bs = (1 << 9);
1959 	}
1960 	blk_mq_freeze_queue(disk->queue);
1961 	blk_integrity_unregister(disk);
1962 
1963 	atomic_bs = phys_bs = bs;
1964 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1965 	if (id->nabo == 0) {
1966 		/*
1967 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1968 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1969 		 * 0 then AWUPF must be used instead.
1970 		 */
1971 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1972 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1973 		else
1974 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1975 	}
1976 
1977 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1978 		/* NPWG = Namespace Preferred Write Granularity */
1979 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1980 		/* NOWS = Namespace Optimal Write Size */
1981 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1982 	}
1983 
1984 	blk_queue_logical_block_size(disk->queue, bs);
1985 	/*
1986 	 * Linux filesystems assume writing a single physical block is
1987 	 * an atomic operation. Hence limit the physical block size to the
1988 	 * value of the Atomic Write Unit Power Fail parameter.
1989 	 */
1990 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1991 	blk_queue_io_min(disk->queue, phys_bs);
1992 	blk_queue_io_opt(disk->queue, io_opt);
1993 
1994 	/*
1995 	 * The block layer can't support LBA sizes larger than the page size
1996 	 * yet, so catch this early and don't allow block I/O.
1997 	 */
1998 	if (ns->lba_shift > PAGE_SHIFT)
1999 		capacity = 0;
2000 
2001 	/*
2002 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2003 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2004 	 * I/O to namespaces with metadata except when the namespace supports
2005 	 * PI, as it can strip/insert in that case.
2006 	 */
2007 	if (ns->ms) {
2008 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2009 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2010 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2011 					    ns->ctrl->max_integrity_segments);
2012 		else if (!nvme_ns_has_pi(ns))
2013 			capacity = 0;
2014 	}
2015 
2016 	set_capacity_revalidate_and_notify(disk, capacity, false);
2017 
2018 	nvme_config_discard(disk, ns);
2019 	nvme_config_write_zeroes(disk, ns);
2020 
2021 	if (id->nsattr & NVME_NS_ATTR_RO)
2022 		set_disk_ro(disk, true);
2023 	else
2024 		set_disk_ro(disk, false);
2025 
2026 	blk_mq_unfreeze_queue(disk->queue);
2027 }
2028 
2029 static inline bool nvme_first_scan(struct gendisk *disk)
2030 {
2031 	/* nvme_alloc_ns() scans the disk prior to adding it */
2032 	return !(disk->flags & GENHD_FL_UP);
2033 }
2034 
2035 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2036 {
2037 	struct nvme_ctrl *ctrl = ns->ctrl;
2038 	u32 iob;
2039 
2040 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2041 	    is_power_of_2(ctrl->max_hw_sectors))
2042 		iob = ctrl->max_hw_sectors;
2043 	else
2044 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2045 
2046 	if (!iob)
2047 		return;
2048 
2049 	if (!is_power_of_2(iob)) {
2050 		if (nvme_first_scan(ns->disk))
2051 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2052 				ns->disk->disk_name, iob);
2053 		return;
2054 	}
2055 
2056 	if (blk_queue_is_zoned(ns->disk->queue)) {
2057 		if (nvme_first_scan(ns->disk))
2058 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2059 				ns->disk->disk_name);
2060 		return;
2061 	}
2062 
2063 	blk_queue_chunk_sectors(ns->queue, iob);
2064 }
2065 
2066 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
2067 {
2068 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2069 	struct nvme_ns *ns = disk->private_data;
2070 	struct nvme_ctrl *ctrl = ns->ctrl;
2071 	int ret;
2072 
2073 	/*
2074 	 * If identify namespace failed, use default 512 byte block size so
2075 	 * block layer can use before failing read/write for 0 capacity.
2076 	 */
2077 	ns->lba_shift = id->lbaf[lbaf].ds;
2078 	if (ns->lba_shift == 0)
2079 		ns->lba_shift = 9;
2080 
2081 	switch (ns->head->ids.csi) {
2082 	case NVME_CSI_NVM:
2083 		break;
2084 	case NVME_CSI_ZNS:
2085 		ret = nvme_update_zone_info(disk, ns, lbaf);
2086 		if (ret) {
2087 			dev_warn(ctrl->device,
2088 				"failed to add zoned namespace:%u ret:%d\n",
2089 				ns->head->ns_id, ret);
2090 			return ret;
2091 		}
2092 		break;
2093 	default:
2094 		dev_warn(ctrl->device, "unknown csi:%u ns:%u\n",
2095 			ns->head->ids.csi, ns->head->ns_id);
2096 		return -ENODEV;
2097 	}
2098 
2099 	ns->features = 0;
2100 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2101 	/* the PI implementation requires metadata equal t10 pi tuple size */
2102 	if (ns->ms == sizeof(struct t10_pi_tuple))
2103 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2104 	else
2105 		ns->pi_type = 0;
2106 
2107 	if (ns->ms) {
2108 		/*
2109 		 * For PCIe only the separate metadata pointer is supported,
2110 		 * as the block layer supplies metadata in a separate bio_vec
2111 		 * chain. For Fabrics, only metadata as part of extended data
2112 		 * LBA is supported on the wire per the Fabrics specification,
2113 		 * but the HBA/HCA will do the remapping from the separate
2114 		 * metadata buffers for us.
2115 		 */
2116 		if (id->flbas & NVME_NS_FLBAS_META_EXT) {
2117 			ns->features |= NVME_NS_EXT_LBAS;
2118 			if ((ctrl->ops->flags & NVME_F_FABRICS) &&
2119 			    (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
2120 			    ctrl->max_integrity_segments)
2121 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2122 		} else {
2123 			if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
2124 				return -EINVAL;
2125 			if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
2126 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2127 		}
2128 	}
2129 
2130 	nvme_set_chunk_sectors(ns, id);
2131 	nvme_update_disk_info(disk, ns, id);
2132 #ifdef CONFIG_NVME_MULTIPATH
2133 	if (ns->head->disk) {
2134 		nvme_update_disk_info(ns->head->disk, ns, id);
2135 		blk_stack_limits(&ns->head->disk->queue->limits,
2136 				 &ns->queue->limits, 0);
2137 		nvme_mpath_update_disk_size(ns->head->disk);
2138 	}
2139 #endif
2140 	return 0;
2141 }
2142 
2143 static int _nvme_revalidate_disk(struct gendisk *disk)
2144 {
2145 	struct nvme_ns *ns = disk->private_data;
2146 	struct nvme_ctrl *ctrl = ns->ctrl;
2147 	struct nvme_id_ns *id;
2148 	struct nvme_ns_ids ids;
2149 	int ret = 0;
2150 
2151 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
2152 		set_capacity(disk, 0);
2153 		return -ENODEV;
2154 	}
2155 
2156 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
2157 	if (ret)
2158 		goto out;
2159 
2160 	if (id->ncap == 0) {
2161 		ret = -ENODEV;
2162 		goto free_id;
2163 	}
2164 
2165 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2166 	if (ret)
2167 		goto free_id;
2168 
2169 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2170 		dev_err(ctrl->device,
2171 			"identifiers changed for nsid %d\n", ns->head->ns_id);
2172 		ret = -ENODEV;
2173 		goto free_id;
2174 	}
2175 
2176 	ret = __nvme_revalidate_disk(disk, id);
2177 free_id:
2178 	kfree(id);
2179 out:
2180 	/*
2181 	 * Only fail the function if we got a fatal error back from the
2182 	 * device, otherwise ignore the error and just move on.
2183 	 */
2184 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2185 		ret = 0;
2186 	else if (ret > 0)
2187 		ret = blk_status_to_errno(nvme_error_status(ret));
2188 	return ret;
2189 }
2190 
2191 static int nvme_revalidate_disk(struct gendisk *disk)
2192 {
2193 	int ret;
2194 
2195 	ret = _nvme_revalidate_disk(disk);
2196 	if (ret)
2197 		return ret;
2198 
2199 #ifdef CONFIG_BLK_DEV_ZONED
2200 	if (blk_queue_is_zoned(disk->queue)) {
2201 		struct nvme_ns *ns = disk->private_data;
2202 		struct nvme_ctrl *ctrl = ns->ctrl;
2203 
2204 		ret = blk_revalidate_disk_zones(disk, NULL);
2205 		if (!ret)
2206 			blk_queue_max_zone_append_sectors(disk->queue,
2207 							  ctrl->max_zone_append);
2208 	}
2209 #endif
2210 	return ret;
2211 }
2212 
2213 static char nvme_pr_type(enum pr_type type)
2214 {
2215 	switch (type) {
2216 	case PR_WRITE_EXCLUSIVE:
2217 		return 1;
2218 	case PR_EXCLUSIVE_ACCESS:
2219 		return 2;
2220 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2221 		return 3;
2222 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2223 		return 4;
2224 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2225 		return 5;
2226 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2227 		return 6;
2228 	default:
2229 		return 0;
2230 	}
2231 };
2232 
2233 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2234 				u64 key, u64 sa_key, u8 op)
2235 {
2236 	struct nvme_ns_head *head = NULL;
2237 	struct nvme_ns *ns;
2238 	struct nvme_command c;
2239 	int srcu_idx, ret;
2240 	u8 data[16] = { 0, };
2241 
2242 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2243 	if (unlikely(!ns))
2244 		return -EWOULDBLOCK;
2245 
2246 	put_unaligned_le64(key, &data[0]);
2247 	put_unaligned_le64(sa_key, &data[8]);
2248 
2249 	memset(&c, 0, sizeof(c));
2250 	c.common.opcode = op;
2251 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2252 	c.common.cdw10 = cpu_to_le32(cdw10);
2253 
2254 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2255 	nvme_put_ns_from_disk(head, srcu_idx);
2256 	return ret;
2257 }
2258 
2259 static int nvme_pr_register(struct block_device *bdev, u64 old,
2260 		u64 new, unsigned flags)
2261 {
2262 	u32 cdw10;
2263 
2264 	if (flags & ~PR_FL_IGNORE_KEY)
2265 		return -EOPNOTSUPP;
2266 
2267 	cdw10 = old ? 2 : 0;
2268 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2269 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2270 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2271 }
2272 
2273 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2274 		enum pr_type type, unsigned flags)
2275 {
2276 	u32 cdw10;
2277 
2278 	if (flags & ~PR_FL_IGNORE_KEY)
2279 		return -EOPNOTSUPP;
2280 
2281 	cdw10 = nvme_pr_type(type) << 8;
2282 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2283 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2284 }
2285 
2286 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2287 		enum pr_type type, bool abort)
2288 {
2289 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2290 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2291 }
2292 
2293 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2294 {
2295 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2296 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2297 }
2298 
2299 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2300 {
2301 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2302 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2303 }
2304 
2305 static const struct pr_ops nvme_pr_ops = {
2306 	.pr_register	= nvme_pr_register,
2307 	.pr_reserve	= nvme_pr_reserve,
2308 	.pr_release	= nvme_pr_release,
2309 	.pr_preempt	= nvme_pr_preempt,
2310 	.pr_clear	= nvme_pr_clear,
2311 };
2312 
2313 #ifdef CONFIG_BLK_SED_OPAL
2314 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2315 		bool send)
2316 {
2317 	struct nvme_ctrl *ctrl = data;
2318 	struct nvme_command cmd;
2319 
2320 	memset(&cmd, 0, sizeof(cmd));
2321 	if (send)
2322 		cmd.common.opcode = nvme_admin_security_send;
2323 	else
2324 		cmd.common.opcode = nvme_admin_security_recv;
2325 	cmd.common.nsid = 0;
2326 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2327 	cmd.common.cdw11 = cpu_to_le32(len);
2328 
2329 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2330 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2331 }
2332 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2333 #endif /* CONFIG_BLK_SED_OPAL */
2334 
2335 static const struct block_device_operations nvme_fops = {
2336 	.owner		= THIS_MODULE,
2337 	.ioctl		= nvme_ioctl,
2338 	.compat_ioctl	= nvme_compat_ioctl,
2339 	.open		= nvme_open,
2340 	.release	= nvme_release,
2341 	.getgeo		= nvme_getgeo,
2342 	.revalidate_disk= nvme_revalidate_disk,
2343 	.report_zones	= nvme_report_zones,
2344 	.pr_ops		= &nvme_pr_ops,
2345 };
2346 
2347 #ifdef CONFIG_NVME_MULTIPATH
2348 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2349 {
2350 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2351 
2352 	if (!kref_get_unless_zero(&head->ref))
2353 		return -ENXIO;
2354 	return 0;
2355 }
2356 
2357 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2358 {
2359 	nvme_put_ns_head(disk->private_data);
2360 }
2361 
2362 const struct block_device_operations nvme_ns_head_ops = {
2363 	.owner		= THIS_MODULE,
2364 	.submit_bio	= nvme_ns_head_submit_bio,
2365 	.open		= nvme_ns_head_open,
2366 	.release	= nvme_ns_head_release,
2367 	.ioctl		= nvme_ioctl,
2368 	.compat_ioctl	= nvme_compat_ioctl,
2369 	.getgeo		= nvme_getgeo,
2370 	.report_zones	= nvme_report_zones,
2371 	.pr_ops		= &nvme_pr_ops,
2372 };
2373 #endif /* CONFIG_NVME_MULTIPATH */
2374 
2375 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2376 {
2377 	unsigned long timeout =
2378 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2379 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2380 	int ret;
2381 
2382 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2383 		if (csts == ~0)
2384 			return -ENODEV;
2385 		if ((csts & NVME_CSTS_RDY) == bit)
2386 			break;
2387 
2388 		usleep_range(1000, 2000);
2389 		if (fatal_signal_pending(current))
2390 			return -EINTR;
2391 		if (time_after(jiffies, timeout)) {
2392 			dev_err(ctrl->device,
2393 				"Device not ready; aborting %s, CSTS=0x%x\n",
2394 				enabled ? "initialisation" : "reset", csts);
2395 			return -ENODEV;
2396 		}
2397 	}
2398 
2399 	return ret;
2400 }
2401 
2402 /*
2403  * If the device has been passed off to us in an enabled state, just clear
2404  * the enabled bit.  The spec says we should set the 'shutdown notification
2405  * bits', but doing so may cause the device to complete commands to the
2406  * admin queue ... and we don't know what memory that might be pointing at!
2407  */
2408 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2409 {
2410 	int ret;
2411 
2412 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2413 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2414 
2415 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2416 	if (ret)
2417 		return ret;
2418 
2419 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2420 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2421 
2422 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2423 }
2424 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2425 
2426 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2427 {
2428 	unsigned dev_page_min;
2429 	int ret;
2430 
2431 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2432 	if (ret) {
2433 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2434 		return ret;
2435 	}
2436 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2437 
2438 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2439 		dev_err(ctrl->device,
2440 			"Minimum device page size %u too large for host (%u)\n",
2441 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2442 		return -ENODEV;
2443 	}
2444 
2445 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2446 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2447 	else
2448 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2449 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2450 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2451 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2452 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2453 
2454 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2455 	if (ret)
2456 		return ret;
2457 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2458 }
2459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2460 
2461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2462 {
2463 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2464 	u32 csts;
2465 	int ret;
2466 
2467 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2468 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2469 
2470 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2471 	if (ret)
2472 		return ret;
2473 
2474 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2475 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2476 			break;
2477 
2478 		msleep(100);
2479 		if (fatal_signal_pending(current))
2480 			return -EINTR;
2481 		if (time_after(jiffies, timeout)) {
2482 			dev_err(ctrl->device,
2483 				"Device shutdown incomplete; abort shutdown\n");
2484 			return -ENODEV;
2485 		}
2486 	}
2487 
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2491 
2492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2493 		struct request_queue *q)
2494 {
2495 	bool vwc = false;
2496 
2497 	if (ctrl->max_hw_sectors) {
2498 		u32 max_segments =
2499 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2500 
2501 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2502 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2503 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2504 	}
2505 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2506 	blk_queue_dma_alignment(q, 7);
2507 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2508 		vwc = true;
2509 	blk_queue_write_cache(q, vwc, vwc);
2510 }
2511 
2512 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2513 {
2514 	__le64 ts;
2515 	int ret;
2516 
2517 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2518 		return 0;
2519 
2520 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2521 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2522 			NULL);
2523 	if (ret)
2524 		dev_warn_once(ctrl->device,
2525 			"could not set timestamp (%d)\n", ret);
2526 	return ret;
2527 }
2528 
2529 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2530 {
2531 	struct nvme_feat_host_behavior *host;
2532 	int ret;
2533 
2534 	/* Don't bother enabling the feature if retry delay is not reported */
2535 	if (!ctrl->crdt[0])
2536 		return 0;
2537 
2538 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2539 	if (!host)
2540 		return 0;
2541 
2542 	host->acre = NVME_ENABLE_ACRE;
2543 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2544 				host, sizeof(*host), NULL);
2545 	kfree(host);
2546 	return ret;
2547 }
2548 
2549 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2550 {
2551 	/*
2552 	 * APST (Autonomous Power State Transition) lets us program a
2553 	 * table of power state transitions that the controller will
2554 	 * perform automatically.  We configure it with a simple
2555 	 * heuristic: we are willing to spend at most 2% of the time
2556 	 * transitioning between power states.  Therefore, when running
2557 	 * in any given state, we will enter the next lower-power
2558 	 * non-operational state after waiting 50 * (enlat + exlat)
2559 	 * microseconds, as long as that state's exit latency is under
2560 	 * the requested maximum latency.
2561 	 *
2562 	 * We will not autonomously enter any non-operational state for
2563 	 * which the total latency exceeds ps_max_latency_us.  Users
2564 	 * can set ps_max_latency_us to zero to turn off APST.
2565 	 */
2566 
2567 	unsigned apste;
2568 	struct nvme_feat_auto_pst *table;
2569 	u64 max_lat_us = 0;
2570 	int max_ps = -1;
2571 	int ret;
2572 
2573 	/*
2574 	 * If APST isn't supported or if we haven't been initialized yet,
2575 	 * then don't do anything.
2576 	 */
2577 	if (!ctrl->apsta)
2578 		return 0;
2579 
2580 	if (ctrl->npss > 31) {
2581 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2582 		return 0;
2583 	}
2584 
2585 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2586 	if (!table)
2587 		return 0;
2588 
2589 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2590 		/* Turn off APST. */
2591 		apste = 0;
2592 		dev_dbg(ctrl->device, "APST disabled\n");
2593 	} else {
2594 		__le64 target = cpu_to_le64(0);
2595 		int state;
2596 
2597 		/*
2598 		 * Walk through all states from lowest- to highest-power.
2599 		 * According to the spec, lower-numbered states use more
2600 		 * power.  NPSS, despite the name, is the index of the
2601 		 * lowest-power state, not the number of states.
2602 		 */
2603 		for (state = (int)ctrl->npss; state >= 0; state--) {
2604 			u64 total_latency_us, exit_latency_us, transition_ms;
2605 
2606 			if (target)
2607 				table->entries[state] = target;
2608 
2609 			/*
2610 			 * Don't allow transitions to the deepest state
2611 			 * if it's quirked off.
2612 			 */
2613 			if (state == ctrl->npss &&
2614 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2615 				continue;
2616 
2617 			/*
2618 			 * Is this state a useful non-operational state for
2619 			 * higher-power states to autonomously transition to?
2620 			 */
2621 			if (!(ctrl->psd[state].flags &
2622 			      NVME_PS_FLAGS_NON_OP_STATE))
2623 				continue;
2624 
2625 			exit_latency_us =
2626 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2627 			if (exit_latency_us > ctrl->ps_max_latency_us)
2628 				continue;
2629 
2630 			total_latency_us =
2631 				exit_latency_us +
2632 				le32_to_cpu(ctrl->psd[state].entry_lat);
2633 
2634 			/*
2635 			 * This state is good.  Use it as the APST idle
2636 			 * target for higher power states.
2637 			 */
2638 			transition_ms = total_latency_us + 19;
2639 			do_div(transition_ms, 20);
2640 			if (transition_ms > (1 << 24) - 1)
2641 				transition_ms = (1 << 24) - 1;
2642 
2643 			target = cpu_to_le64((state << 3) |
2644 					     (transition_ms << 8));
2645 
2646 			if (max_ps == -1)
2647 				max_ps = state;
2648 
2649 			if (total_latency_us > max_lat_us)
2650 				max_lat_us = total_latency_us;
2651 		}
2652 
2653 		apste = 1;
2654 
2655 		if (max_ps == -1) {
2656 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2657 		} else {
2658 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2659 				max_ps, max_lat_us, (int)sizeof(*table), table);
2660 		}
2661 	}
2662 
2663 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2664 				table, sizeof(*table), NULL);
2665 	if (ret)
2666 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2667 
2668 	kfree(table);
2669 	return ret;
2670 }
2671 
2672 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2673 {
2674 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2675 	u64 latency;
2676 
2677 	switch (val) {
2678 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2679 	case PM_QOS_LATENCY_ANY:
2680 		latency = U64_MAX;
2681 		break;
2682 
2683 	default:
2684 		latency = val;
2685 	}
2686 
2687 	if (ctrl->ps_max_latency_us != latency) {
2688 		ctrl->ps_max_latency_us = latency;
2689 		nvme_configure_apst(ctrl);
2690 	}
2691 }
2692 
2693 struct nvme_core_quirk_entry {
2694 	/*
2695 	 * NVMe model and firmware strings are padded with spaces.  For
2696 	 * simplicity, strings in the quirk table are padded with NULLs
2697 	 * instead.
2698 	 */
2699 	u16 vid;
2700 	const char *mn;
2701 	const char *fr;
2702 	unsigned long quirks;
2703 };
2704 
2705 static const struct nvme_core_quirk_entry core_quirks[] = {
2706 	{
2707 		/*
2708 		 * This Toshiba device seems to die using any APST states.  See:
2709 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2710 		 */
2711 		.vid = 0x1179,
2712 		.mn = "THNSF5256GPUK TOSHIBA",
2713 		.quirks = NVME_QUIRK_NO_APST,
2714 	},
2715 	{
2716 		/*
2717 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2718 		 * condition associated with actions related to suspend to idle
2719 		 * LiteON has resolved the problem in future firmware
2720 		 */
2721 		.vid = 0x14a4,
2722 		.fr = "22301111",
2723 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2724 	}
2725 };
2726 
2727 /* match is null-terminated but idstr is space-padded. */
2728 static bool string_matches(const char *idstr, const char *match, size_t len)
2729 {
2730 	size_t matchlen;
2731 
2732 	if (!match)
2733 		return true;
2734 
2735 	matchlen = strlen(match);
2736 	WARN_ON_ONCE(matchlen > len);
2737 
2738 	if (memcmp(idstr, match, matchlen))
2739 		return false;
2740 
2741 	for (; matchlen < len; matchlen++)
2742 		if (idstr[matchlen] != ' ')
2743 			return false;
2744 
2745 	return true;
2746 }
2747 
2748 static bool quirk_matches(const struct nvme_id_ctrl *id,
2749 			  const struct nvme_core_quirk_entry *q)
2750 {
2751 	return q->vid == le16_to_cpu(id->vid) &&
2752 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2753 		string_matches(id->fr, q->fr, sizeof(id->fr));
2754 }
2755 
2756 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2757 		struct nvme_id_ctrl *id)
2758 {
2759 	size_t nqnlen;
2760 	int off;
2761 
2762 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2763 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2764 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2765 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2766 			return;
2767 		}
2768 
2769 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2770 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2771 	}
2772 
2773 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2774 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2775 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2776 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2777 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2778 	off += sizeof(id->sn);
2779 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2780 	off += sizeof(id->mn);
2781 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2782 }
2783 
2784 static void nvme_release_subsystem(struct device *dev)
2785 {
2786 	struct nvme_subsystem *subsys =
2787 		container_of(dev, struct nvme_subsystem, dev);
2788 
2789 	if (subsys->instance >= 0)
2790 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2791 	kfree(subsys);
2792 }
2793 
2794 static void nvme_destroy_subsystem(struct kref *ref)
2795 {
2796 	struct nvme_subsystem *subsys =
2797 			container_of(ref, struct nvme_subsystem, ref);
2798 
2799 	mutex_lock(&nvme_subsystems_lock);
2800 	list_del(&subsys->entry);
2801 	mutex_unlock(&nvme_subsystems_lock);
2802 
2803 	ida_destroy(&subsys->ns_ida);
2804 	device_del(&subsys->dev);
2805 	put_device(&subsys->dev);
2806 }
2807 
2808 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2809 {
2810 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2811 }
2812 
2813 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2814 {
2815 	struct nvme_subsystem *subsys;
2816 
2817 	lockdep_assert_held(&nvme_subsystems_lock);
2818 
2819 	/*
2820 	 * Fail matches for discovery subsystems. This results
2821 	 * in each discovery controller bound to a unique subsystem.
2822 	 * This avoids issues with validating controller values
2823 	 * that can only be true when there is a single unique subsystem.
2824 	 * There may be multiple and completely independent entities
2825 	 * that provide discovery controllers.
2826 	 */
2827 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2828 		return NULL;
2829 
2830 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2831 		if (strcmp(subsys->subnqn, subsysnqn))
2832 			continue;
2833 		if (!kref_get_unless_zero(&subsys->ref))
2834 			continue;
2835 		return subsys;
2836 	}
2837 
2838 	return NULL;
2839 }
2840 
2841 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2842 	struct device_attribute subsys_attr_##_name = \
2843 		__ATTR(_name, _mode, _show, NULL)
2844 
2845 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2846 				    struct device_attribute *attr,
2847 				    char *buf)
2848 {
2849 	struct nvme_subsystem *subsys =
2850 		container_of(dev, struct nvme_subsystem, dev);
2851 
2852 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2853 }
2854 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2855 
2856 #define nvme_subsys_show_str_function(field)				\
2857 static ssize_t subsys_##field##_show(struct device *dev,		\
2858 			    struct device_attribute *attr, char *buf)	\
2859 {									\
2860 	struct nvme_subsystem *subsys =					\
2861 		container_of(dev, struct nvme_subsystem, dev);		\
2862 	return sprintf(buf, "%.*s\n",					\
2863 		       (int)sizeof(subsys->field), subsys->field);	\
2864 }									\
2865 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2866 
2867 nvme_subsys_show_str_function(model);
2868 nvme_subsys_show_str_function(serial);
2869 nvme_subsys_show_str_function(firmware_rev);
2870 
2871 static struct attribute *nvme_subsys_attrs[] = {
2872 	&subsys_attr_model.attr,
2873 	&subsys_attr_serial.attr,
2874 	&subsys_attr_firmware_rev.attr,
2875 	&subsys_attr_subsysnqn.attr,
2876 #ifdef CONFIG_NVME_MULTIPATH
2877 	&subsys_attr_iopolicy.attr,
2878 #endif
2879 	NULL,
2880 };
2881 
2882 static struct attribute_group nvme_subsys_attrs_group = {
2883 	.attrs = nvme_subsys_attrs,
2884 };
2885 
2886 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2887 	&nvme_subsys_attrs_group,
2888 	NULL,
2889 };
2890 
2891 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2892 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2893 {
2894 	struct nvme_ctrl *tmp;
2895 
2896 	lockdep_assert_held(&nvme_subsystems_lock);
2897 
2898 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2899 		if (nvme_state_terminal(tmp))
2900 			continue;
2901 
2902 		if (tmp->cntlid == ctrl->cntlid) {
2903 			dev_err(ctrl->device,
2904 				"Duplicate cntlid %u with %s, rejecting\n",
2905 				ctrl->cntlid, dev_name(tmp->device));
2906 			return false;
2907 		}
2908 
2909 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2910 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2911 			continue;
2912 
2913 		dev_err(ctrl->device,
2914 			"Subsystem does not support multiple controllers\n");
2915 		return false;
2916 	}
2917 
2918 	return true;
2919 }
2920 
2921 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2922 {
2923 	struct nvme_subsystem *subsys, *found;
2924 	int ret;
2925 
2926 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2927 	if (!subsys)
2928 		return -ENOMEM;
2929 
2930 	subsys->instance = -1;
2931 	mutex_init(&subsys->lock);
2932 	kref_init(&subsys->ref);
2933 	INIT_LIST_HEAD(&subsys->ctrls);
2934 	INIT_LIST_HEAD(&subsys->nsheads);
2935 	nvme_init_subnqn(subsys, ctrl, id);
2936 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2937 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2938 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2939 	subsys->vendor_id = le16_to_cpu(id->vid);
2940 	subsys->cmic = id->cmic;
2941 	subsys->awupf = le16_to_cpu(id->awupf);
2942 #ifdef CONFIG_NVME_MULTIPATH
2943 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2944 #endif
2945 
2946 	subsys->dev.class = nvme_subsys_class;
2947 	subsys->dev.release = nvme_release_subsystem;
2948 	subsys->dev.groups = nvme_subsys_attrs_groups;
2949 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2950 	device_initialize(&subsys->dev);
2951 
2952 	mutex_lock(&nvme_subsystems_lock);
2953 	found = __nvme_find_get_subsystem(subsys->subnqn);
2954 	if (found) {
2955 		put_device(&subsys->dev);
2956 		subsys = found;
2957 
2958 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2959 			ret = -EINVAL;
2960 			goto out_put_subsystem;
2961 		}
2962 	} else {
2963 		ret = device_add(&subsys->dev);
2964 		if (ret) {
2965 			dev_err(ctrl->device,
2966 				"failed to register subsystem device.\n");
2967 			put_device(&subsys->dev);
2968 			goto out_unlock;
2969 		}
2970 		ida_init(&subsys->ns_ida);
2971 		list_add_tail(&subsys->entry, &nvme_subsystems);
2972 	}
2973 
2974 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2975 				dev_name(ctrl->device));
2976 	if (ret) {
2977 		dev_err(ctrl->device,
2978 			"failed to create sysfs link from subsystem.\n");
2979 		goto out_put_subsystem;
2980 	}
2981 
2982 	if (!found)
2983 		subsys->instance = ctrl->instance;
2984 	ctrl->subsys = subsys;
2985 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2986 	mutex_unlock(&nvme_subsystems_lock);
2987 	return 0;
2988 
2989 out_put_subsystem:
2990 	nvme_put_subsystem(subsys);
2991 out_unlock:
2992 	mutex_unlock(&nvme_subsystems_lock);
2993 	return ret;
2994 }
2995 
2996 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2997 		void *log, size_t size, u64 offset)
2998 {
2999 	struct nvme_command c = { };
3000 	u32 dwlen = nvme_bytes_to_numd(size);
3001 
3002 	c.get_log_page.opcode = nvme_admin_get_log_page;
3003 	c.get_log_page.nsid = cpu_to_le32(nsid);
3004 	c.get_log_page.lid = log_page;
3005 	c.get_log_page.lsp = lsp;
3006 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3007 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3008 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3009 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3010 	c.get_log_page.csi = csi;
3011 
3012 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3013 }
3014 
3015 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi)
3016 {
3017 	struct nvme_cel *cel, *ret = NULL;
3018 
3019 	spin_lock_irq(&ctrl->lock);
3020 	list_for_each_entry(cel, &ctrl->cels, entry) {
3021 		if (cel->csi == csi) {
3022 			ret = cel;
3023 			break;
3024 		}
3025 	}
3026 	spin_unlock_irq(&ctrl->lock);
3027 
3028 	return ret;
3029 }
3030 
3031 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3032 				struct nvme_effects_log **log)
3033 {
3034 	struct nvme_cel *cel = nvme_find_cel(ctrl, csi);
3035 	int ret;
3036 
3037 	if (cel)
3038 		goto out;
3039 
3040 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3041 	if (!cel)
3042 		return -ENOMEM;
3043 
3044 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi,
3045 			&cel->log, sizeof(cel->log), 0);
3046 	if (ret) {
3047 		kfree(cel);
3048 		return ret;
3049 	}
3050 
3051 	cel->csi = csi;
3052 
3053 	spin_lock_irq(&ctrl->lock);
3054 	list_add_tail(&cel->entry, &ctrl->cels);
3055 	spin_unlock_irq(&ctrl->lock);
3056 out:
3057 	*log = &cel->log;
3058 	return 0;
3059 }
3060 
3061 /*
3062  * Initialize the cached copies of the Identify data and various controller
3063  * register in our nvme_ctrl structure.  This should be called as soon as
3064  * the admin queue is fully up and running.
3065  */
3066 int nvme_init_identify(struct nvme_ctrl *ctrl)
3067 {
3068 	struct nvme_id_ctrl *id;
3069 	int ret, page_shift;
3070 	u32 max_hw_sectors;
3071 	bool prev_apst_enabled;
3072 
3073 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3074 	if (ret) {
3075 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3076 		return ret;
3077 	}
3078 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3079 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3080 
3081 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3082 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3083 
3084 	ret = nvme_identify_ctrl(ctrl, &id);
3085 	if (ret) {
3086 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3087 		return -EIO;
3088 	}
3089 
3090 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3091 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3092 		if (ret < 0)
3093 			goto out_free;
3094 	}
3095 
3096 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3097 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3098 
3099 	if (!ctrl->identified) {
3100 		int i;
3101 
3102 		ret = nvme_init_subsystem(ctrl, id);
3103 		if (ret)
3104 			goto out_free;
3105 
3106 		/*
3107 		 * Check for quirks.  Quirk can depend on firmware version,
3108 		 * so, in principle, the set of quirks present can change
3109 		 * across a reset.  As a possible future enhancement, we
3110 		 * could re-scan for quirks every time we reinitialize
3111 		 * the device, but we'd have to make sure that the driver
3112 		 * behaves intelligently if the quirks change.
3113 		 */
3114 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3115 			if (quirk_matches(id, &core_quirks[i]))
3116 				ctrl->quirks |= core_quirks[i].quirks;
3117 		}
3118 	}
3119 
3120 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3121 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3122 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3123 	}
3124 
3125 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3126 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3127 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3128 
3129 	ctrl->oacs = le16_to_cpu(id->oacs);
3130 	ctrl->oncs = le16_to_cpu(id->oncs);
3131 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3132 	ctrl->oaes = le32_to_cpu(id->oaes);
3133 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3134 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3135 
3136 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3137 	ctrl->vwc = id->vwc;
3138 	if (id->mdts)
3139 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3140 	else
3141 		max_hw_sectors = UINT_MAX;
3142 	ctrl->max_hw_sectors =
3143 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3144 
3145 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3146 	ctrl->sgls = le32_to_cpu(id->sgls);
3147 	ctrl->kas = le16_to_cpu(id->kas);
3148 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3149 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3150 
3151 	if (id->rtd3e) {
3152 		/* us -> s */
3153 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3154 
3155 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3156 						 shutdown_timeout, 60);
3157 
3158 		if (ctrl->shutdown_timeout != shutdown_timeout)
3159 			dev_info(ctrl->device,
3160 				 "Shutdown timeout set to %u seconds\n",
3161 				 ctrl->shutdown_timeout);
3162 	} else
3163 		ctrl->shutdown_timeout = shutdown_timeout;
3164 
3165 	ctrl->npss = id->npss;
3166 	ctrl->apsta = id->apsta;
3167 	prev_apst_enabled = ctrl->apst_enabled;
3168 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3169 		if (force_apst && id->apsta) {
3170 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3171 			ctrl->apst_enabled = true;
3172 		} else {
3173 			ctrl->apst_enabled = false;
3174 		}
3175 	} else {
3176 		ctrl->apst_enabled = id->apsta;
3177 	}
3178 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3179 
3180 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3181 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3182 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3183 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3184 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3185 
3186 		/*
3187 		 * In fabrics we need to verify the cntlid matches the
3188 		 * admin connect
3189 		 */
3190 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3191 			dev_err(ctrl->device,
3192 				"Mismatching cntlid: Connect %u vs Identify "
3193 				"%u, rejecting\n",
3194 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3195 			ret = -EINVAL;
3196 			goto out_free;
3197 		}
3198 
3199 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3200 			dev_err(ctrl->device,
3201 				"keep-alive support is mandatory for fabrics\n");
3202 			ret = -EINVAL;
3203 			goto out_free;
3204 		}
3205 	} else {
3206 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3207 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3208 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3209 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3210 	}
3211 
3212 	ret = nvme_mpath_init(ctrl, id);
3213 	kfree(id);
3214 
3215 	if (ret < 0)
3216 		return ret;
3217 
3218 	if (ctrl->apst_enabled && !prev_apst_enabled)
3219 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3220 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3221 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3222 
3223 	ret = nvme_configure_apst(ctrl);
3224 	if (ret < 0)
3225 		return ret;
3226 
3227 	ret = nvme_configure_timestamp(ctrl);
3228 	if (ret < 0)
3229 		return ret;
3230 
3231 	ret = nvme_configure_directives(ctrl);
3232 	if (ret < 0)
3233 		return ret;
3234 
3235 	ret = nvme_configure_acre(ctrl);
3236 	if (ret < 0)
3237 		return ret;
3238 
3239 	if (!ctrl->identified)
3240 		nvme_hwmon_init(ctrl);
3241 
3242 	ctrl->identified = true;
3243 
3244 	return 0;
3245 
3246 out_free:
3247 	kfree(id);
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(nvme_init_identify);
3251 
3252 static int nvme_dev_open(struct inode *inode, struct file *file)
3253 {
3254 	struct nvme_ctrl *ctrl =
3255 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3256 
3257 	switch (ctrl->state) {
3258 	case NVME_CTRL_LIVE:
3259 		break;
3260 	default:
3261 		return -EWOULDBLOCK;
3262 	}
3263 
3264 	file->private_data = ctrl;
3265 	return 0;
3266 }
3267 
3268 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3269 {
3270 	struct nvme_ns *ns;
3271 	int ret;
3272 
3273 	down_read(&ctrl->namespaces_rwsem);
3274 	if (list_empty(&ctrl->namespaces)) {
3275 		ret = -ENOTTY;
3276 		goto out_unlock;
3277 	}
3278 
3279 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3280 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3281 		dev_warn(ctrl->device,
3282 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3283 		ret = -EINVAL;
3284 		goto out_unlock;
3285 	}
3286 
3287 	dev_warn(ctrl->device,
3288 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3289 	kref_get(&ns->kref);
3290 	up_read(&ctrl->namespaces_rwsem);
3291 
3292 	ret = nvme_user_cmd(ctrl, ns, argp);
3293 	nvme_put_ns(ns);
3294 	return ret;
3295 
3296 out_unlock:
3297 	up_read(&ctrl->namespaces_rwsem);
3298 	return ret;
3299 }
3300 
3301 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3302 		unsigned long arg)
3303 {
3304 	struct nvme_ctrl *ctrl = file->private_data;
3305 	void __user *argp = (void __user *)arg;
3306 
3307 	switch (cmd) {
3308 	case NVME_IOCTL_ADMIN_CMD:
3309 		return nvme_user_cmd(ctrl, NULL, argp);
3310 	case NVME_IOCTL_ADMIN64_CMD:
3311 		return nvme_user_cmd64(ctrl, NULL, argp);
3312 	case NVME_IOCTL_IO_CMD:
3313 		return nvme_dev_user_cmd(ctrl, argp);
3314 	case NVME_IOCTL_RESET:
3315 		dev_warn(ctrl->device, "resetting controller\n");
3316 		return nvme_reset_ctrl_sync(ctrl);
3317 	case NVME_IOCTL_SUBSYS_RESET:
3318 		return nvme_reset_subsystem(ctrl);
3319 	case NVME_IOCTL_RESCAN:
3320 		nvme_queue_scan(ctrl);
3321 		return 0;
3322 	default:
3323 		return -ENOTTY;
3324 	}
3325 }
3326 
3327 static const struct file_operations nvme_dev_fops = {
3328 	.owner		= THIS_MODULE,
3329 	.open		= nvme_dev_open,
3330 	.unlocked_ioctl	= nvme_dev_ioctl,
3331 	.compat_ioctl	= compat_ptr_ioctl,
3332 };
3333 
3334 static ssize_t nvme_sysfs_reset(struct device *dev,
3335 				struct device_attribute *attr, const char *buf,
3336 				size_t count)
3337 {
3338 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339 	int ret;
3340 
3341 	ret = nvme_reset_ctrl_sync(ctrl);
3342 	if (ret < 0)
3343 		return ret;
3344 	return count;
3345 }
3346 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3347 
3348 static ssize_t nvme_sysfs_rescan(struct device *dev,
3349 				struct device_attribute *attr, const char *buf,
3350 				size_t count)
3351 {
3352 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3353 
3354 	nvme_queue_scan(ctrl);
3355 	return count;
3356 }
3357 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3358 
3359 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3360 {
3361 	struct gendisk *disk = dev_to_disk(dev);
3362 
3363 	if (disk->fops == &nvme_fops)
3364 		return nvme_get_ns_from_dev(dev)->head;
3365 	else
3366 		return disk->private_data;
3367 }
3368 
3369 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3370 		char *buf)
3371 {
3372 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3373 	struct nvme_ns_ids *ids = &head->ids;
3374 	struct nvme_subsystem *subsys = head->subsys;
3375 	int serial_len = sizeof(subsys->serial);
3376 	int model_len = sizeof(subsys->model);
3377 
3378 	if (!uuid_is_null(&ids->uuid))
3379 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3380 
3381 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3382 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3383 
3384 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3385 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3386 
3387 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3388 				  subsys->serial[serial_len - 1] == '\0'))
3389 		serial_len--;
3390 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3391 				 subsys->model[model_len - 1] == '\0'))
3392 		model_len--;
3393 
3394 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3395 		serial_len, subsys->serial, model_len, subsys->model,
3396 		head->ns_id);
3397 }
3398 static DEVICE_ATTR_RO(wwid);
3399 
3400 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3401 		char *buf)
3402 {
3403 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3404 }
3405 static DEVICE_ATTR_RO(nguid);
3406 
3407 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3408 		char *buf)
3409 {
3410 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3411 
3412 	/* For backward compatibility expose the NGUID to userspace if
3413 	 * we have no UUID set
3414 	 */
3415 	if (uuid_is_null(&ids->uuid)) {
3416 		printk_ratelimited(KERN_WARNING
3417 				   "No UUID available providing old NGUID\n");
3418 		return sprintf(buf, "%pU\n", ids->nguid);
3419 	}
3420 	return sprintf(buf, "%pU\n", &ids->uuid);
3421 }
3422 static DEVICE_ATTR_RO(uuid);
3423 
3424 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3425 		char *buf)
3426 {
3427 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3428 }
3429 static DEVICE_ATTR_RO(eui);
3430 
3431 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3432 		char *buf)
3433 {
3434 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3435 }
3436 static DEVICE_ATTR_RO(nsid);
3437 
3438 static struct attribute *nvme_ns_id_attrs[] = {
3439 	&dev_attr_wwid.attr,
3440 	&dev_attr_uuid.attr,
3441 	&dev_attr_nguid.attr,
3442 	&dev_attr_eui.attr,
3443 	&dev_attr_nsid.attr,
3444 #ifdef CONFIG_NVME_MULTIPATH
3445 	&dev_attr_ana_grpid.attr,
3446 	&dev_attr_ana_state.attr,
3447 #endif
3448 	NULL,
3449 };
3450 
3451 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3452 		struct attribute *a, int n)
3453 {
3454 	struct device *dev = container_of(kobj, struct device, kobj);
3455 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3456 
3457 	if (a == &dev_attr_uuid.attr) {
3458 		if (uuid_is_null(&ids->uuid) &&
3459 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3460 			return 0;
3461 	}
3462 	if (a == &dev_attr_nguid.attr) {
3463 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3464 			return 0;
3465 	}
3466 	if (a == &dev_attr_eui.attr) {
3467 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3468 			return 0;
3469 	}
3470 #ifdef CONFIG_NVME_MULTIPATH
3471 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3472 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3473 			return 0;
3474 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3475 			return 0;
3476 	}
3477 #endif
3478 	return a->mode;
3479 }
3480 
3481 static const struct attribute_group nvme_ns_id_attr_group = {
3482 	.attrs		= nvme_ns_id_attrs,
3483 	.is_visible	= nvme_ns_id_attrs_are_visible,
3484 };
3485 
3486 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3487 	&nvme_ns_id_attr_group,
3488 #ifdef CONFIG_NVM
3489 	&nvme_nvm_attr_group,
3490 #endif
3491 	NULL,
3492 };
3493 
3494 #define nvme_show_str_function(field)						\
3495 static ssize_t  field##_show(struct device *dev,				\
3496 			    struct device_attribute *attr, char *buf)		\
3497 {										\
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3499         return sprintf(buf, "%.*s\n",						\
3500 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3501 }										\
3502 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3503 
3504 nvme_show_str_function(model);
3505 nvme_show_str_function(serial);
3506 nvme_show_str_function(firmware_rev);
3507 
3508 #define nvme_show_int_function(field)						\
3509 static ssize_t  field##_show(struct device *dev,				\
3510 			    struct device_attribute *attr, char *buf)		\
3511 {										\
3512         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3513         return sprintf(buf, "%d\n", ctrl->field);	\
3514 }										\
3515 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3516 
3517 nvme_show_int_function(cntlid);
3518 nvme_show_int_function(numa_node);
3519 nvme_show_int_function(queue_count);
3520 nvme_show_int_function(sqsize);
3521 
3522 static ssize_t nvme_sysfs_delete(struct device *dev,
3523 				struct device_attribute *attr, const char *buf,
3524 				size_t count)
3525 {
3526 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3527 
3528 	if (device_remove_file_self(dev, attr))
3529 		nvme_delete_ctrl_sync(ctrl);
3530 	return count;
3531 }
3532 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3533 
3534 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3535 					 struct device_attribute *attr,
3536 					 char *buf)
3537 {
3538 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3539 
3540 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3541 }
3542 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3543 
3544 static ssize_t nvme_sysfs_show_state(struct device *dev,
3545 				     struct device_attribute *attr,
3546 				     char *buf)
3547 {
3548 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3549 	static const char *const state_name[] = {
3550 		[NVME_CTRL_NEW]		= "new",
3551 		[NVME_CTRL_LIVE]	= "live",
3552 		[NVME_CTRL_RESETTING]	= "resetting",
3553 		[NVME_CTRL_CONNECTING]	= "connecting",
3554 		[NVME_CTRL_DELETING]	= "deleting",
3555 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3556 		[NVME_CTRL_DEAD]	= "dead",
3557 	};
3558 
3559 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3560 	    state_name[ctrl->state])
3561 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3562 
3563 	return sprintf(buf, "unknown state\n");
3564 }
3565 
3566 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3567 
3568 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3569 					 struct device_attribute *attr,
3570 					 char *buf)
3571 {
3572 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3573 
3574 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3575 }
3576 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3577 
3578 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3579 					struct device_attribute *attr,
3580 					char *buf)
3581 {
3582 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3583 
3584 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3585 }
3586 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3587 
3588 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3589 					struct device_attribute *attr,
3590 					char *buf)
3591 {
3592 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593 
3594 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3595 }
3596 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3597 
3598 static ssize_t nvme_sysfs_show_address(struct device *dev,
3599 					 struct device_attribute *attr,
3600 					 char *buf)
3601 {
3602 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603 
3604 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3605 }
3606 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3607 
3608 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3609 		struct device_attribute *attr, char *buf)
3610 {
3611 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3612 	struct nvmf_ctrl_options *opts = ctrl->opts;
3613 
3614 	if (ctrl->opts->max_reconnects == -1)
3615 		return sprintf(buf, "off\n");
3616 	return sprintf(buf, "%d\n",
3617 			opts->max_reconnects * opts->reconnect_delay);
3618 }
3619 
3620 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3621 		struct device_attribute *attr, const char *buf, size_t count)
3622 {
3623 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624 	struct nvmf_ctrl_options *opts = ctrl->opts;
3625 	int ctrl_loss_tmo, err;
3626 
3627 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3628 	if (err)
3629 		return -EINVAL;
3630 
3631 	else if (ctrl_loss_tmo < 0)
3632 		opts->max_reconnects = -1;
3633 	else
3634 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3635 						opts->reconnect_delay);
3636 	return count;
3637 }
3638 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3639 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3640 
3641 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3642 		struct device_attribute *attr, char *buf)
3643 {
3644 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645 
3646 	if (ctrl->opts->reconnect_delay == -1)
3647 		return sprintf(buf, "off\n");
3648 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3649 }
3650 
3651 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3652 		struct device_attribute *attr, const char *buf, size_t count)
3653 {
3654 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3655 	unsigned int v;
3656 	int err;
3657 
3658 	err = kstrtou32(buf, 10, &v);
3659 	if (err)
3660 		return err;
3661 
3662 	ctrl->opts->reconnect_delay = v;
3663 	return count;
3664 }
3665 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3666 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3667 
3668 static struct attribute *nvme_dev_attrs[] = {
3669 	&dev_attr_reset_controller.attr,
3670 	&dev_attr_rescan_controller.attr,
3671 	&dev_attr_model.attr,
3672 	&dev_attr_serial.attr,
3673 	&dev_attr_firmware_rev.attr,
3674 	&dev_attr_cntlid.attr,
3675 	&dev_attr_delete_controller.attr,
3676 	&dev_attr_transport.attr,
3677 	&dev_attr_subsysnqn.attr,
3678 	&dev_attr_address.attr,
3679 	&dev_attr_state.attr,
3680 	&dev_attr_numa_node.attr,
3681 	&dev_attr_queue_count.attr,
3682 	&dev_attr_sqsize.attr,
3683 	&dev_attr_hostnqn.attr,
3684 	&dev_attr_hostid.attr,
3685 	&dev_attr_ctrl_loss_tmo.attr,
3686 	&dev_attr_reconnect_delay.attr,
3687 	NULL
3688 };
3689 
3690 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3691 		struct attribute *a, int n)
3692 {
3693 	struct device *dev = container_of(kobj, struct device, kobj);
3694 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3695 
3696 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3697 		return 0;
3698 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3699 		return 0;
3700 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3701 		return 0;
3702 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3703 		return 0;
3704 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3705 		return 0;
3706 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3707 		return 0;
3708 
3709 	return a->mode;
3710 }
3711 
3712 static struct attribute_group nvme_dev_attrs_group = {
3713 	.attrs		= nvme_dev_attrs,
3714 	.is_visible	= nvme_dev_attrs_are_visible,
3715 };
3716 
3717 static const struct attribute_group *nvme_dev_attr_groups[] = {
3718 	&nvme_dev_attrs_group,
3719 	NULL,
3720 };
3721 
3722 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3723 		unsigned nsid)
3724 {
3725 	struct nvme_ns_head *h;
3726 
3727 	lockdep_assert_held(&subsys->lock);
3728 
3729 	list_for_each_entry(h, &subsys->nsheads, entry) {
3730 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3731 			return h;
3732 	}
3733 
3734 	return NULL;
3735 }
3736 
3737 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3738 		struct nvme_ns_head *new)
3739 {
3740 	struct nvme_ns_head *h;
3741 
3742 	lockdep_assert_held(&subsys->lock);
3743 
3744 	list_for_each_entry(h, &subsys->nsheads, entry) {
3745 		if (nvme_ns_ids_valid(&new->ids) &&
3746 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3747 			return -EINVAL;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3754 		unsigned nsid, struct nvme_ns_ids *ids)
3755 {
3756 	struct nvme_ns_head *head;
3757 	size_t size = sizeof(*head);
3758 	int ret = -ENOMEM;
3759 
3760 #ifdef CONFIG_NVME_MULTIPATH
3761 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3762 #endif
3763 
3764 	head = kzalloc(size, GFP_KERNEL);
3765 	if (!head)
3766 		goto out;
3767 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3768 	if (ret < 0)
3769 		goto out_free_head;
3770 	head->instance = ret;
3771 	INIT_LIST_HEAD(&head->list);
3772 	ret = init_srcu_struct(&head->srcu);
3773 	if (ret)
3774 		goto out_ida_remove;
3775 	head->subsys = ctrl->subsys;
3776 	head->ns_id = nsid;
3777 	head->ids = *ids;
3778 	kref_init(&head->ref);
3779 
3780 	ret = __nvme_check_ids(ctrl->subsys, head);
3781 	if (ret) {
3782 		dev_err(ctrl->device,
3783 			"duplicate IDs for nsid %d\n", nsid);
3784 		goto out_cleanup_srcu;
3785 	}
3786 
3787 	if (head->ids.csi) {
3788 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3789 		if (ret)
3790 			goto out_cleanup_srcu;
3791 	} else
3792 		head->effects = ctrl->effects;
3793 
3794 	ret = nvme_mpath_alloc_disk(ctrl, head);
3795 	if (ret)
3796 		goto out_cleanup_srcu;
3797 
3798 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3799 
3800 	kref_get(&ctrl->subsys->ref);
3801 
3802 	return head;
3803 out_cleanup_srcu:
3804 	cleanup_srcu_struct(&head->srcu);
3805 out_ida_remove:
3806 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3807 out_free_head:
3808 	kfree(head);
3809 out:
3810 	if (ret > 0)
3811 		ret = blk_status_to_errno(nvme_error_status(ret));
3812 	return ERR_PTR(ret);
3813 }
3814 
3815 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3816 		struct nvme_id_ns *id)
3817 {
3818 	struct nvme_ctrl *ctrl = ns->ctrl;
3819 	bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3820 	struct nvme_ns_head *head = NULL;
3821 	struct nvme_ns_ids ids;
3822 	int ret = 0;
3823 
3824 	ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3825 	if (ret) {
3826 		if (ret < 0)
3827 			return ret;
3828 		return blk_status_to_errno(nvme_error_status(ret));
3829 	}
3830 
3831 	mutex_lock(&ctrl->subsys->lock);
3832 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3833 	if (!head) {
3834 		head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3835 		if (IS_ERR(head)) {
3836 			ret = PTR_ERR(head);
3837 			goto out_unlock;
3838 		}
3839 		head->shared = is_shared;
3840 	} else {
3841 		ret = -EINVAL;
3842 		if (!is_shared || !head->shared) {
3843 			dev_err(ctrl->device,
3844 				"Duplicate unshared namespace %d\n", nsid);
3845 			goto out_put_ns_head;
3846 		}
3847 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3848 			dev_err(ctrl->device,
3849 				"IDs don't match for shared namespace %d\n",
3850 					nsid);
3851 			goto out_put_ns_head;
3852 		}
3853 	}
3854 
3855 	list_add_tail(&ns->siblings, &head->list);
3856 	ns->head = head;
3857 	mutex_unlock(&ctrl->subsys->lock);
3858 	return 0;
3859 
3860 out_put_ns_head:
3861 	nvme_put_ns_head(head);
3862 out_unlock:
3863 	mutex_unlock(&ctrl->subsys->lock);
3864 	return ret;
3865 }
3866 
3867 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3868 {
3869 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3870 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3871 
3872 	return nsa->head->ns_id - nsb->head->ns_id;
3873 }
3874 
3875 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3876 {
3877 	struct nvme_ns *ns, *ret = NULL;
3878 
3879 	down_read(&ctrl->namespaces_rwsem);
3880 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3881 		if (ns->head->ns_id == nsid) {
3882 			if (!kref_get_unless_zero(&ns->kref))
3883 				continue;
3884 			ret = ns;
3885 			break;
3886 		}
3887 		if (ns->head->ns_id > nsid)
3888 			break;
3889 	}
3890 	up_read(&ctrl->namespaces_rwsem);
3891 	return ret;
3892 }
3893 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3894 
3895 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3896 {
3897 	struct nvme_ns *ns;
3898 	struct gendisk *disk;
3899 	struct nvme_id_ns *id;
3900 	char disk_name[DISK_NAME_LEN];
3901 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3902 
3903 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3904 	if (!ns)
3905 		return;
3906 
3907 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3908 	if (IS_ERR(ns->queue))
3909 		goto out_free_ns;
3910 
3911 	if (ctrl->opts && ctrl->opts->data_digest)
3912 		ns->queue->backing_dev_info->capabilities
3913 			|= BDI_CAP_STABLE_WRITES;
3914 
3915 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3916 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3917 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3918 
3919 	ns->queue->queuedata = ns;
3920 	ns->ctrl = ctrl;
3921 
3922 	kref_init(&ns->kref);
3923 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3924 
3925 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3926 	nvme_set_queue_limits(ctrl, ns->queue);
3927 
3928 	ret = nvme_identify_ns(ctrl, nsid, &id);
3929 	if (ret)
3930 		goto out_free_queue;
3931 
3932 	if (id->ncap == 0)	/* no namespace (legacy quirk) */
3933 		goto out_free_id;
3934 
3935 	ret = nvme_init_ns_head(ns, nsid, id);
3936 	if (ret)
3937 		goto out_free_id;
3938 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3939 
3940 	disk = alloc_disk_node(0, node);
3941 	if (!disk)
3942 		goto out_unlink_ns;
3943 
3944 	disk->fops = &nvme_fops;
3945 	disk->private_data = ns;
3946 	disk->queue = ns->queue;
3947 	disk->flags = flags;
3948 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3949 	ns->disk = disk;
3950 
3951 	if (__nvme_revalidate_disk(disk, id))
3952 		goto out_put_disk;
3953 
3954 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3955 		ret = nvme_nvm_register(ns, disk_name, node);
3956 		if (ret) {
3957 			dev_warn(ctrl->device, "LightNVM init failure\n");
3958 			goto out_put_disk;
3959 		}
3960 	}
3961 
3962 	down_write(&ctrl->namespaces_rwsem);
3963 	list_add_tail(&ns->list, &ctrl->namespaces);
3964 	up_write(&ctrl->namespaces_rwsem);
3965 
3966 	nvme_get_ctrl(ctrl);
3967 
3968 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3969 
3970 	nvme_mpath_add_disk(ns, id);
3971 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3972 	kfree(id);
3973 
3974 	return;
3975  out_put_disk:
3976 	/* prevent double queue cleanup */
3977 	ns->disk->queue = NULL;
3978 	put_disk(ns->disk);
3979  out_unlink_ns:
3980 	mutex_lock(&ctrl->subsys->lock);
3981 	list_del_rcu(&ns->siblings);
3982 	if (list_empty(&ns->head->list))
3983 		list_del_init(&ns->head->entry);
3984 	mutex_unlock(&ctrl->subsys->lock);
3985 	nvme_put_ns_head(ns->head);
3986  out_free_id:
3987 	kfree(id);
3988  out_free_queue:
3989 	blk_cleanup_queue(ns->queue);
3990  out_free_ns:
3991 	kfree(ns);
3992 }
3993 
3994 static void nvme_ns_remove(struct nvme_ns *ns)
3995 {
3996 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3997 		return;
3998 
3999 	nvme_fault_inject_fini(&ns->fault_inject);
4000 
4001 	mutex_lock(&ns->ctrl->subsys->lock);
4002 	list_del_rcu(&ns->siblings);
4003 	if (list_empty(&ns->head->list))
4004 		list_del_init(&ns->head->entry);
4005 	mutex_unlock(&ns->ctrl->subsys->lock);
4006 
4007 	synchronize_rcu(); /* guarantee not available in head->list */
4008 	nvme_mpath_clear_current_path(ns);
4009 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4010 
4011 	if (ns->disk->flags & GENHD_FL_UP) {
4012 		del_gendisk(ns->disk);
4013 		blk_cleanup_queue(ns->queue);
4014 		if (blk_get_integrity(ns->disk))
4015 			blk_integrity_unregister(ns->disk);
4016 	}
4017 
4018 	down_write(&ns->ctrl->namespaces_rwsem);
4019 	list_del_init(&ns->list);
4020 	up_write(&ns->ctrl->namespaces_rwsem);
4021 
4022 	nvme_mpath_check_last_path(ns);
4023 	nvme_put_ns(ns);
4024 }
4025 
4026 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4027 {
4028 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4029 
4030 	if (ns) {
4031 		nvme_ns_remove(ns);
4032 		nvme_put_ns(ns);
4033 	}
4034 }
4035 
4036 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4037 {
4038 	struct nvme_ns *ns;
4039 
4040 	ns = nvme_find_get_ns(ctrl, nsid);
4041 	if (ns) {
4042 		if (revalidate_disk(ns->disk))
4043 			nvme_ns_remove(ns);
4044 		nvme_put_ns(ns);
4045 	} else
4046 		nvme_alloc_ns(ctrl, nsid);
4047 }
4048 
4049 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4050 					unsigned nsid)
4051 {
4052 	struct nvme_ns *ns, *next;
4053 	LIST_HEAD(rm_list);
4054 
4055 	down_write(&ctrl->namespaces_rwsem);
4056 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4057 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4058 			list_move_tail(&ns->list, &rm_list);
4059 	}
4060 	up_write(&ctrl->namespaces_rwsem);
4061 
4062 	list_for_each_entry_safe(ns, next, &rm_list, list)
4063 		nvme_ns_remove(ns);
4064 
4065 }
4066 
4067 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4068 {
4069 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4070 	__le32 *ns_list;
4071 	u32 prev = 0;
4072 	int ret = 0, i;
4073 
4074 	if (nvme_ctrl_limited_cns(ctrl))
4075 		return -EOPNOTSUPP;
4076 
4077 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4078 	if (!ns_list)
4079 		return -ENOMEM;
4080 
4081 	for (;;) {
4082 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
4083 		if (ret)
4084 			goto free;
4085 
4086 		for (i = 0; i < nr_entries; i++) {
4087 			u32 nsid = le32_to_cpu(ns_list[i]);
4088 
4089 			if (!nsid)	/* end of the list? */
4090 				goto out;
4091 			nvme_validate_ns(ctrl, nsid);
4092 			while (++prev < nsid)
4093 				nvme_ns_remove_by_nsid(ctrl, prev);
4094 		}
4095 	}
4096  out:
4097 	nvme_remove_invalid_namespaces(ctrl, prev);
4098  free:
4099 	kfree(ns_list);
4100 	return ret;
4101 }
4102 
4103 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4104 {
4105 	struct nvme_id_ctrl *id;
4106 	u32 nn, i;
4107 
4108 	if (nvme_identify_ctrl(ctrl, &id))
4109 		return;
4110 	nn = le32_to_cpu(id->nn);
4111 	kfree(id);
4112 
4113 	for (i = 1; i <= nn; i++)
4114 		nvme_validate_ns(ctrl, i);
4115 
4116 	nvme_remove_invalid_namespaces(ctrl, nn);
4117 }
4118 
4119 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4120 {
4121 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4122 	__le32 *log;
4123 	int error;
4124 
4125 	log = kzalloc(log_size, GFP_KERNEL);
4126 	if (!log)
4127 		return;
4128 
4129 	/*
4130 	 * We need to read the log to clear the AEN, but we don't want to rely
4131 	 * on it for the changed namespace information as userspace could have
4132 	 * raced with us in reading the log page, which could cause us to miss
4133 	 * updates.
4134 	 */
4135 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4136 			NVME_CSI_NVM, log, log_size, 0);
4137 	if (error)
4138 		dev_warn(ctrl->device,
4139 			"reading changed ns log failed: %d\n", error);
4140 
4141 	kfree(log);
4142 }
4143 
4144 static void nvme_scan_work(struct work_struct *work)
4145 {
4146 	struct nvme_ctrl *ctrl =
4147 		container_of(work, struct nvme_ctrl, scan_work);
4148 
4149 	/* No tagset on a live ctrl means IO queues could not created */
4150 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4151 		return;
4152 
4153 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4154 		dev_info(ctrl->device, "rescanning namespaces.\n");
4155 		nvme_clear_changed_ns_log(ctrl);
4156 	}
4157 
4158 	mutex_lock(&ctrl->scan_lock);
4159 	if (nvme_scan_ns_list(ctrl) != 0)
4160 		nvme_scan_ns_sequential(ctrl);
4161 	mutex_unlock(&ctrl->scan_lock);
4162 
4163 	down_write(&ctrl->namespaces_rwsem);
4164 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4165 	up_write(&ctrl->namespaces_rwsem);
4166 }
4167 
4168 /*
4169  * This function iterates the namespace list unlocked to allow recovery from
4170  * controller failure. It is up to the caller to ensure the namespace list is
4171  * not modified by scan work while this function is executing.
4172  */
4173 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4174 {
4175 	struct nvme_ns *ns, *next;
4176 	LIST_HEAD(ns_list);
4177 
4178 	/*
4179 	 * make sure to requeue I/O to all namespaces as these
4180 	 * might result from the scan itself and must complete
4181 	 * for the scan_work to make progress
4182 	 */
4183 	nvme_mpath_clear_ctrl_paths(ctrl);
4184 
4185 	/* prevent racing with ns scanning */
4186 	flush_work(&ctrl->scan_work);
4187 
4188 	/*
4189 	 * The dead states indicates the controller was not gracefully
4190 	 * disconnected. In that case, we won't be able to flush any data while
4191 	 * removing the namespaces' disks; fail all the queues now to avoid
4192 	 * potentially having to clean up the failed sync later.
4193 	 */
4194 	if (ctrl->state == NVME_CTRL_DEAD)
4195 		nvme_kill_queues(ctrl);
4196 
4197 	/* this is a no-op when called from the controller reset handler */
4198 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4199 
4200 	down_write(&ctrl->namespaces_rwsem);
4201 	list_splice_init(&ctrl->namespaces, &ns_list);
4202 	up_write(&ctrl->namespaces_rwsem);
4203 
4204 	list_for_each_entry_safe(ns, next, &ns_list, list)
4205 		nvme_ns_remove(ns);
4206 }
4207 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4208 
4209 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4210 {
4211 	struct nvme_ctrl *ctrl =
4212 		container_of(dev, struct nvme_ctrl, ctrl_device);
4213 	struct nvmf_ctrl_options *opts = ctrl->opts;
4214 	int ret;
4215 
4216 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4217 	if (ret)
4218 		return ret;
4219 
4220 	if (opts) {
4221 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4222 		if (ret)
4223 			return ret;
4224 
4225 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4226 				opts->trsvcid ?: "none");
4227 		if (ret)
4228 			return ret;
4229 
4230 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4231 				opts->host_traddr ?: "none");
4232 	}
4233 	return ret;
4234 }
4235 
4236 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4237 {
4238 	char *envp[2] = { NULL, NULL };
4239 	u32 aen_result = ctrl->aen_result;
4240 
4241 	ctrl->aen_result = 0;
4242 	if (!aen_result)
4243 		return;
4244 
4245 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4246 	if (!envp[0])
4247 		return;
4248 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4249 	kfree(envp[0]);
4250 }
4251 
4252 static void nvme_async_event_work(struct work_struct *work)
4253 {
4254 	struct nvme_ctrl *ctrl =
4255 		container_of(work, struct nvme_ctrl, async_event_work);
4256 
4257 	nvme_aen_uevent(ctrl);
4258 	ctrl->ops->submit_async_event(ctrl);
4259 }
4260 
4261 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4262 {
4263 
4264 	u32 csts;
4265 
4266 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4267 		return false;
4268 
4269 	if (csts == ~0)
4270 		return false;
4271 
4272 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4273 }
4274 
4275 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4276 {
4277 	struct nvme_fw_slot_info_log *log;
4278 
4279 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4280 	if (!log)
4281 		return;
4282 
4283 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4284 			log, sizeof(*log), 0))
4285 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4286 	kfree(log);
4287 }
4288 
4289 static void nvme_fw_act_work(struct work_struct *work)
4290 {
4291 	struct nvme_ctrl *ctrl = container_of(work,
4292 				struct nvme_ctrl, fw_act_work);
4293 	unsigned long fw_act_timeout;
4294 
4295 	if (ctrl->mtfa)
4296 		fw_act_timeout = jiffies +
4297 				msecs_to_jiffies(ctrl->mtfa * 100);
4298 	else
4299 		fw_act_timeout = jiffies +
4300 				msecs_to_jiffies(admin_timeout * 1000);
4301 
4302 	nvme_stop_queues(ctrl);
4303 	while (nvme_ctrl_pp_status(ctrl)) {
4304 		if (time_after(jiffies, fw_act_timeout)) {
4305 			dev_warn(ctrl->device,
4306 				"Fw activation timeout, reset controller\n");
4307 			nvme_try_sched_reset(ctrl);
4308 			return;
4309 		}
4310 		msleep(100);
4311 	}
4312 
4313 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4314 		return;
4315 
4316 	nvme_start_queues(ctrl);
4317 	/* read FW slot information to clear the AER */
4318 	nvme_get_fw_slot_info(ctrl);
4319 }
4320 
4321 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4322 {
4323 	u32 aer_notice_type = (result & 0xff00) >> 8;
4324 
4325 	trace_nvme_async_event(ctrl, aer_notice_type);
4326 
4327 	switch (aer_notice_type) {
4328 	case NVME_AER_NOTICE_NS_CHANGED:
4329 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4330 		nvme_queue_scan(ctrl);
4331 		break;
4332 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4333 		/*
4334 		 * We are (ab)using the RESETTING state to prevent subsequent
4335 		 * recovery actions from interfering with the controller's
4336 		 * firmware activation.
4337 		 */
4338 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4339 			queue_work(nvme_wq, &ctrl->fw_act_work);
4340 		break;
4341 #ifdef CONFIG_NVME_MULTIPATH
4342 	case NVME_AER_NOTICE_ANA:
4343 		if (!ctrl->ana_log_buf)
4344 			break;
4345 		queue_work(nvme_wq, &ctrl->ana_work);
4346 		break;
4347 #endif
4348 	case NVME_AER_NOTICE_DISC_CHANGED:
4349 		ctrl->aen_result = result;
4350 		break;
4351 	default:
4352 		dev_warn(ctrl->device, "async event result %08x\n", result);
4353 	}
4354 }
4355 
4356 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4357 		volatile union nvme_result *res)
4358 {
4359 	u32 result = le32_to_cpu(res->u32);
4360 	u32 aer_type = result & 0x07;
4361 
4362 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4363 		return;
4364 
4365 	switch (aer_type) {
4366 	case NVME_AER_NOTICE:
4367 		nvme_handle_aen_notice(ctrl, result);
4368 		break;
4369 	case NVME_AER_ERROR:
4370 	case NVME_AER_SMART:
4371 	case NVME_AER_CSS:
4372 	case NVME_AER_VS:
4373 		trace_nvme_async_event(ctrl, aer_type);
4374 		ctrl->aen_result = result;
4375 		break;
4376 	default:
4377 		break;
4378 	}
4379 	queue_work(nvme_wq, &ctrl->async_event_work);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4382 
4383 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4384 {
4385 	nvme_mpath_stop(ctrl);
4386 	nvme_stop_keep_alive(ctrl);
4387 	flush_work(&ctrl->async_event_work);
4388 	cancel_work_sync(&ctrl->fw_act_work);
4389 }
4390 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4391 
4392 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4393 {
4394 	nvme_start_keep_alive(ctrl);
4395 
4396 	nvme_enable_aen(ctrl);
4397 
4398 	if (ctrl->queue_count > 1) {
4399 		nvme_queue_scan(ctrl);
4400 		nvme_start_queues(ctrl);
4401 	}
4402 }
4403 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4404 
4405 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4406 {
4407 	nvme_fault_inject_fini(&ctrl->fault_inject);
4408 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4409 	cdev_device_del(&ctrl->cdev, ctrl->device);
4410 	nvme_put_ctrl(ctrl);
4411 }
4412 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4413 
4414 static void nvme_free_ctrl(struct device *dev)
4415 {
4416 	struct nvme_ctrl *ctrl =
4417 		container_of(dev, struct nvme_ctrl, ctrl_device);
4418 	struct nvme_subsystem *subsys = ctrl->subsys;
4419 	struct nvme_cel *cel, *next;
4420 
4421 	if (!subsys || ctrl->instance != subsys->instance)
4422 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4423 
4424 	list_for_each_entry_safe(cel, next, &ctrl->cels, entry) {
4425 		list_del(&cel->entry);
4426 		kfree(cel);
4427 	}
4428 
4429 	nvme_mpath_uninit(ctrl);
4430 	__free_page(ctrl->discard_page);
4431 
4432 	if (subsys) {
4433 		mutex_lock(&nvme_subsystems_lock);
4434 		list_del(&ctrl->subsys_entry);
4435 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4436 		mutex_unlock(&nvme_subsystems_lock);
4437 	}
4438 
4439 	ctrl->ops->free_ctrl(ctrl);
4440 
4441 	if (subsys)
4442 		nvme_put_subsystem(subsys);
4443 }
4444 
4445 /*
4446  * Initialize a NVMe controller structures.  This needs to be called during
4447  * earliest initialization so that we have the initialized structured around
4448  * during probing.
4449  */
4450 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4451 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4452 {
4453 	int ret;
4454 
4455 	ctrl->state = NVME_CTRL_NEW;
4456 	spin_lock_init(&ctrl->lock);
4457 	mutex_init(&ctrl->scan_lock);
4458 	INIT_LIST_HEAD(&ctrl->namespaces);
4459 	INIT_LIST_HEAD(&ctrl->cels);
4460 	init_rwsem(&ctrl->namespaces_rwsem);
4461 	ctrl->dev = dev;
4462 	ctrl->ops = ops;
4463 	ctrl->quirks = quirks;
4464 	ctrl->numa_node = NUMA_NO_NODE;
4465 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4466 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4467 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4468 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4469 	init_waitqueue_head(&ctrl->state_wq);
4470 
4471 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4472 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4473 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4474 
4475 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4476 			PAGE_SIZE);
4477 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4478 	if (!ctrl->discard_page) {
4479 		ret = -ENOMEM;
4480 		goto out;
4481 	}
4482 
4483 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4484 	if (ret < 0)
4485 		goto out;
4486 	ctrl->instance = ret;
4487 
4488 	device_initialize(&ctrl->ctrl_device);
4489 	ctrl->device = &ctrl->ctrl_device;
4490 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4491 	ctrl->device->class = nvme_class;
4492 	ctrl->device->parent = ctrl->dev;
4493 	ctrl->device->groups = nvme_dev_attr_groups;
4494 	ctrl->device->release = nvme_free_ctrl;
4495 	dev_set_drvdata(ctrl->device, ctrl);
4496 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4497 	if (ret)
4498 		goto out_release_instance;
4499 
4500 	nvme_get_ctrl(ctrl);
4501 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4502 	ctrl->cdev.owner = ops->module;
4503 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4504 	if (ret)
4505 		goto out_free_name;
4506 
4507 	/*
4508 	 * Initialize latency tolerance controls.  The sysfs files won't
4509 	 * be visible to userspace unless the device actually supports APST.
4510 	 */
4511 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4512 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4513 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4514 
4515 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4516 
4517 	return 0;
4518 out_free_name:
4519 	nvme_put_ctrl(ctrl);
4520 	kfree_const(ctrl->device->kobj.name);
4521 out_release_instance:
4522 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4523 out:
4524 	if (ctrl->discard_page)
4525 		__free_page(ctrl->discard_page);
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4529 
4530 /**
4531  * nvme_kill_queues(): Ends all namespace queues
4532  * @ctrl: the dead controller that needs to end
4533  *
4534  * Call this function when the driver determines it is unable to get the
4535  * controller in a state capable of servicing IO.
4536  */
4537 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4538 {
4539 	struct nvme_ns *ns;
4540 
4541 	down_read(&ctrl->namespaces_rwsem);
4542 
4543 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4544 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4545 		blk_mq_unquiesce_queue(ctrl->admin_q);
4546 
4547 	list_for_each_entry(ns, &ctrl->namespaces, list)
4548 		nvme_set_queue_dying(ns);
4549 
4550 	up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4553 
4554 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4555 {
4556 	struct nvme_ns *ns;
4557 
4558 	down_read(&ctrl->namespaces_rwsem);
4559 	list_for_each_entry(ns, &ctrl->namespaces, list)
4560 		blk_mq_unfreeze_queue(ns->queue);
4561 	up_read(&ctrl->namespaces_rwsem);
4562 }
4563 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4564 
4565 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4566 {
4567 	struct nvme_ns *ns;
4568 
4569 	down_read(&ctrl->namespaces_rwsem);
4570 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4571 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4572 		if (timeout <= 0)
4573 			break;
4574 	}
4575 	up_read(&ctrl->namespaces_rwsem);
4576 	return timeout;
4577 }
4578 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4579 
4580 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4581 {
4582 	struct nvme_ns *ns;
4583 
4584 	down_read(&ctrl->namespaces_rwsem);
4585 	list_for_each_entry(ns, &ctrl->namespaces, list)
4586 		blk_mq_freeze_queue_wait(ns->queue);
4587 	up_read(&ctrl->namespaces_rwsem);
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4590 
4591 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4592 {
4593 	struct nvme_ns *ns;
4594 
4595 	down_read(&ctrl->namespaces_rwsem);
4596 	list_for_each_entry(ns, &ctrl->namespaces, list)
4597 		blk_freeze_queue_start(ns->queue);
4598 	up_read(&ctrl->namespaces_rwsem);
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4601 
4602 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4603 {
4604 	struct nvme_ns *ns;
4605 
4606 	down_read(&ctrl->namespaces_rwsem);
4607 	list_for_each_entry(ns, &ctrl->namespaces, list)
4608 		blk_mq_quiesce_queue(ns->queue);
4609 	up_read(&ctrl->namespaces_rwsem);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4612 
4613 void nvme_start_queues(struct nvme_ctrl *ctrl)
4614 {
4615 	struct nvme_ns *ns;
4616 
4617 	down_read(&ctrl->namespaces_rwsem);
4618 	list_for_each_entry(ns, &ctrl->namespaces, list)
4619 		blk_mq_unquiesce_queue(ns->queue);
4620 	up_read(&ctrl->namespaces_rwsem);
4621 }
4622 EXPORT_SYMBOL_GPL(nvme_start_queues);
4623 
4624 
4625 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4626 {
4627 	struct nvme_ns *ns;
4628 
4629 	down_read(&ctrl->namespaces_rwsem);
4630 	list_for_each_entry(ns, &ctrl->namespaces, list)
4631 		blk_sync_queue(ns->queue);
4632 	up_read(&ctrl->namespaces_rwsem);
4633 
4634 	if (ctrl->admin_q)
4635 		blk_sync_queue(ctrl->admin_q);
4636 }
4637 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4638 
4639 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path)
4640 {
4641 	struct nvme_ctrl *ctrl;
4642 	struct file *f;
4643 
4644 	f = filp_open(path, O_RDWR, 0);
4645 	if (IS_ERR(f))
4646 		return ERR_CAST(f);
4647 
4648 	if (f->f_op != &nvme_dev_fops) {
4649 		ctrl = ERR_PTR(-EINVAL);
4650 		goto out_close;
4651 	}
4652 
4653 	ctrl = f->private_data;
4654 	nvme_get_ctrl(ctrl);
4655 
4656 out_close:
4657 	filp_close(f, NULL);
4658 	return ctrl;
4659 }
4660 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU);
4661 
4662 /*
4663  * Check we didn't inadvertently grow the command structure sizes:
4664  */
4665 static inline void _nvme_check_size(void)
4666 {
4667 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4668 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4669 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4670 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4671 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4672 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4673 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4674 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4675 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4676 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4677 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4678 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4679 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4680 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4681 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4682 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4683 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4684 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4685 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4686 }
4687 
4688 
4689 static int __init nvme_core_init(void)
4690 {
4691 	int result = -ENOMEM;
4692 
4693 	_nvme_check_size();
4694 
4695 	nvme_wq = alloc_workqueue("nvme-wq",
4696 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4697 	if (!nvme_wq)
4698 		goto out;
4699 
4700 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4701 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4702 	if (!nvme_reset_wq)
4703 		goto destroy_wq;
4704 
4705 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4706 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4707 	if (!nvme_delete_wq)
4708 		goto destroy_reset_wq;
4709 
4710 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4711 	if (result < 0)
4712 		goto destroy_delete_wq;
4713 
4714 	nvme_class = class_create(THIS_MODULE, "nvme");
4715 	if (IS_ERR(nvme_class)) {
4716 		result = PTR_ERR(nvme_class);
4717 		goto unregister_chrdev;
4718 	}
4719 	nvme_class->dev_uevent = nvme_class_uevent;
4720 
4721 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4722 	if (IS_ERR(nvme_subsys_class)) {
4723 		result = PTR_ERR(nvme_subsys_class);
4724 		goto destroy_class;
4725 	}
4726 	return 0;
4727 
4728 destroy_class:
4729 	class_destroy(nvme_class);
4730 unregister_chrdev:
4731 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4732 destroy_delete_wq:
4733 	destroy_workqueue(nvme_delete_wq);
4734 destroy_reset_wq:
4735 	destroy_workqueue(nvme_reset_wq);
4736 destroy_wq:
4737 	destroy_workqueue(nvme_wq);
4738 out:
4739 	return result;
4740 }
4741 
4742 static void __exit nvme_core_exit(void)
4743 {
4744 	class_destroy(nvme_subsys_class);
4745 	class_destroy(nvme_class);
4746 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4747 	destroy_workqueue(nvme_delete_wq);
4748 	destroy_workqueue(nvme_reset_wq);
4749 	destroy_workqueue(nvme_wq);
4750 	ida_destroy(&nvme_instance_ida);
4751 }
4752 
4753 MODULE_LICENSE("GPL");
4754 MODULE_VERSION("1.0");
4755 module_init(nvme_core_init);
4756 module_exit(nvme_core_exit);
4757