xref: /openbmc/linux/drivers/nvme/host/core.c (revision 110e6f26)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40 
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45 
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49 
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52 
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55 
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58 
59 static struct class *nvme_class;
60 
61 static void nvme_free_ns(struct kref *kref)
62 {
63 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
64 
65 	if (ns->type == NVME_NS_LIGHTNVM)
66 		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
67 
68 	spin_lock(&dev_list_lock);
69 	ns->disk->private_data = NULL;
70 	spin_unlock(&dev_list_lock);
71 
72 	put_disk(ns->disk);
73 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
74 	nvme_put_ctrl(ns->ctrl);
75 	kfree(ns);
76 }
77 
78 static void nvme_put_ns(struct nvme_ns *ns)
79 {
80 	kref_put(&ns->kref, nvme_free_ns);
81 }
82 
83 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
84 {
85 	struct nvme_ns *ns;
86 
87 	spin_lock(&dev_list_lock);
88 	ns = disk->private_data;
89 	if (ns) {
90 		if (!kref_get_unless_zero(&ns->kref))
91 			goto fail;
92 		if (!try_module_get(ns->ctrl->ops->module))
93 			goto fail_put_ns;
94 	}
95 	spin_unlock(&dev_list_lock);
96 
97 	return ns;
98 
99 fail_put_ns:
100 	kref_put(&ns->kref, nvme_free_ns);
101 fail:
102 	spin_unlock(&dev_list_lock);
103 	return NULL;
104 }
105 
106 void nvme_requeue_req(struct request *req)
107 {
108 	unsigned long flags;
109 
110 	blk_mq_requeue_request(req);
111 	spin_lock_irqsave(req->q->queue_lock, flags);
112 	if (!blk_queue_stopped(req->q))
113 		blk_mq_kick_requeue_list(req->q);
114 	spin_unlock_irqrestore(req->q->queue_lock, flags);
115 }
116 EXPORT_SYMBOL_GPL(nvme_requeue_req);
117 
118 struct request *nvme_alloc_request(struct request_queue *q,
119 		struct nvme_command *cmd, unsigned int flags)
120 {
121 	bool write = cmd->common.opcode & 1;
122 	struct request *req;
123 
124 	req = blk_mq_alloc_request(q, write, flags);
125 	if (IS_ERR(req))
126 		return req;
127 
128 	req->cmd_type = REQ_TYPE_DRV_PRIV;
129 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
130 	req->__data_len = 0;
131 	req->__sector = (sector_t) -1;
132 	req->bio = req->biotail = NULL;
133 
134 	req->cmd = (unsigned char *)cmd;
135 	req->cmd_len = sizeof(struct nvme_command);
136 
137 	return req;
138 }
139 EXPORT_SYMBOL_GPL(nvme_alloc_request);
140 
141 /*
142  * Returns 0 on success.  If the result is negative, it's a Linux error code;
143  * if the result is positive, it's an NVM Express status code
144  */
145 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
146 		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
147 		unsigned timeout)
148 {
149 	struct request *req;
150 	int ret;
151 
152 	req = nvme_alloc_request(q, cmd, 0);
153 	if (IS_ERR(req))
154 		return PTR_ERR(req);
155 
156 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
157 	req->special = cqe;
158 
159 	if (buffer && bufflen) {
160 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
161 		if (ret)
162 			goto out;
163 	}
164 
165 	blk_execute_rq(req->q, NULL, req, 0);
166 	ret = req->errors;
167  out:
168 	blk_mq_free_request(req);
169 	return ret;
170 }
171 
172 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
173 		void *buffer, unsigned bufflen)
174 {
175 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
176 }
177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
178 
179 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
180 		void __user *ubuffer, unsigned bufflen,
181 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
182 		u32 *result, unsigned timeout)
183 {
184 	bool write = cmd->common.opcode & 1;
185 	struct nvme_completion cqe;
186 	struct nvme_ns *ns = q->queuedata;
187 	struct gendisk *disk = ns ? ns->disk : NULL;
188 	struct request *req;
189 	struct bio *bio = NULL;
190 	void *meta = NULL;
191 	int ret;
192 
193 	req = nvme_alloc_request(q, cmd, 0);
194 	if (IS_ERR(req))
195 		return PTR_ERR(req);
196 
197 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
198 	req->special = &cqe;
199 
200 	if (ubuffer && bufflen) {
201 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
202 				GFP_KERNEL);
203 		if (ret)
204 			goto out;
205 		bio = req->bio;
206 
207 		if (!disk)
208 			goto submit;
209 		bio->bi_bdev = bdget_disk(disk, 0);
210 		if (!bio->bi_bdev) {
211 			ret = -ENODEV;
212 			goto out_unmap;
213 		}
214 
215 		if (meta_buffer && meta_len) {
216 			struct bio_integrity_payload *bip;
217 
218 			meta = kmalloc(meta_len, GFP_KERNEL);
219 			if (!meta) {
220 				ret = -ENOMEM;
221 				goto out_unmap;
222 			}
223 
224 			if (write) {
225 				if (copy_from_user(meta, meta_buffer,
226 						meta_len)) {
227 					ret = -EFAULT;
228 					goto out_free_meta;
229 				}
230 			}
231 
232 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
233 			if (IS_ERR(bip)) {
234 				ret = PTR_ERR(bip);
235 				goto out_free_meta;
236 			}
237 
238 			bip->bip_iter.bi_size = meta_len;
239 			bip->bip_iter.bi_sector = meta_seed;
240 
241 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
242 					meta_len, offset_in_page(meta));
243 			if (ret != meta_len) {
244 				ret = -ENOMEM;
245 				goto out_free_meta;
246 			}
247 		}
248 	}
249  submit:
250 	blk_execute_rq(req->q, disk, req, 0);
251 	ret = req->errors;
252 	if (result)
253 		*result = le32_to_cpu(cqe.result);
254 	if (meta && !ret && !write) {
255 		if (copy_to_user(meta_buffer, meta, meta_len))
256 			ret = -EFAULT;
257 	}
258  out_free_meta:
259 	kfree(meta);
260  out_unmap:
261 	if (bio) {
262 		if (disk && bio->bi_bdev)
263 			bdput(bio->bi_bdev);
264 		blk_rq_unmap_user(bio);
265 	}
266  out:
267 	blk_mq_free_request(req);
268 	return ret;
269 }
270 
271 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
272 		void __user *ubuffer, unsigned bufflen, u32 *result,
273 		unsigned timeout)
274 {
275 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
276 			result, timeout);
277 }
278 
279 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
280 {
281 	struct nvme_command c = { };
282 	int error;
283 
284 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
285 	c.identify.opcode = nvme_admin_identify;
286 	c.identify.cns = cpu_to_le32(1);
287 
288 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
289 	if (!*id)
290 		return -ENOMEM;
291 
292 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
293 			sizeof(struct nvme_id_ctrl));
294 	if (error)
295 		kfree(*id);
296 	return error;
297 }
298 
299 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
300 {
301 	struct nvme_command c = { };
302 
303 	c.identify.opcode = nvme_admin_identify;
304 	c.identify.cns = cpu_to_le32(2);
305 	c.identify.nsid = cpu_to_le32(nsid);
306 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
307 }
308 
309 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
310 		struct nvme_id_ns **id)
311 {
312 	struct nvme_command c = { };
313 	int error;
314 
315 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
316 	c.identify.opcode = nvme_admin_identify,
317 	c.identify.nsid = cpu_to_le32(nsid),
318 
319 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
320 	if (!*id)
321 		return -ENOMEM;
322 
323 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
324 			sizeof(struct nvme_id_ns));
325 	if (error)
326 		kfree(*id);
327 	return error;
328 }
329 
330 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
331 					dma_addr_t dma_addr, u32 *result)
332 {
333 	struct nvme_command c;
334 	struct nvme_completion cqe;
335 	int ret;
336 
337 	memset(&c, 0, sizeof(c));
338 	c.features.opcode = nvme_admin_get_features;
339 	c.features.nsid = cpu_to_le32(nsid);
340 	c.features.prp1 = cpu_to_le64(dma_addr);
341 	c.features.fid = cpu_to_le32(fid);
342 
343 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
344 	if (ret >= 0)
345 		*result = le32_to_cpu(cqe.result);
346 	return ret;
347 }
348 
349 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
350 					dma_addr_t dma_addr, u32 *result)
351 {
352 	struct nvme_command c;
353 	struct nvme_completion cqe;
354 	int ret;
355 
356 	memset(&c, 0, sizeof(c));
357 	c.features.opcode = nvme_admin_set_features;
358 	c.features.prp1 = cpu_to_le64(dma_addr);
359 	c.features.fid = cpu_to_le32(fid);
360 	c.features.dword11 = cpu_to_le32(dword11);
361 
362 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
363 	if (ret >= 0)
364 		*result = le32_to_cpu(cqe.result);
365 	return ret;
366 }
367 
368 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
369 {
370 	struct nvme_command c = { };
371 	int error;
372 
373 	c.common.opcode = nvme_admin_get_log_page,
374 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
375 	c.common.cdw10[0] = cpu_to_le32(
376 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
377 			 NVME_LOG_SMART),
378 
379 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
380 	if (!*log)
381 		return -ENOMEM;
382 
383 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
384 			sizeof(struct nvme_smart_log));
385 	if (error)
386 		kfree(*log);
387 	return error;
388 }
389 
390 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
391 {
392 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
393 	u32 result;
394 	int status, nr_io_queues;
395 
396 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
397 			&result);
398 	if (status)
399 		return status;
400 
401 	nr_io_queues = min(result & 0xffff, result >> 16) + 1;
402 	*count = min(*count, nr_io_queues);
403 	return 0;
404 }
405 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
406 
407 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
408 {
409 	struct nvme_user_io io;
410 	struct nvme_command c;
411 	unsigned length, meta_len;
412 	void __user *metadata;
413 
414 	if (copy_from_user(&io, uio, sizeof(io)))
415 		return -EFAULT;
416 	if (io.flags)
417 		return -EINVAL;
418 
419 	switch (io.opcode) {
420 	case nvme_cmd_write:
421 	case nvme_cmd_read:
422 	case nvme_cmd_compare:
423 		break;
424 	default:
425 		return -EINVAL;
426 	}
427 
428 	length = (io.nblocks + 1) << ns->lba_shift;
429 	meta_len = (io.nblocks + 1) * ns->ms;
430 	metadata = (void __user *)(uintptr_t)io.metadata;
431 
432 	if (ns->ext) {
433 		length += meta_len;
434 		meta_len = 0;
435 	} else if (meta_len) {
436 		if ((io.metadata & 3) || !io.metadata)
437 			return -EINVAL;
438 	}
439 
440 	memset(&c, 0, sizeof(c));
441 	c.rw.opcode = io.opcode;
442 	c.rw.flags = io.flags;
443 	c.rw.nsid = cpu_to_le32(ns->ns_id);
444 	c.rw.slba = cpu_to_le64(io.slba);
445 	c.rw.length = cpu_to_le16(io.nblocks);
446 	c.rw.control = cpu_to_le16(io.control);
447 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
448 	c.rw.reftag = cpu_to_le32(io.reftag);
449 	c.rw.apptag = cpu_to_le16(io.apptag);
450 	c.rw.appmask = cpu_to_le16(io.appmask);
451 
452 	return __nvme_submit_user_cmd(ns->queue, &c,
453 			(void __user *)(uintptr_t)io.addr, length,
454 			metadata, meta_len, io.slba, NULL, 0);
455 }
456 
457 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
458 			struct nvme_passthru_cmd __user *ucmd)
459 {
460 	struct nvme_passthru_cmd cmd;
461 	struct nvme_command c;
462 	unsigned timeout = 0;
463 	int status;
464 
465 	if (!capable(CAP_SYS_ADMIN))
466 		return -EACCES;
467 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
468 		return -EFAULT;
469 	if (cmd.flags)
470 		return -EINVAL;
471 
472 	memset(&c, 0, sizeof(c));
473 	c.common.opcode = cmd.opcode;
474 	c.common.flags = cmd.flags;
475 	c.common.nsid = cpu_to_le32(cmd.nsid);
476 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
477 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
478 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
479 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
480 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
481 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
482 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
483 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
484 
485 	if (cmd.timeout_ms)
486 		timeout = msecs_to_jiffies(cmd.timeout_ms);
487 
488 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
489 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
490 			&cmd.result, timeout);
491 	if (status >= 0) {
492 		if (put_user(cmd.result, &ucmd->result))
493 			return -EFAULT;
494 	}
495 
496 	return status;
497 }
498 
499 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
500 		unsigned int cmd, unsigned long arg)
501 {
502 	struct nvme_ns *ns = bdev->bd_disk->private_data;
503 
504 	switch (cmd) {
505 	case NVME_IOCTL_ID:
506 		force_successful_syscall_return();
507 		return ns->ns_id;
508 	case NVME_IOCTL_ADMIN_CMD:
509 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
510 	case NVME_IOCTL_IO_CMD:
511 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
512 	case NVME_IOCTL_SUBMIT_IO:
513 		return nvme_submit_io(ns, (void __user *)arg);
514 #ifdef CONFIG_BLK_DEV_NVME_SCSI
515 	case SG_GET_VERSION_NUM:
516 		return nvme_sg_get_version_num((void __user *)arg);
517 	case SG_IO:
518 		return nvme_sg_io(ns, (void __user *)arg);
519 #endif
520 	default:
521 		return -ENOTTY;
522 	}
523 }
524 
525 #ifdef CONFIG_COMPAT
526 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
527 			unsigned int cmd, unsigned long arg)
528 {
529 	switch (cmd) {
530 	case SG_IO:
531 		return -ENOIOCTLCMD;
532 	}
533 	return nvme_ioctl(bdev, mode, cmd, arg);
534 }
535 #else
536 #define nvme_compat_ioctl	NULL
537 #endif
538 
539 static int nvme_open(struct block_device *bdev, fmode_t mode)
540 {
541 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
542 }
543 
544 static void nvme_release(struct gendisk *disk, fmode_t mode)
545 {
546 	struct nvme_ns *ns = disk->private_data;
547 
548 	module_put(ns->ctrl->ops->module);
549 	nvme_put_ns(ns);
550 }
551 
552 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	/* some standard values */
555 	geo->heads = 1 << 6;
556 	geo->sectors = 1 << 5;
557 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
558 	return 0;
559 }
560 
561 #ifdef CONFIG_BLK_DEV_INTEGRITY
562 static void nvme_init_integrity(struct nvme_ns *ns)
563 {
564 	struct blk_integrity integrity;
565 
566 	switch (ns->pi_type) {
567 	case NVME_NS_DPS_PI_TYPE3:
568 		integrity.profile = &t10_pi_type3_crc;
569 		break;
570 	case NVME_NS_DPS_PI_TYPE1:
571 	case NVME_NS_DPS_PI_TYPE2:
572 		integrity.profile = &t10_pi_type1_crc;
573 		break;
574 	default:
575 		integrity.profile = NULL;
576 		break;
577 	}
578 	integrity.tuple_size = ns->ms;
579 	blk_integrity_register(ns->disk, &integrity);
580 	blk_queue_max_integrity_segments(ns->queue, 1);
581 }
582 #else
583 static void nvme_init_integrity(struct nvme_ns *ns)
584 {
585 }
586 #endif /* CONFIG_BLK_DEV_INTEGRITY */
587 
588 static void nvme_config_discard(struct nvme_ns *ns)
589 {
590 	struct nvme_ctrl *ctrl = ns->ctrl;
591 	u32 logical_block_size = queue_logical_block_size(ns->queue);
592 
593 	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
594 		ns->queue->limits.discard_zeroes_data = 1;
595 	else
596 		ns->queue->limits.discard_zeroes_data = 0;
597 
598 	ns->queue->limits.discard_alignment = logical_block_size;
599 	ns->queue->limits.discard_granularity = logical_block_size;
600 	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
601 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
602 }
603 
604 static int nvme_revalidate_disk(struct gendisk *disk)
605 {
606 	struct nvme_ns *ns = disk->private_data;
607 	struct nvme_id_ns *id;
608 	u8 lbaf, pi_type;
609 	u16 old_ms;
610 	unsigned short bs;
611 
612 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
613 		set_capacity(disk, 0);
614 		return -ENODEV;
615 	}
616 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
617 		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
618 				__func__);
619 		return -ENODEV;
620 	}
621 	if (id->ncap == 0) {
622 		kfree(id);
623 		return -ENODEV;
624 	}
625 
626 	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
627 		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
628 			dev_warn(disk_to_dev(ns->disk),
629 				"%s: LightNVM init failure\n", __func__);
630 			kfree(id);
631 			return -ENODEV;
632 		}
633 		ns->type = NVME_NS_LIGHTNVM;
634 	}
635 
636 	if (ns->ctrl->vs >= NVME_VS(1, 1))
637 		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
638 	if (ns->ctrl->vs >= NVME_VS(1, 2))
639 		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
640 
641 	old_ms = ns->ms;
642 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
643 	ns->lba_shift = id->lbaf[lbaf].ds;
644 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
645 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
646 
647 	/*
648 	 * If identify namespace failed, use default 512 byte block size so
649 	 * block layer can use before failing read/write for 0 capacity.
650 	 */
651 	if (ns->lba_shift == 0)
652 		ns->lba_shift = 9;
653 	bs = 1 << ns->lba_shift;
654 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
655 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
656 					id->dps & NVME_NS_DPS_PI_MASK : 0;
657 
658 	blk_mq_freeze_queue(disk->queue);
659 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
660 				ns->ms != old_ms ||
661 				bs != queue_logical_block_size(disk->queue) ||
662 				(ns->ms && ns->ext)))
663 		blk_integrity_unregister(disk);
664 
665 	ns->pi_type = pi_type;
666 	blk_queue_logical_block_size(ns->queue, bs);
667 
668 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
669 		nvme_init_integrity(ns);
670 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
671 		set_capacity(disk, 0);
672 	else
673 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
674 
675 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
676 		nvme_config_discard(ns);
677 	blk_mq_unfreeze_queue(disk->queue);
678 
679 	kfree(id);
680 	return 0;
681 }
682 
683 static char nvme_pr_type(enum pr_type type)
684 {
685 	switch (type) {
686 	case PR_WRITE_EXCLUSIVE:
687 		return 1;
688 	case PR_EXCLUSIVE_ACCESS:
689 		return 2;
690 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
691 		return 3;
692 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
693 		return 4;
694 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
695 		return 5;
696 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
697 		return 6;
698 	default:
699 		return 0;
700 	}
701 };
702 
703 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
704 				u64 key, u64 sa_key, u8 op)
705 {
706 	struct nvme_ns *ns = bdev->bd_disk->private_data;
707 	struct nvme_command c;
708 	u8 data[16] = { 0, };
709 
710 	put_unaligned_le64(key, &data[0]);
711 	put_unaligned_le64(sa_key, &data[8]);
712 
713 	memset(&c, 0, sizeof(c));
714 	c.common.opcode = op;
715 	c.common.nsid = cpu_to_le32(ns->ns_id);
716 	c.common.cdw10[0] = cpu_to_le32(cdw10);
717 
718 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
719 }
720 
721 static int nvme_pr_register(struct block_device *bdev, u64 old,
722 		u64 new, unsigned flags)
723 {
724 	u32 cdw10;
725 
726 	if (flags & ~PR_FL_IGNORE_KEY)
727 		return -EOPNOTSUPP;
728 
729 	cdw10 = old ? 2 : 0;
730 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
731 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
732 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
733 }
734 
735 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
736 		enum pr_type type, unsigned flags)
737 {
738 	u32 cdw10;
739 
740 	if (flags & ~PR_FL_IGNORE_KEY)
741 		return -EOPNOTSUPP;
742 
743 	cdw10 = nvme_pr_type(type) << 8;
744 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
745 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
746 }
747 
748 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
749 		enum pr_type type, bool abort)
750 {
751 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
752 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
753 }
754 
755 static int nvme_pr_clear(struct block_device *bdev, u64 key)
756 {
757 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
758 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
759 }
760 
761 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
762 {
763 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
764 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
765 }
766 
767 static const struct pr_ops nvme_pr_ops = {
768 	.pr_register	= nvme_pr_register,
769 	.pr_reserve	= nvme_pr_reserve,
770 	.pr_release	= nvme_pr_release,
771 	.pr_preempt	= nvme_pr_preempt,
772 	.pr_clear	= nvme_pr_clear,
773 };
774 
775 static const struct block_device_operations nvme_fops = {
776 	.owner		= THIS_MODULE,
777 	.ioctl		= nvme_ioctl,
778 	.compat_ioctl	= nvme_compat_ioctl,
779 	.open		= nvme_open,
780 	.release	= nvme_release,
781 	.getgeo		= nvme_getgeo,
782 	.revalidate_disk= nvme_revalidate_disk,
783 	.pr_ops		= &nvme_pr_ops,
784 };
785 
786 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
787 {
788 	unsigned long timeout =
789 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
790 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
791 	int ret;
792 
793 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
794 		if ((csts & NVME_CSTS_RDY) == bit)
795 			break;
796 
797 		msleep(100);
798 		if (fatal_signal_pending(current))
799 			return -EINTR;
800 		if (time_after(jiffies, timeout)) {
801 			dev_err(ctrl->device,
802 				"Device not ready; aborting %s\n", enabled ?
803 						"initialisation" : "reset");
804 			return -ENODEV;
805 		}
806 	}
807 
808 	return ret;
809 }
810 
811 /*
812  * If the device has been passed off to us in an enabled state, just clear
813  * the enabled bit.  The spec says we should set the 'shutdown notification
814  * bits', but doing so may cause the device to complete commands to the
815  * admin queue ... and we don't know what memory that might be pointing at!
816  */
817 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
818 {
819 	int ret;
820 
821 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
822 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
823 
824 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
825 	if (ret)
826 		return ret;
827 	return nvme_wait_ready(ctrl, cap, false);
828 }
829 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
830 
831 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
832 {
833 	/*
834 	 * Default to a 4K page size, with the intention to update this
835 	 * path in the future to accomodate architectures with differing
836 	 * kernel and IO page sizes.
837 	 */
838 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
839 	int ret;
840 
841 	if (page_shift < dev_page_min) {
842 		dev_err(ctrl->device,
843 			"Minimum device page size %u too large for host (%u)\n",
844 			1 << dev_page_min, 1 << page_shift);
845 		return -ENODEV;
846 	}
847 
848 	ctrl->page_size = 1 << page_shift;
849 
850 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
851 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
852 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
853 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
854 	ctrl->ctrl_config |= NVME_CC_ENABLE;
855 
856 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
857 	if (ret)
858 		return ret;
859 	return nvme_wait_ready(ctrl, cap, true);
860 }
861 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
862 
863 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
864 {
865 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
866 	u32 csts;
867 	int ret;
868 
869 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
870 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
871 
872 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
873 	if (ret)
874 		return ret;
875 
876 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
877 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
878 			break;
879 
880 		msleep(100);
881 		if (fatal_signal_pending(current))
882 			return -EINTR;
883 		if (time_after(jiffies, timeout)) {
884 			dev_err(ctrl->device,
885 				"Device shutdown incomplete; abort shutdown\n");
886 			return -ENODEV;
887 		}
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
893 
894 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
895 		struct request_queue *q)
896 {
897 	if (ctrl->max_hw_sectors) {
898 		u32 max_segments =
899 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
900 
901 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
902 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
903 	}
904 	if (ctrl->stripe_size)
905 		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
906 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
907 		blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
908 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
909 }
910 
911 /*
912  * Initialize the cached copies of the Identify data and various controller
913  * register in our nvme_ctrl structure.  This should be called as soon as
914  * the admin queue is fully up and running.
915  */
916 int nvme_init_identify(struct nvme_ctrl *ctrl)
917 {
918 	struct nvme_id_ctrl *id;
919 	u64 cap;
920 	int ret, page_shift;
921 
922 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
923 	if (ret) {
924 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
925 		return ret;
926 	}
927 
928 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
929 	if (ret) {
930 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
931 		return ret;
932 	}
933 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
934 
935 	if (ctrl->vs >= NVME_VS(1, 1))
936 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
937 
938 	ret = nvme_identify_ctrl(ctrl, &id);
939 	if (ret) {
940 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
941 		return -EIO;
942 	}
943 
944 	ctrl->vid = le16_to_cpu(id->vid);
945 	ctrl->oncs = le16_to_cpup(&id->oncs);
946 	atomic_set(&ctrl->abort_limit, id->acl + 1);
947 	ctrl->vwc = id->vwc;
948 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
949 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
950 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
951 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
952 	if (id->mdts)
953 		ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
954 	else
955 		ctrl->max_hw_sectors = UINT_MAX;
956 
957 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
958 		unsigned int max_hw_sectors;
959 
960 		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
961 		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
962 		if (ctrl->max_hw_sectors) {
963 			ctrl->max_hw_sectors = min(max_hw_sectors,
964 							ctrl->max_hw_sectors);
965 		} else {
966 			ctrl->max_hw_sectors = max_hw_sectors;
967 		}
968 	}
969 
970 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
971 
972 	kfree(id);
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_init_identify);
976 
977 static int nvme_dev_open(struct inode *inode, struct file *file)
978 {
979 	struct nvme_ctrl *ctrl;
980 	int instance = iminor(inode);
981 	int ret = -ENODEV;
982 
983 	spin_lock(&dev_list_lock);
984 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
985 		if (ctrl->instance != instance)
986 			continue;
987 
988 		if (!ctrl->admin_q) {
989 			ret = -EWOULDBLOCK;
990 			break;
991 		}
992 		if (!kref_get_unless_zero(&ctrl->kref))
993 			break;
994 		file->private_data = ctrl;
995 		ret = 0;
996 		break;
997 	}
998 	spin_unlock(&dev_list_lock);
999 
1000 	return ret;
1001 }
1002 
1003 static int nvme_dev_release(struct inode *inode, struct file *file)
1004 {
1005 	nvme_put_ctrl(file->private_data);
1006 	return 0;
1007 }
1008 
1009 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1010 {
1011 	struct nvme_ns *ns;
1012 	int ret;
1013 
1014 	mutex_lock(&ctrl->namespaces_mutex);
1015 	if (list_empty(&ctrl->namespaces)) {
1016 		ret = -ENOTTY;
1017 		goto out_unlock;
1018 	}
1019 
1020 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1021 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1022 		dev_warn(ctrl->device,
1023 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1024 		ret = -EINVAL;
1025 		goto out_unlock;
1026 	}
1027 
1028 	dev_warn(ctrl->device,
1029 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1030 	kref_get(&ns->kref);
1031 	mutex_unlock(&ctrl->namespaces_mutex);
1032 
1033 	ret = nvme_user_cmd(ctrl, ns, argp);
1034 	nvme_put_ns(ns);
1035 	return ret;
1036 
1037 out_unlock:
1038 	mutex_unlock(&ctrl->namespaces_mutex);
1039 	return ret;
1040 }
1041 
1042 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1043 		unsigned long arg)
1044 {
1045 	struct nvme_ctrl *ctrl = file->private_data;
1046 	void __user *argp = (void __user *)arg;
1047 
1048 	switch (cmd) {
1049 	case NVME_IOCTL_ADMIN_CMD:
1050 		return nvme_user_cmd(ctrl, NULL, argp);
1051 	case NVME_IOCTL_IO_CMD:
1052 		return nvme_dev_user_cmd(ctrl, argp);
1053 	case NVME_IOCTL_RESET:
1054 		dev_warn(ctrl->device, "resetting controller\n");
1055 		return ctrl->ops->reset_ctrl(ctrl);
1056 	case NVME_IOCTL_SUBSYS_RESET:
1057 		return nvme_reset_subsystem(ctrl);
1058 	default:
1059 		return -ENOTTY;
1060 	}
1061 }
1062 
1063 static const struct file_operations nvme_dev_fops = {
1064 	.owner		= THIS_MODULE,
1065 	.open		= nvme_dev_open,
1066 	.release	= nvme_dev_release,
1067 	.unlocked_ioctl	= nvme_dev_ioctl,
1068 	.compat_ioctl	= nvme_dev_ioctl,
1069 };
1070 
1071 static ssize_t nvme_sysfs_reset(struct device *dev,
1072 				struct device_attribute *attr, const char *buf,
1073 				size_t count)
1074 {
1075 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1076 	int ret;
1077 
1078 	ret = ctrl->ops->reset_ctrl(ctrl);
1079 	if (ret < 0)
1080 		return ret;
1081 	return count;
1082 }
1083 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1084 
1085 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1086 								char *buf)
1087 {
1088 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1089 	struct nvme_ctrl *ctrl = ns->ctrl;
1090 	int serial_len = sizeof(ctrl->serial);
1091 	int model_len = sizeof(ctrl->model);
1092 
1093 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1094 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1095 
1096 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1097 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1098 
1099 	while (ctrl->serial[serial_len - 1] == ' ')
1100 		serial_len--;
1101 	while (ctrl->model[model_len - 1] == ' ')
1102 		model_len--;
1103 
1104 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1105 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1106 }
1107 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1108 
1109 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1110 								char *buf)
1111 {
1112 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1113 	return sprintf(buf, "%pU\n", ns->uuid);
1114 }
1115 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1116 
1117 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1118 								char *buf)
1119 {
1120 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1121 	return sprintf(buf, "%8phd\n", ns->eui);
1122 }
1123 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1124 
1125 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1126 								char *buf)
1127 {
1128 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1129 	return sprintf(buf, "%d\n", ns->ns_id);
1130 }
1131 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1132 
1133 static struct attribute *nvme_ns_attrs[] = {
1134 	&dev_attr_wwid.attr,
1135 	&dev_attr_uuid.attr,
1136 	&dev_attr_eui.attr,
1137 	&dev_attr_nsid.attr,
1138 	NULL,
1139 };
1140 
1141 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1142 		struct attribute *a, int n)
1143 {
1144 	struct device *dev = container_of(kobj, struct device, kobj);
1145 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1146 
1147 	if (a == &dev_attr_uuid.attr) {
1148 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1149 			return 0;
1150 	}
1151 	if (a == &dev_attr_eui.attr) {
1152 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1153 			return 0;
1154 	}
1155 	return a->mode;
1156 }
1157 
1158 static const struct attribute_group nvme_ns_attr_group = {
1159 	.attrs		= nvme_ns_attrs,
1160 	.is_visible	= nvme_attrs_are_visible,
1161 };
1162 
1163 #define nvme_show_str_function(field)						\
1164 static ssize_t  field##_show(struct device *dev,				\
1165 			    struct device_attribute *attr, char *buf)		\
1166 {										\
1167         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1168         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1169 }										\
1170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1171 
1172 #define nvme_show_int_function(field)						\
1173 static ssize_t  field##_show(struct device *dev,				\
1174 			    struct device_attribute *attr, char *buf)		\
1175 {										\
1176         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1177         return sprintf(buf, "%d\n", ctrl->field);	\
1178 }										\
1179 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1180 
1181 nvme_show_str_function(model);
1182 nvme_show_str_function(serial);
1183 nvme_show_str_function(firmware_rev);
1184 nvme_show_int_function(cntlid);
1185 
1186 static struct attribute *nvme_dev_attrs[] = {
1187 	&dev_attr_reset_controller.attr,
1188 	&dev_attr_model.attr,
1189 	&dev_attr_serial.attr,
1190 	&dev_attr_firmware_rev.attr,
1191 	&dev_attr_cntlid.attr,
1192 	NULL
1193 };
1194 
1195 static struct attribute_group nvme_dev_attrs_group = {
1196 	.attrs = nvme_dev_attrs,
1197 };
1198 
1199 static const struct attribute_group *nvme_dev_attr_groups[] = {
1200 	&nvme_dev_attrs_group,
1201 	NULL,
1202 };
1203 
1204 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1205 {
1206 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1207 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1208 
1209 	return nsa->ns_id - nsb->ns_id;
1210 }
1211 
1212 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1213 {
1214 	struct nvme_ns *ns;
1215 
1216 	lockdep_assert_held(&ctrl->namespaces_mutex);
1217 
1218 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1219 		if (ns->ns_id == nsid)
1220 			return ns;
1221 		if (ns->ns_id > nsid)
1222 			break;
1223 	}
1224 	return NULL;
1225 }
1226 
1227 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1228 {
1229 	struct nvme_ns *ns;
1230 	struct gendisk *disk;
1231 	int node = dev_to_node(ctrl->dev);
1232 
1233 	lockdep_assert_held(&ctrl->namespaces_mutex);
1234 
1235 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1236 	if (!ns)
1237 		return;
1238 
1239 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1240 	if (ns->instance < 0)
1241 		goto out_free_ns;
1242 
1243 	ns->queue = blk_mq_init_queue(ctrl->tagset);
1244 	if (IS_ERR(ns->queue))
1245 		goto out_release_instance;
1246 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1247 	ns->queue->queuedata = ns;
1248 	ns->ctrl = ctrl;
1249 
1250 	disk = alloc_disk_node(0, node);
1251 	if (!disk)
1252 		goto out_free_queue;
1253 
1254 	kref_init(&ns->kref);
1255 	ns->ns_id = nsid;
1256 	ns->disk = disk;
1257 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1258 
1259 
1260 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1261 	nvme_set_queue_limits(ctrl, ns->queue);
1262 
1263 	disk->major = nvme_major;
1264 	disk->first_minor = 0;
1265 	disk->fops = &nvme_fops;
1266 	disk->private_data = ns;
1267 	disk->queue = ns->queue;
1268 	disk->driverfs_dev = ctrl->device;
1269 	disk->flags = GENHD_FL_EXT_DEVT;
1270 	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1271 
1272 	if (nvme_revalidate_disk(ns->disk))
1273 		goto out_free_disk;
1274 
1275 	list_add_tail(&ns->list, &ctrl->namespaces);
1276 	kref_get(&ctrl->kref);
1277 	if (ns->type == NVME_NS_LIGHTNVM)
1278 		return;
1279 
1280 	add_disk(ns->disk);
1281 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1282 					&nvme_ns_attr_group))
1283 		pr_warn("%s: failed to create sysfs group for identification\n",
1284 			ns->disk->disk_name);
1285 	return;
1286  out_free_disk:
1287 	kfree(disk);
1288  out_free_queue:
1289 	blk_cleanup_queue(ns->queue);
1290  out_release_instance:
1291 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1292  out_free_ns:
1293 	kfree(ns);
1294 }
1295 
1296 static void nvme_ns_remove(struct nvme_ns *ns)
1297 {
1298 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1299 		return;
1300 
1301 	if (ns->disk->flags & GENHD_FL_UP) {
1302 		if (blk_get_integrity(ns->disk))
1303 			blk_integrity_unregister(ns->disk);
1304 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1305 					&nvme_ns_attr_group);
1306 		del_gendisk(ns->disk);
1307 		blk_mq_abort_requeue_list(ns->queue);
1308 		blk_cleanup_queue(ns->queue);
1309 	}
1310 	mutex_lock(&ns->ctrl->namespaces_mutex);
1311 	list_del_init(&ns->list);
1312 	mutex_unlock(&ns->ctrl->namespaces_mutex);
1313 	nvme_put_ns(ns);
1314 }
1315 
1316 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1317 {
1318 	struct nvme_ns *ns;
1319 
1320 	ns = nvme_find_ns(ctrl, nsid);
1321 	if (ns) {
1322 		if (revalidate_disk(ns->disk))
1323 			nvme_ns_remove(ns);
1324 	} else
1325 		nvme_alloc_ns(ctrl, nsid);
1326 }
1327 
1328 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1329 {
1330 	struct nvme_ns *ns;
1331 	__le32 *ns_list;
1332 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1333 	int ret = 0;
1334 
1335 	ns_list = kzalloc(0x1000, GFP_KERNEL);
1336 	if (!ns_list)
1337 		return -ENOMEM;
1338 
1339 	for (i = 0; i < num_lists; i++) {
1340 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1341 		if (ret)
1342 			goto out;
1343 
1344 		for (j = 0; j < min(nn, 1024U); j++) {
1345 			nsid = le32_to_cpu(ns_list[j]);
1346 			if (!nsid)
1347 				goto out;
1348 
1349 			nvme_validate_ns(ctrl, nsid);
1350 
1351 			while (++prev < nsid) {
1352 				ns = nvme_find_ns(ctrl, prev);
1353 				if (ns)
1354 					nvme_ns_remove(ns);
1355 			}
1356 		}
1357 		nn -= j;
1358 	}
1359  out:
1360 	kfree(ns_list);
1361 	return ret;
1362 }
1363 
1364 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1365 {
1366 	struct nvme_ns *ns, *next;
1367 	unsigned i;
1368 
1369 	lockdep_assert_held(&ctrl->namespaces_mutex);
1370 
1371 	for (i = 1; i <= nn; i++)
1372 		nvme_validate_ns(ctrl, i);
1373 
1374 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1375 		if (ns->ns_id > nn)
1376 			nvme_ns_remove(ns);
1377 	}
1378 }
1379 
1380 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1381 {
1382 	struct nvme_id_ctrl *id;
1383 	unsigned nn;
1384 
1385 	if (nvme_identify_ctrl(ctrl, &id))
1386 		return;
1387 
1388 	mutex_lock(&ctrl->namespaces_mutex);
1389 	nn = le32_to_cpu(id->nn);
1390 	if (ctrl->vs >= NVME_VS(1, 1) &&
1391 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1392 		if (!nvme_scan_ns_list(ctrl, nn))
1393 			goto done;
1394 	}
1395 	__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1396  done:
1397 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1398 	mutex_unlock(&ctrl->namespaces_mutex);
1399 	kfree(id);
1400 }
1401 EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1402 
1403 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1404 {
1405 	struct nvme_ns *ns, *next;
1406 
1407 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1408 		nvme_ns_remove(ns);
1409 }
1410 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1411 
1412 static DEFINE_IDA(nvme_instance_ida);
1413 
1414 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1415 {
1416 	int instance, error;
1417 
1418 	do {
1419 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1420 			return -ENODEV;
1421 
1422 		spin_lock(&dev_list_lock);
1423 		error = ida_get_new(&nvme_instance_ida, &instance);
1424 		spin_unlock(&dev_list_lock);
1425 	} while (error == -EAGAIN);
1426 
1427 	if (error)
1428 		return -ENODEV;
1429 
1430 	ctrl->instance = instance;
1431 	return 0;
1432 }
1433 
1434 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1435 {
1436 	spin_lock(&dev_list_lock);
1437 	ida_remove(&nvme_instance_ida, ctrl->instance);
1438 	spin_unlock(&dev_list_lock);
1439 }
1440 
1441 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1442 {
1443 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1444 
1445 	spin_lock(&dev_list_lock);
1446 	list_del(&ctrl->node);
1447 	spin_unlock(&dev_list_lock);
1448 }
1449 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1450 
1451 static void nvme_free_ctrl(struct kref *kref)
1452 {
1453 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1454 
1455 	put_device(ctrl->device);
1456 	nvme_release_instance(ctrl);
1457 	ida_destroy(&ctrl->ns_ida);
1458 
1459 	ctrl->ops->free_ctrl(ctrl);
1460 }
1461 
1462 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1463 {
1464 	kref_put(&ctrl->kref, nvme_free_ctrl);
1465 }
1466 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1467 
1468 /*
1469  * Initialize a NVMe controller structures.  This needs to be called during
1470  * earliest initialization so that we have the initialized structured around
1471  * during probing.
1472  */
1473 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1474 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
1475 {
1476 	int ret;
1477 
1478 	INIT_LIST_HEAD(&ctrl->namespaces);
1479 	mutex_init(&ctrl->namespaces_mutex);
1480 	kref_init(&ctrl->kref);
1481 	ctrl->dev = dev;
1482 	ctrl->ops = ops;
1483 	ctrl->quirks = quirks;
1484 
1485 	ret = nvme_set_instance(ctrl);
1486 	if (ret)
1487 		goto out;
1488 
1489 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1490 				MKDEV(nvme_char_major, ctrl->instance),
1491 				ctrl, nvme_dev_attr_groups,
1492 				"nvme%d", ctrl->instance);
1493 	if (IS_ERR(ctrl->device)) {
1494 		ret = PTR_ERR(ctrl->device);
1495 		goto out_release_instance;
1496 	}
1497 	get_device(ctrl->device);
1498 	ida_init(&ctrl->ns_ida);
1499 
1500 	spin_lock(&dev_list_lock);
1501 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
1502 	spin_unlock(&dev_list_lock);
1503 
1504 	return 0;
1505 out_release_instance:
1506 	nvme_release_instance(ctrl);
1507 out:
1508 	return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1511 
1512 /**
1513  * nvme_kill_queues(): Ends all namespace queues
1514  * @ctrl: the dead controller that needs to end
1515  *
1516  * Call this function when the driver determines it is unable to get the
1517  * controller in a state capable of servicing IO.
1518  */
1519 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1520 {
1521 	struct nvme_ns *ns;
1522 
1523 	mutex_lock(&ctrl->namespaces_mutex);
1524 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1525 		if (!kref_get_unless_zero(&ns->kref))
1526 			continue;
1527 
1528 		/*
1529 		 * Revalidating a dead namespace sets capacity to 0. This will
1530 		 * end buffered writers dirtying pages that can't be synced.
1531 		 */
1532 		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1533 			revalidate_disk(ns->disk);
1534 
1535 		blk_set_queue_dying(ns->queue);
1536 		blk_mq_abort_requeue_list(ns->queue);
1537 		blk_mq_start_stopped_hw_queues(ns->queue, true);
1538 
1539 		nvme_put_ns(ns);
1540 	}
1541 	mutex_unlock(&ctrl->namespaces_mutex);
1542 }
1543 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1544 
1545 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1546 {
1547 	struct nvme_ns *ns;
1548 
1549 	mutex_lock(&ctrl->namespaces_mutex);
1550 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1551 		spin_lock_irq(ns->queue->queue_lock);
1552 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1553 		spin_unlock_irq(ns->queue->queue_lock);
1554 
1555 		blk_mq_cancel_requeue_work(ns->queue);
1556 		blk_mq_stop_hw_queues(ns->queue);
1557 	}
1558 	mutex_unlock(&ctrl->namespaces_mutex);
1559 }
1560 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1561 
1562 void nvme_start_queues(struct nvme_ctrl *ctrl)
1563 {
1564 	struct nvme_ns *ns;
1565 
1566 	mutex_lock(&ctrl->namespaces_mutex);
1567 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1568 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1569 		blk_mq_start_stopped_hw_queues(ns->queue, true);
1570 		blk_mq_kick_requeue_list(ns->queue);
1571 	}
1572 	mutex_unlock(&ctrl->namespaces_mutex);
1573 }
1574 EXPORT_SYMBOL_GPL(nvme_start_queues);
1575 
1576 int __init nvme_core_init(void)
1577 {
1578 	int result;
1579 
1580 	result = register_blkdev(nvme_major, "nvme");
1581 	if (result < 0)
1582 		return result;
1583 	else if (result > 0)
1584 		nvme_major = result;
1585 
1586 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1587 							&nvme_dev_fops);
1588 	if (result < 0)
1589 		goto unregister_blkdev;
1590 	else if (result > 0)
1591 		nvme_char_major = result;
1592 
1593 	nvme_class = class_create(THIS_MODULE, "nvme");
1594 	if (IS_ERR(nvme_class)) {
1595 		result = PTR_ERR(nvme_class);
1596 		goto unregister_chrdev;
1597 	}
1598 
1599 	return 0;
1600 
1601  unregister_chrdev:
1602 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1603  unregister_blkdev:
1604 	unregister_blkdev(nvme_major, "nvme");
1605 	return result;
1606 }
1607 
1608 void nvme_core_exit(void)
1609 {
1610 	unregister_blkdev(nvme_major, "nvme");
1611 	class_destroy(nvme_class);
1612 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1613 }
1614 
1615 MODULE_LICENSE("GPL");
1616 MODULE_VERSION("1.0");
1617 module_init(nvme_core_init);
1618 module_exit(nvme_core_exit);
1619