1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/list_sort.h> 15 #include <linux/slab.h> 16 #include <linux/types.h> 17 #include <linux/pr.h> 18 #include <linux/ptrace.h> 19 #include <linux/nvme_ioctl.h> 20 #include <linux/t10-pi.h> 21 #include <linux/pm_qos.h> 22 #include <asm/unaligned.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace.h" 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 #define NVME_MINORS (1U << MINORBITS) 31 32 unsigned int admin_timeout = 60; 33 module_param(admin_timeout, uint, 0644); 34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 35 EXPORT_SYMBOL_GPL(admin_timeout); 36 37 unsigned int nvme_io_timeout = 30; 38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 40 EXPORT_SYMBOL_GPL(nvme_io_timeout); 41 42 static unsigned char shutdown_timeout = 5; 43 module_param(shutdown_timeout, byte, 0644); 44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 45 46 static u8 nvme_max_retries = 5; 47 module_param_named(max_retries, nvme_max_retries, byte, 0644); 48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 49 50 static unsigned long default_ps_max_latency_us = 100000; 51 module_param(default_ps_max_latency_us, ulong, 0644); 52 MODULE_PARM_DESC(default_ps_max_latency_us, 53 "max power saving latency for new devices; use PM QOS to change per device"); 54 55 static bool force_apst; 56 module_param(force_apst, bool, 0644); 57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 58 59 static bool streams; 60 module_param(streams, bool, 0644); 61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 62 63 /* 64 * nvme_wq - hosts nvme related works that are not reset or delete 65 * nvme_reset_wq - hosts nvme reset works 66 * nvme_delete_wq - hosts nvme delete works 67 * 68 * nvme_wq will host works such are scan, aen handling, fw activation, 69 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 70 * runs reset works which also flush works hosted on nvme_wq for 71 * serialization purposes. nvme_delete_wq host controller deletion 72 * works which flush reset works for serialization. 73 */ 74 struct workqueue_struct *nvme_wq; 75 EXPORT_SYMBOL_GPL(nvme_wq); 76 77 struct workqueue_struct *nvme_reset_wq; 78 EXPORT_SYMBOL_GPL(nvme_reset_wq); 79 80 struct workqueue_struct *nvme_delete_wq; 81 EXPORT_SYMBOL_GPL(nvme_delete_wq); 82 83 static DEFINE_IDA(nvme_subsystems_ida); 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 revalidate_disk(ns->disk); 106 blk_set_queue_dying(ns->queue); 107 /* Forcibly unquiesce queues to avoid blocking dispatch */ 108 blk_mq_unquiesce_queue(ns->queue); 109 } 110 111 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 112 { 113 /* 114 * Only new queue scan work when admin and IO queues are both alive 115 */ 116 if (ctrl->state == NVME_CTRL_LIVE) 117 queue_work(nvme_wq, &ctrl->scan_work); 118 } 119 120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 121 { 122 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 123 return -EBUSY; 124 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 125 return -EBUSY; 126 return 0; 127 } 128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 129 130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 131 { 132 int ret; 133 134 ret = nvme_reset_ctrl(ctrl); 135 if (!ret) { 136 flush_work(&ctrl->reset_work); 137 if (ctrl->state != NVME_CTRL_LIVE && 138 ctrl->state != NVME_CTRL_ADMIN_ONLY) 139 ret = -ENETRESET; 140 } 141 142 return ret; 143 } 144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 145 146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 147 { 148 dev_info(ctrl->device, 149 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 150 151 flush_work(&ctrl->reset_work); 152 nvme_stop_ctrl(ctrl); 153 nvme_remove_namespaces(ctrl); 154 ctrl->ops->delete_ctrl(ctrl); 155 nvme_uninit_ctrl(ctrl); 156 nvme_put_ctrl(ctrl); 157 } 158 159 static void nvme_delete_ctrl_work(struct work_struct *work) 160 { 161 struct nvme_ctrl *ctrl = 162 container_of(work, struct nvme_ctrl, delete_work); 163 164 nvme_do_delete_ctrl(ctrl); 165 } 166 167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 168 { 169 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 170 return -EBUSY; 171 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 172 return -EBUSY; 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 176 177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 178 { 179 int ret = 0; 180 181 /* 182 * Keep a reference until nvme_do_delete_ctrl() complete, 183 * since ->delete_ctrl can free the controller. 184 */ 185 nvme_get_ctrl(ctrl); 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 ret = -EBUSY; 188 if (!ret) 189 nvme_do_delete_ctrl(ctrl); 190 nvme_put_ctrl(ctrl); 191 return ret; 192 } 193 194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 195 { 196 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 197 } 198 199 static blk_status_t nvme_error_status(struct request *req) 200 { 201 switch (nvme_req(req)->status & 0x7ff) { 202 case NVME_SC_SUCCESS: 203 return BLK_STS_OK; 204 case NVME_SC_CAP_EXCEEDED: 205 return BLK_STS_NOSPC; 206 case NVME_SC_LBA_RANGE: 207 return BLK_STS_TARGET; 208 case NVME_SC_BAD_ATTRIBUTES: 209 case NVME_SC_ONCS_NOT_SUPPORTED: 210 case NVME_SC_INVALID_OPCODE: 211 case NVME_SC_INVALID_FIELD: 212 case NVME_SC_INVALID_NS: 213 return BLK_STS_NOTSUPP; 214 case NVME_SC_WRITE_FAULT: 215 case NVME_SC_READ_ERROR: 216 case NVME_SC_UNWRITTEN_BLOCK: 217 case NVME_SC_ACCESS_DENIED: 218 case NVME_SC_READ_ONLY: 219 case NVME_SC_COMPARE_FAILED: 220 return BLK_STS_MEDIUM; 221 case NVME_SC_GUARD_CHECK: 222 case NVME_SC_APPTAG_CHECK: 223 case NVME_SC_REFTAG_CHECK: 224 case NVME_SC_INVALID_PI: 225 return BLK_STS_PROTECTION; 226 case NVME_SC_RESERVATION_CONFLICT: 227 return BLK_STS_NEXUS; 228 default: 229 return BLK_STS_IOERR; 230 } 231 } 232 233 static inline bool nvme_req_needs_retry(struct request *req) 234 { 235 if (blk_noretry_request(req)) 236 return false; 237 if (nvme_req(req)->status & NVME_SC_DNR) 238 return false; 239 if (nvme_req(req)->retries >= nvme_max_retries) 240 return false; 241 return true; 242 } 243 244 static void nvme_retry_req(struct request *req) 245 { 246 struct nvme_ns *ns = req->q->queuedata; 247 unsigned long delay = 0; 248 u16 crd; 249 250 /* The mask and shift result must be <= 3 */ 251 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 252 if (ns && crd) 253 delay = ns->ctrl->crdt[crd - 1] * 100; 254 255 nvme_req(req)->retries++; 256 blk_mq_requeue_request(req, false); 257 blk_mq_delay_kick_requeue_list(req->q, delay); 258 } 259 260 void nvme_complete_rq(struct request *req) 261 { 262 blk_status_t status = nvme_error_status(req); 263 264 trace_nvme_complete_rq(req); 265 266 if (nvme_req(req)->ctrl->kas) 267 nvme_req(req)->ctrl->comp_seen = true; 268 269 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 270 if ((req->cmd_flags & REQ_NVME_MPATH) && 271 blk_path_error(status)) { 272 nvme_failover_req(req); 273 return; 274 } 275 276 if (!blk_queue_dying(req->q)) { 277 nvme_retry_req(req); 278 return; 279 } 280 } 281 blk_mq_end_request(req, status); 282 } 283 EXPORT_SYMBOL_GPL(nvme_complete_rq); 284 285 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 286 { 287 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 288 "Cancelling I/O %d", req->tag); 289 290 nvme_req(req)->status = NVME_SC_ABORT_REQ; 291 blk_mq_complete_request_sync(req); 292 return true; 293 } 294 EXPORT_SYMBOL_GPL(nvme_cancel_request); 295 296 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 297 enum nvme_ctrl_state new_state) 298 { 299 enum nvme_ctrl_state old_state; 300 unsigned long flags; 301 bool changed = false; 302 303 spin_lock_irqsave(&ctrl->lock, flags); 304 305 old_state = ctrl->state; 306 switch (new_state) { 307 case NVME_CTRL_ADMIN_ONLY: 308 switch (old_state) { 309 case NVME_CTRL_CONNECTING: 310 changed = true; 311 /* FALLTHRU */ 312 default: 313 break; 314 } 315 break; 316 case NVME_CTRL_LIVE: 317 switch (old_state) { 318 case NVME_CTRL_NEW: 319 case NVME_CTRL_RESETTING: 320 case NVME_CTRL_CONNECTING: 321 changed = true; 322 /* FALLTHRU */ 323 default: 324 break; 325 } 326 break; 327 case NVME_CTRL_RESETTING: 328 switch (old_state) { 329 case NVME_CTRL_NEW: 330 case NVME_CTRL_LIVE: 331 case NVME_CTRL_ADMIN_ONLY: 332 changed = true; 333 /* FALLTHRU */ 334 default: 335 break; 336 } 337 break; 338 case NVME_CTRL_CONNECTING: 339 switch (old_state) { 340 case NVME_CTRL_NEW: 341 case NVME_CTRL_RESETTING: 342 changed = true; 343 /* FALLTHRU */ 344 default: 345 break; 346 } 347 break; 348 case NVME_CTRL_DELETING: 349 switch (old_state) { 350 case NVME_CTRL_LIVE: 351 case NVME_CTRL_ADMIN_ONLY: 352 case NVME_CTRL_RESETTING: 353 case NVME_CTRL_CONNECTING: 354 changed = true; 355 /* FALLTHRU */ 356 default: 357 break; 358 } 359 break; 360 case NVME_CTRL_DEAD: 361 switch (old_state) { 362 case NVME_CTRL_DELETING: 363 changed = true; 364 /* FALLTHRU */ 365 default: 366 break; 367 } 368 break; 369 default: 370 break; 371 } 372 373 if (changed) 374 ctrl->state = new_state; 375 376 spin_unlock_irqrestore(&ctrl->lock, flags); 377 if (changed && ctrl->state == NVME_CTRL_LIVE) 378 nvme_kick_requeue_lists(ctrl); 379 return changed; 380 } 381 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 382 383 static void nvme_free_ns_head(struct kref *ref) 384 { 385 struct nvme_ns_head *head = 386 container_of(ref, struct nvme_ns_head, ref); 387 388 nvme_mpath_remove_disk(head); 389 ida_simple_remove(&head->subsys->ns_ida, head->instance); 390 list_del_init(&head->entry); 391 cleanup_srcu_struct(&head->srcu); 392 nvme_put_subsystem(head->subsys); 393 kfree(head); 394 } 395 396 static void nvme_put_ns_head(struct nvme_ns_head *head) 397 { 398 kref_put(&head->ref, nvme_free_ns_head); 399 } 400 401 static void nvme_free_ns(struct kref *kref) 402 { 403 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 404 405 if (ns->ndev) 406 nvme_nvm_unregister(ns); 407 408 put_disk(ns->disk); 409 nvme_put_ns_head(ns->head); 410 nvme_put_ctrl(ns->ctrl); 411 kfree(ns); 412 } 413 414 static void nvme_put_ns(struct nvme_ns *ns) 415 { 416 kref_put(&ns->kref, nvme_free_ns); 417 } 418 419 static inline void nvme_clear_nvme_request(struct request *req) 420 { 421 if (!(req->rq_flags & RQF_DONTPREP)) { 422 nvme_req(req)->retries = 0; 423 nvme_req(req)->flags = 0; 424 req->rq_flags |= RQF_DONTPREP; 425 } 426 } 427 428 struct request *nvme_alloc_request(struct request_queue *q, 429 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 430 { 431 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 432 struct request *req; 433 434 if (qid == NVME_QID_ANY) { 435 req = blk_mq_alloc_request(q, op, flags); 436 } else { 437 req = blk_mq_alloc_request_hctx(q, op, flags, 438 qid ? qid - 1 : 0); 439 } 440 if (IS_ERR(req)) 441 return req; 442 443 req->cmd_flags |= REQ_FAILFAST_DRIVER; 444 nvme_clear_nvme_request(req); 445 nvme_req(req)->cmd = cmd; 446 447 return req; 448 } 449 EXPORT_SYMBOL_GPL(nvme_alloc_request); 450 451 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 452 { 453 struct nvme_command c; 454 455 memset(&c, 0, sizeof(c)); 456 457 c.directive.opcode = nvme_admin_directive_send; 458 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 459 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 460 c.directive.dtype = NVME_DIR_IDENTIFY; 461 c.directive.tdtype = NVME_DIR_STREAMS; 462 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 463 464 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 465 } 466 467 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 468 { 469 return nvme_toggle_streams(ctrl, false); 470 } 471 472 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 473 { 474 return nvme_toggle_streams(ctrl, true); 475 } 476 477 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 478 struct streams_directive_params *s, u32 nsid) 479 { 480 struct nvme_command c; 481 482 memset(&c, 0, sizeof(c)); 483 memset(s, 0, sizeof(*s)); 484 485 c.directive.opcode = nvme_admin_directive_recv; 486 c.directive.nsid = cpu_to_le32(nsid); 487 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 488 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 489 c.directive.dtype = NVME_DIR_STREAMS; 490 491 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 492 } 493 494 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 495 { 496 struct streams_directive_params s; 497 int ret; 498 499 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 500 return 0; 501 if (!streams) 502 return 0; 503 504 ret = nvme_enable_streams(ctrl); 505 if (ret) 506 return ret; 507 508 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 509 if (ret) 510 return ret; 511 512 ctrl->nssa = le16_to_cpu(s.nssa); 513 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 514 dev_info(ctrl->device, "too few streams (%u) available\n", 515 ctrl->nssa); 516 nvme_disable_streams(ctrl); 517 return 0; 518 } 519 520 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 521 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 522 return 0; 523 } 524 525 /* 526 * Check if 'req' has a write hint associated with it. If it does, assign 527 * a valid namespace stream to the write. 528 */ 529 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 530 struct request *req, u16 *control, 531 u32 *dsmgmt) 532 { 533 enum rw_hint streamid = req->write_hint; 534 535 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 536 streamid = 0; 537 else { 538 streamid--; 539 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 540 return; 541 542 *control |= NVME_RW_DTYPE_STREAMS; 543 *dsmgmt |= streamid << 16; 544 } 545 546 if (streamid < ARRAY_SIZE(req->q->write_hints)) 547 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 548 } 549 550 static inline void nvme_setup_flush(struct nvme_ns *ns, 551 struct nvme_command *cmnd) 552 { 553 cmnd->common.opcode = nvme_cmd_flush; 554 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 555 } 556 557 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 558 struct nvme_command *cmnd) 559 { 560 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 561 struct nvme_dsm_range *range; 562 struct bio *bio; 563 564 range = kmalloc_array(segments, sizeof(*range), 565 GFP_ATOMIC | __GFP_NOWARN); 566 if (!range) { 567 /* 568 * If we fail allocation our range, fallback to the controller 569 * discard page. If that's also busy, it's safe to return 570 * busy, as we know we can make progress once that's freed. 571 */ 572 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 573 return BLK_STS_RESOURCE; 574 575 range = page_address(ns->ctrl->discard_page); 576 } 577 578 __rq_for_each_bio(bio, req) { 579 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 580 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 581 582 if (n < segments) { 583 range[n].cattr = cpu_to_le32(0); 584 range[n].nlb = cpu_to_le32(nlb); 585 range[n].slba = cpu_to_le64(slba); 586 } 587 n++; 588 } 589 590 if (WARN_ON_ONCE(n != segments)) { 591 if (virt_to_page(range) == ns->ctrl->discard_page) 592 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 593 else 594 kfree(range); 595 return BLK_STS_IOERR; 596 } 597 598 cmnd->dsm.opcode = nvme_cmd_dsm; 599 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 600 cmnd->dsm.nr = cpu_to_le32(segments - 1); 601 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 602 603 req->special_vec.bv_page = virt_to_page(range); 604 req->special_vec.bv_offset = offset_in_page(range); 605 req->special_vec.bv_len = sizeof(*range) * segments; 606 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 607 608 return BLK_STS_OK; 609 } 610 611 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 612 struct request *req, struct nvme_command *cmnd) 613 { 614 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 615 return nvme_setup_discard(ns, req, cmnd); 616 617 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 618 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 619 cmnd->write_zeroes.slba = 620 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 621 cmnd->write_zeroes.length = 622 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 623 cmnd->write_zeroes.control = 0; 624 return BLK_STS_OK; 625 } 626 627 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 628 struct request *req, struct nvme_command *cmnd) 629 { 630 struct nvme_ctrl *ctrl = ns->ctrl; 631 u16 control = 0; 632 u32 dsmgmt = 0; 633 634 if (req->cmd_flags & REQ_FUA) 635 control |= NVME_RW_FUA; 636 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 637 control |= NVME_RW_LR; 638 639 if (req->cmd_flags & REQ_RAHEAD) 640 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 641 642 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 643 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 644 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 645 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 646 647 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 648 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 649 650 if (ns->ms) { 651 /* 652 * If formated with metadata, the block layer always provides a 653 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 654 * we enable the PRACT bit for protection information or set the 655 * namespace capacity to zero to prevent any I/O. 656 */ 657 if (!blk_integrity_rq(req)) { 658 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 659 return BLK_STS_NOTSUPP; 660 control |= NVME_RW_PRINFO_PRACT; 661 } else if (req_op(req) == REQ_OP_WRITE) { 662 t10_pi_prepare(req, ns->pi_type); 663 } 664 665 switch (ns->pi_type) { 666 case NVME_NS_DPS_PI_TYPE3: 667 control |= NVME_RW_PRINFO_PRCHK_GUARD; 668 break; 669 case NVME_NS_DPS_PI_TYPE1: 670 case NVME_NS_DPS_PI_TYPE2: 671 control |= NVME_RW_PRINFO_PRCHK_GUARD | 672 NVME_RW_PRINFO_PRCHK_REF; 673 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 674 break; 675 } 676 } 677 678 cmnd->rw.control = cpu_to_le16(control); 679 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 680 return 0; 681 } 682 683 void nvme_cleanup_cmd(struct request *req) 684 { 685 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 686 nvme_req(req)->status == 0) { 687 struct nvme_ns *ns = req->rq_disk->private_data; 688 689 t10_pi_complete(req, ns->pi_type, 690 blk_rq_bytes(req) >> ns->lba_shift); 691 } 692 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 693 struct nvme_ns *ns = req->rq_disk->private_data; 694 struct page *page = req->special_vec.bv_page; 695 696 if (page == ns->ctrl->discard_page) 697 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 698 else 699 kfree(page_address(page) + req->special_vec.bv_offset); 700 } 701 } 702 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 703 704 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 705 struct nvme_command *cmd) 706 { 707 blk_status_t ret = BLK_STS_OK; 708 709 nvme_clear_nvme_request(req); 710 711 memset(cmd, 0, sizeof(*cmd)); 712 switch (req_op(req)) { 713 case REQ_OP_DRV_IN: 714 case REQ_OP_DRV_OUT: 715 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 716 break; 717 case REQ_OP_FLUSH: 718 nvme_setup_flush(ns, cmd); 719 break; 720 case REQ_OP_WRITE_ZEROES: 721 ret = nvme_setup_write_zeroes(ns, req, cmd); 722 break; 723 case REQ_OP_DISCARD: 724 ret = nvme_setup_discard(ns, req, cmd); 725 break; 726 case REQ_OP_READ: 727 case REQ_OP_WRITE: 728 ret = nvme_setup_rw(ns, req, cmd); 729 break; 730 default: 731 WARN_ON_ONCE(1); 732 return BLK_STS_IOERR; 733 } 734 735 cmd->common.command_id = req->tag; 736 trace_nvme_setup_cmd(req, cmd); 737 return ret; 738 } 739 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 740 741 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 742 { 743 struct completion *waiting = rq->end_io_data; 744 745 rq->end_io_data = NULL; 746 complete(waiting); 747 } 748 749 static void nvme_execute_rq_polled(struct request_queue *q, 750 struct gendisk *bd_disk, struct request *rq, int at_head) 751 { 752 DECLARE_COMPLETION_ONSTACK(wait); 753 754 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 755 756 rq->cmd_flags |= REQ_HIPRI; 757 rq->end_io_data = &wait; 758 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 759 760 while (!completion_done(&wait)) { 761 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 762 cond_resched(); 763 } 764 } 765 766 /* 767 * Returns 0 on success. If the result is negative, it's a Linux error code; 768 * if the result is positive, it's an NVM Express status code 769 */ 770 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 771 union nvme_result *result, void *buffer, unsigned bufflen, 772 unsigned timeout, int qid, int at_head, 773 blk_mq_req_flags_t flags, bool poll) 774 { 775 struct request *req; 776 int ret; 777 778 req = nvme_alloc_request(q, cmd, flags, qid); 779 if (IS_ERR(req)) 780 return PTR_ERR(req); 781 782 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 783 784 if (buffer && bufflen) { 785 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 786 if (ret) 787 goto out; 788 } 789 790 if (poll) 791 nvme_execute_rq_polled(req->q, NULL, req, at_head); 792 else 793 blk_execute_rq(req->q, NULL, req, at_head); 794 if (result) 795 *result = nvme_req(req)->result; 796 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 797 ret = -EINTR; 798 else 799 ret = nvme_req(req)->status; 800 out: 801 blk_mq_free_request(req); 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 805 806 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 807 void *buffer, unsigned bufflen) 808 { 809 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 810 NVME_QID_ANY, 0, 0, false); 811 } 812 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 813 814 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 815 unsigned len, u32 seed, bool write) 816 { 817 struct bio_integrity_payload *bip; 818 int ret = -ENOMEM; 819 void *buf; 820 821 buf = kmalloc(len, GFP_KERNEL); 822 if (!buf) 823 goto out; 824 825 ret = -EFAULT; 826 if (write && copy_from_user(buf, ubuf, len)) 827 goto out_free_meta; 828 829 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 830 if (IS_ERR(bip)) { 831 ret = PTR_ERR(bip); 832 goto out_free_meta; 833 } 834 835 bip->bip_iter.bi_size = len; 836 bip->bip_iter.bi_sector = seed; 837 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 838 offset_in_page(buf)); 839 if (ret == len) 840 return buf; 841 ret = -ENOMEM; 842 out_free_meta: 843 kfree(buf); 844 out: 845 return ERR_PTR(ret); 846 } 847 848 static int nvme_submit_user_cmd(struct request_queue *q, 849 struct nvme_command *cmd, void __user *ubuffer, 850 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 851 u32 meta_seed, u32 *result, unsigned timeout) 852 { 853 bool write = nvme_is_write(cmd); 854 struct nvme_ns *ns = q->queuedata; 855 struct gendisk *disk = ns ? ns->disk : NULL; 856 struct request *req; 857 struct bio *bio = NULL; 858 void *meta = NULL; 859 int ret; 860 861 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 862 if (IS_ERR(req)) 863 return PTR_ERR(req); 864 865 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 866 nvme_req(req)->flags |= NVME_REQ_USERCMD; 867 868 if (ubuffer && bufflen) { 869 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 870 GFP_KERNEL); 871 if (ret) 872 goto out; 873 bio = req->bio; 874 bio->bi_disk = disk; 875 if (disk && meta_buffer && meta_len) { 876 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 877 meta_seed, write); 878 if (IS_ERR(meta)) { 879 ret = PTR_ERR(meta); 880 goto out_unmap; 881 } 882 req->cmd_flags |= REQ_INTEGRITY; 883 } 884 } 885 886 blk_execute_rq(req->q, disk, req, 0); 887 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 888 ret = -EINTR; 889 else 890 ret = nvme_req(req)->status; 891 if (result) 892 *result = le32_to_cpu(nvme_req(req)->result.u32); 893 if (meta && !ret && !write) { 894 if (copy_to_user(meta_buffer, meta, meta_len)) 895 ret = -EFAULT; 896 } 897 kfree(meta); 898 out_unmap: 899 if (bio) 900 blk_rq_unmap_user(bio); 901 out: 902 blk_mq_free_request(req); 903 return ret; 904 } 905 906 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 907 { 908 struct nvme_ctrl *ctrl = rq->end_io_data; 909 unsigned long flags; 910 bool startka = false; 911 912 blk_mq_free_request(rq); 913 914 if (status) { 915 dev_err(ctrl->device, 916 "failed nvme_keep_alive_end_io error=%d\n", 917 status); 918 return; 919 } 920 921 ctrl->comp_seen = false; 922 spin_lock_irqsave(&ctrl->lock, flags); 923 if (ctrl->state == NVME_CTRL_LIVE || 924 ctrl->state == NVME_CTRL_CONNECTING) 925 startka = true; 926 spin_unlock_irqrestore(&ctrl->lock, flags); 927 if (startka) 928 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 929 } 930 931 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 932 { 933 struct request *rq; 934 935 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 936 NVME_QID_ANY); 937 if (IS_ERR(rq)) 938 return PTR_ERR(rq); 939 940 rq->timeout = ctrl->kato * HZ; 941 rq->end_io_data = ctrl; 942 943 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 944 945 return 0; 946 } 947 948 static void nvme_keep_alive_work(struct work_struct *work) 949 { 950 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 951 struct nvme_ctrl, ka_work); 952 bool comp_seen = ctrl->comp_seen; 953 954 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 955 dev_dbg(ctrl->device, 956 "reschedule traffic based keep-alive timer\n"); 957 ctrl->comp_seen = false; 958 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 959 return; 960 } 961 962 if (nvme_keep_alive(ctrl)) { 963 /* allocation failure, reset the controller */ 964 dev_err(ctrl->device, "keep-alive failed\n"); 965 nvme_reset_ctrl(ctrl); 966 return; 967 } 968 } 969 970 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 971 { 972 if (unlikely(ctrl->kato == 0)) 973 return; 974 975 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 976 } 977 978 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 979 { 980 if (unlikely(ctrl->kato == 0)) 981 return; 982 983 cancel_delayed_work_sync(&ctrl->ka_work); 984 } 985 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 986 987 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 988 { 989 struct nvme_command c = { }; 990 int error; 991 992 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 993 c.identify.opcode = nvme_admin_identify; 994 c.identify.cns = NVME_ID_CNS_CTRL; 995 996 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 997 if (!*id) 998 return -ENOMEM; 999 1000 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1001 sizeof(struct nvme_id_ctrl)); 1002 if (error) 1003 kfree(*id); 1004 return error; 1005 } 1006 1007 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1008 struct nvme_ns_ids *ids) 1009 { 1010 struct nvme_command c = { }; 1011 int status; 1012 void *data; 1013 int pos; 1014 int len; 1015 1016 c.identify.opcode = nvme_admin_identify; 1017 c.identify.nsid = cpu_to_le32(nsid); 1018 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1019 1020 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1021 if (!data) 1022 return -ENOMEM; 1023 1024 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1025 NVME_IDENTIFY_DATA_SIZE); 1026 if (status) 1027 goto free_data; 1028 1029 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1030 struct nvme_ns_id_desc *cur = data + pos; 1031 1032 if (cur->nidl == 0) 1033 break; 1034 1035 switch (cur->nidt) { 1036 case NVME_NIDT_EUI64: 1037 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1038 dev_warn(ctrl->device, 1039 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1040 cur->nidl); 1041 goto free_data; 1042 } 1043 len = NVME_NIDT_EUI64_LEN; 1044 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1045 break; 1046 case NVME_NIDT_NGUID: 1047 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1048 dev_warn(ctrl->device, 1049 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1050 cur->nidl); 1051 goto free_data; 1052 } 1053 len = NVME_NIDT_NGUID_LEN; 1054 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1055 break; 1056 case NVME_NIDT_UUID: 1057 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1058 dev_warn(ctrl->device, 1059 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1060 cur->nidl); 1061 goto free_data; 1062 } 1063 len = NVME_NIDT_UUID_LEN; 1064 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1065 break; 1066 default: 1067 /* Skip unknown types */ 1068 len = cur->nidl; 1069 break; 1070 } 1071 1072 len += sizeof(*cur); 1073 } 1074 free_data: 1075 kfree(data); 1076 return status; 1077 } 1078 1079 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1080 { 1081 struct nvme_command c = { }; 1082 1083 c.identify.opcode = nvme_admin_identify; 1084 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1085 c.identify.nsid = cpu_to_le32(nsid); 1086 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1087 NVME_IDENTIFY_DATA_SIZE); 1088 } 1089 1090 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1091 unsigned nsid) 1092 { 1093 struct nvme_id_ns *id; 1094 struct nvme_command c = { }; 1095 int error; 1096 1097 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1098 c.identify.opcode = nvme_admin_identify; 1099 c.identify.nsid = cpu_to_le32(nsid); 1100 c.identify.cns = NVME_ID_CNS_NS; 1101 1102 id = kmalloc(sizeof(*id), GFP_KERNEL); 1103 if (!id) 1104 return NULL; 1105 1106 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1107 if (error) { 1108 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1109 kfree(id); 1110 return NULL; 1111 } 1112 1113 return id; 1114 } 1115 1116 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 1117 void *buffer, size_t buflen, u32 *result) 1118 { 1119 struct nvme_command c; 1120 union nvme_result res; 1121 int ret; 1122 1123 memset(&c, 0, sizeof(c)); 1124 c.features.opcode = nvme_admin_set_features; 1125 c.features.fid = cpu_to_le32(fid); 1126 c.features.dword11 = cpu_to_le32(dword11); 1127 1128 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1129 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1130 if (ret >= 0 && result) 1131 *result = le32_to_cpu(res.u32); 1132 return ret; 1133 } 1134 1135 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1136 { 1137 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1138 u32 result; 1139 int status, nr_io_queues; 1140 1141 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1142 &result); 1143 if (status < 0) 1144 return status; 1145 1146 /* 1147 * Degraded controllers might return an error when setting the queue 1148 * count. We still want to be able to bring them online and offer 1149 * access to the admin queue, as that might be only way to fix them up. 1150 */ 1151 if (status > 0) { 1152 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1153 *count = 0; 1154 } else { 1155 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1156 *count = min(*count, nr_io_queues); 1157 } 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1162 1163 #define NVME_AEN_SUPPORTED \ 1164 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1165 1166 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1167 { 1168 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1169 int status; 1170 1171 if (!supported_aens) 1172 return; 1173 1174 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1175 NULL, 0, &result); 1176 if (status) 1177 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1178 supported_aens); 1179 } 1180 1181 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1182 { 1183 struct nvme_user_io io; 1184 struct nvme_command c; 1185 unsigned length, meta_len; 1186 void __user *metadata; 1187 1188 if (copy_from_user(&io, uio, sizeof(io))) 1189 return -EFAULT; 1190 if (io.flags) 1191 return -EINVAL; 1192 1193 switch (io.opcode) { 1194 case nvme_cmd_write: 1195 case nvme_cmd_read: 1196 case nvme_cmd_compare: 1197 break; 1198 default: 1199 return -EINVAL; 1200 } 1201 1202 length = (io.nblocks + 1) << ns->lba_shift; 1203 meta_len = (io.nblocks + 1) * ns->ms; 1204 metadata = (void __user *)(uintptr_t)io.metadata; 1205 1206 if (ns->ext) { 1207 length += meta_len; 1208 meta_len = 0; 1209 } else if (meta_len) { 1210 if ((io.metadata & 3) || !io.metadata) 1211 return -EINVAL; 1212 } 1213 1214 memset(&c, 0, sizeof(c)); 1215 c.rw.opcode = io.opcode; 1216 c.rw.flags = io.flags; 1217 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1218 c.rw.slba = cpu_to_le64(io.slba); 1219 c.rw.length = cpu_to_le16(io.nblocks); 1220 c.rw.control = cpu_to_le16(io.control); 1221 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1222 c.rw.reftag = cpu_to_le32(io.reftag); 1223 c.rw.apptag = cpu_to_le16(io.apptag); 1224 c.rw.appmask = cpu_to_le16(io.appmask); 1225 1226 return nvme_submit_user_cmd(ns->queue, &c, 1227 (void __user *)(uintptr_t)io.addr, length, 1228 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1229 } 1230 1231 static u32 nvme_known_admin_effects(u8 opcode) 1232 { 1233 switch (opcode) { 1234 case nvme_admin_format_nvm: 1235 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1236 NVME_CMD_EFFECTS_CSE_MASK; 1237 case nvme_admin_sanitize_nvm: 1238 return NVME_CMD_EFFECTS_CSE_MASK; 1239 default: 1240 break; 1241 } 1242 return 0; 1243 } 1244 1245 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1246 u8 opcode) 1247 { 1248 u32 effects = 0; 1249 1250 if (ns) { 1251 if (ctrl->effects) 1252 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1253 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1254 dev_warn(ctrl->device, 1255 "IO command:%02x has unhandled effects:%08x\n", 1256 opcode, effects); 1257 return 0; 1258 } 1259 1260 if (ctrl->effects) 1261 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1262 effects |= nvme_known_admin_effects(opcode); 1263 1264 /* 1265 * For simplicity, IO to all namespaces is quiesced even if the command 1266 * effects say only one namespace is affected. 1267 */ 1268 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1269 mutex_lock(&ctrl->scan_lock); 1270 nvme_start_freeze(ctrl); 1271 nvme_wait_freeze(ctrl); 1272 } 1273 return effects; 1274 } 1275 1276 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1277 { 1278 struct nvme_ns *ns; 1279 1280 down_read(&ctrl->namespaces_rwsem); 1281 list_for_each_entry(ns, &ctrl->namespaces, list) 1282 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1283 nvme_set_queue_dying(ns); 1284 up_read(&ctrl->namespaces_rwsem); 1285 1286 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1287 } 1288 1289 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1290 { 1291 /* 1292 * Revalidate LBA changes prior to unfreezing. This is necessary to 1293 * prevent memory corruption if a logical block size was changed by 1294 * this command. 1295 */ 1296 if (effects & NVME_CMD_EFFECTS_LBCC) 1297 nvme_update_formats(ctrl); 1298 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1299 nvme_unfreeze(ctrl); 1300 mutex_unlock(&ctrl->scan_lock); 1301 } 1302 if (effects & NVME_CMD_EFFECTS_CCC) 1303 nvme_init_identify(ctrl); 1304 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1305 nvme_queue_scan(ctrl); 1306 } 1307 1308 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1309 struct nvme_passthru_cmd __user *ucmd) 1310 { 1311 struct nvme_passthru_cmd cmd; 1312 struct nvme_command c; 1313 unsigned timeout = 0; 1314 u32 effects; 1315 int status; 1316 1317 if (!capable(CAP_SYS_ADMIN)) 1318 return -EACCES; 1319 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1320 return -EFAULT; 1321 if (cmd.flags) 1322 return -EINVAL; 1323 1324 memset(&c, 0, sizeof(c)); 1325 c.common.opcode = cmd.opcode; 1326 c.common.flags = cmd.flags; 1327 c.common.nsid = cpu_to_le32(cmd.nsid); 1328 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1329 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1330 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1331 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1332 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1333 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1334 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1335 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1336 1337 if (cmd.timeout_ms) 1338 timeout = msecs_to_jiffies(cmd.timeout_ms); 1339 1340 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1341 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1342 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1343 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1344 0, &cmd.result, timeout); 1345 nvme_passthru_end(ctrl, effects); 1346 1347 if (status >= 0) { 1348 if (put_user(cmd.result, &ucmd->result)) 1349 return -EFAULT; 1350 } 1351 1352 return status; 1353 } 1354 1355 /* 1356 * Issue ioctl requests on the first available path. Note that unlike normal 1357 * block layer requests we will not retry failed request on another controller. 1358 */ 1359 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1360 struct nvme_ns_head **head, int *srcu_idx) 1361 { 1362 #ifdef CONFIG_NVME_MULTIPATH 1363 if (disk->fops == &nvme_ns_head_ops) { 1364 struct nvme_ns *ns; 1365 1366 *head = disk->private_data; 1367 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1368 ns = nvme_find_path(*head); 1369 if (!ns) 1370 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1371 return ns; 1372 } 1373 #endif 1374 *head = NULL; 1375 *srcu_idx = -1; 1376 return disk->private_data; 1377 } 1378 1379 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1380 { 1381 if (head) 1382 srcu_read_unlock(&head->srcu, idx); 1383 } 1384 1385 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1386 unsigned int cmd, unsigned long arg) 1387 { 1388 struct nvme_ns_head *head = NULL; 1389 void __user *argp = (void __user *)arg; 1390 struct nvme_ns *ns; 1391 int srcu_idx, ret; 1392 1393 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1394 if (unlikely(!ns)) 1395 return -EWOULDBLOCK; 1396 1397 /* 1398 * Handle ioctls that apply to the controller instead of the namespace 1399 * seperately and drop the ns SRCU reference early. This avoids a 1400 * deadlock when deleting namespaces using the passthrough interface. 1401 */ 1402 if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) { 1403 struct nvme_ctrl *ctrl = ns->ctrl; 1404 1405 nvme_get_ctrl(ns->ctrl); 1406 nvme_put_ns_from_disk(head, srcu_idx); 1407 1408 if (cmd == NVME_IOCTL_ADMIN_CMD) 1409 ret = nvme_user_cmd(ctrl, NULL, argp); 1410 else 1411 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1412 1413 nvme_put_ctrl(ctrl); 1414 return ret; 1415 } 1416 1417 switch (cmd) { 1418 case NVME_IOCTL_ID: 1419 force_successful_syscall_return(); 1420 ret = ns->head->ns_id; 1421 break; 1422 case NVME_IOCTL_IO_CMD: 1423 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1424 break; 1425 case NVME_IOCTL_SUBMIT_IO: 1426 ret = nvme_submit_io(ns, argp); 1427 break; 1428 default: 1429 if (ns->ndev) 1430 ret = nvme_nvm_ioctl(ns, cmd, arg); 1431 else 1432 ret = -ENOTTY; 1433 } 1434 1435 nvme_put_ns_from_disk(head, srcu_idx); 1436 return ret; 1437 } 1438 1439 static int nvme_open(struct block_device *bdev, fmode_t mode) 1440 { 1441 struct nvme_ns *ns = bdev->bd_disk->private_data; 1442 1443 #ifdef CONFIG_NVME_MULTIPATH 1444 /* should never be called due to GENHD_FL_HIDDEN */ 1445 if (WARN_ON_ONCE(ns->head->disk)) 1446 goto fail; 1447 #endif 1448 if (!kref_get_unless_zero(&ns->kref)) 1449 goto fail; 1450 if (!try_module_get(ns->ctrl->ops->module)) 1451 goto fail_put_ns; 1452 1453 return 0; 1454 1455 fail_put_ns: 1456 nvme_put_ns(ns); 1457 fail: 1458 return -ENXIO; 1459 } 1460 1461 static void nvme_release(struct gendisk *disk, fmode_t mode) 1462 { 1463 struct nvme_ns *ns = disk->private_data; 1464 1465 module_put(ns->ctrl->ops->module); 1466 nvme_put_ns(ns); 1467 } 1468 1469 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1470 { 1471 /* some standard values */ 1472 geo->heads = 1 << 6; 1473 geo->sectors = 1 << 5; 1474 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1475 return 0; 1476 } 1477 1478 #ifdef CONFIG_BLK_DEV_INTEGRITY 1479 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1480 { 1481 struct blk_integrity integrity; 1482 1483 memset(&integrity, 0, sizeof(integrity)); 1484 switch (pi_type) { 1485 case NVME_NS_DPS_PI_TYPE3: 1486 integrity.profile = &t10_pi_type3_crc; 1487 integrity.tag_size = sizeof(u16) + sizeof(u32); 1488 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1489 break; 1490 case NVME_NS_DPS_PI_TYPE1: 1491 case NVME_NS_DPS_PI_TYPE2: 1492 integrity.profile = &t10_pi_type1_crc; 1493 integrity.tag_size = sizeof(u16); 1494 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1495 break; 1496 default: 1497 integrity.profile = NULL; 1498 break; 1499 } 1500 integrity.tuple_size = ms; 1501 blk_integrity_register(disk, &integrity); 1502 blk_queue_max_integrity_segments(disk->queue, 1); 1503 } 1504 #else 1505 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1506 { 1507 } 1508 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1509 1510 static void nvme_set_chunk_size(struct nvme_ns *ns) 1511 { 1512 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1513 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1514 } 1515 1516 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1517 { 1518 struct nvme_ctrl *ctrl = ns->ctrl; 1519 struct request_queue *queue = disk->queue; 1520 u32 size = queue_logical_block_size(queue); 1521 1522 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1523 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1524 return; 1525 } 1526 1527 if (ctrl->nr_streams && ns->sws && ns->sgs) 1528 size *= ns->sws * ns->sgs; 1529 1530 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1531 NVME_DSM_MAX_RANGES); 1532 1533 queue->limits.discard_alignment = 0; 1534 queue->limits.discard_granularity = size; 1535 1536 /* If discard is already enabled, don't reset queue limits */ 1537 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1538 return; 1539 1540 blk_queue_max_discard_sectors(queue, UINT_MAX); 1541 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1542 1543 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1544 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1545 } 1546 1547 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1548 { 1549 u32 max_sectors; 1550 unsigned short bs = 1 << ns->lba_shift; 1551 1552 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1553 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1554 return; 1555 /* 1556 * Even though NVMe spec explicitly states that MDTS is not 1557 * applicable to the write-zeroes:- "The restriction does not apply to 1558 * commands that do not transfer data between the host and the 1559 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1560 * In order to be more cautious use controller's max_hw_sectors value 1561 * to configure the maximum sectors for the write-zeroes which is 1562 * configured based on the controller's MDTS field in the 1563 * nvme_init_identify() if available. 1564 */ 1565 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1566 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9; 1567 else 1568 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9; 1569 1570 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors); 1571 } 1572 1573 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1574 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1575 { 1576 memset(ids, 0, sizeof(*ids)); 1577 1578 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1579 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1580 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1581 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1582 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1583 /* Don't treat error as fatal we potentially 1584 * already have a NGUID or EUI-64 1585 */ 1586 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1587 dev_warn(ctrl->device, 1588 "%s: Identify Descriptors failed\n", __func__); 1589 } 1590 } 1591 1592 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1593 { 1594 return !uuid_is_null(&ids->uuid) || 1595 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1596 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1597 } 1598 1599 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1600 { 1601 return uuid_equal(&a->uuid, &b->uuid) && 1602 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1603 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1604 } 1605 1606 static void nvme_update_disk_info(struct gendisk *disk, 1607 struct nvme_ns *ns, struct nvme_id_ns *id) 1608 { 1609 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9); 1610 unsigned short bs = 1 << ns->lba_shift; 1611 1612 if (ns->lba_shift > PAGE_SHIFT) { 1613 /* unsupported block size, set capacity to 0 later */ 1614 bs = (1 << 9); 1615 } 1616 blk_mq_freeze_queue(disk->queue); 1617 blk_integrity_unregister(disk); 1618 1619 blk_queue_logical_block_size(disk->queue, bs); 1620 blk_queue_physical_block_size(disk->queue, bs); 1621 blk_queue_io_min(disk->queue, bs); 1622 1623 if (ns->ms && !ns->ext && 1624 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1625 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1626 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1627 ns->lba_shift > PAGE_SHIFT) 1628 capacity = 0; 1629 1630 set_capacity(disk, capacity); 1631 1632 nvme_config_discard(disk, ns); 1633 nvme_config_write_zeroes(disk, ns); 1634 1635 if (id->nsattr & (1 << 0)) 1636 set_disk_ro(disk, true); 1637 else 1638 set_disk_ro(disk, false); 1639 1640 blk_mq_unfreeze_queue(disk->queue); 1641 } 1642 1643 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1644 { 1645 struct nvme_ns *ns = disk->private_data; 1646 1647 /* 1648 * If identify namespace failed, use default 512 byte block size so 1649 * block layer can use before failing read/write for 0 capacity. 1650 */ 1651 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1652 if (ns->lba_shift == 0) 1653 ns->lba_shift = 9; 1654 ns->noiob = le16_to_cpu(id->noiob); 1655 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1656 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1657 /* the PI implementation requires metadata equal t10 pi tuple size */ 1658 if (ns->ms == sizeof(struct t10_pi_tuple)) 1659 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1660 else 1661 ns->pi_type = 0; 1662 1663 if (ns->noiob) 1664 nvme_set_chunk_size(ns); 1665 nvme_update_disk_info(disk, ns, id); 1666 #ifdef CONFIG_NVME_MULTIPATH 1667 if (ns->head->disk) { 1668 nvme_update_disk_info(ns->head->disk, ns, id); 1669 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1670 } 1671 #endif 1672 } 1673 1674 static int nvme_revalidate_disk(struct gendisk *disk) 1675 { 1676 struct nvme_ns *ns = disk->private_data; 1677 struct nvme_ctrl *ctrl = ns->ctrl; 1678 struct nvme_id_ns *id; 1679 struct nvme_ns_ids ids; 1680 int ret = 0; 1681 1682 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1683 set_capacity(disk, 0); 1684 return -ENODEV; 1685 } 1686 1687 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1688 if (!id) 1689 return -ENODEV; 1690 1691 if (id->ncap == 0) { 1692 ret = -ENODEV; 1693 goto out; 1694 } 1695 1696 __nvme_revalidate_disk(disk, id); 1697 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1698 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1699 dev_err(ctrl->device, 1700 "identifiers changed for nsid %d\n", ns->head->ns_id); 1701 ret = -ENODEV; 1702 } 1703 1704 out: 1705 kfree(id); 1706 return ret; 1707 } 1708 1709 static char nvme_pr_type(enum pr_type type) 1710 { 1711 switch (type) { 1712 case PR_WRITE_EXCLUSIVE: 1713 return 1; 1714 case PR_EXCLUSIVE_ACCESS: 1715 return 2; 1716 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1717 return 3; 1718 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1719 return 4; 1720 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1721 return 5; 1722 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1723 return 6; 1724 default: 1725 return 0; 1726 } 1727 }; 1728 1729 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1730 u64 key, u64 sa_key, u8 op) 1731 { 1732 struct nvme_ns_head *head = NULL; 1733 struct nvme_ns *ns; 1734 struct nvme_command c; 1735 int srcu_idx, ret; 1736 u8 data[16] = { 0, }; 1737 1738 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1739 if (unlikely(!ns)) 1740 return -EWOULDBLOCK; 1741 1742 put_unaligned_le64(key, &data[0]); 1743 put_unaligned_le64(sa_key, &data[8]); 1744 1745 memset(&c, 0, sizeof(c)); 1746 c.common.opcode = op; 1747 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1748 c.common.cdw10 = cpu_to_le32(cdw10); 1749 1750 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1751 nvme_put_ns_from_disk(head, srcu_idx); 1752 return ret; 1753 } 1754 1755 static int nvme_pr_register(struct block_device *bdev, u64 old, 1756 u64 new, unsigned flags) 1757 { 1758 u32 cdw10; 1759 1760 if (flags & ~PR_FL_IGNORE_KEY) 1761 return -EOPNOTSUPP; 1762 1763 cdw10 = old ? 2 : 0; 1764 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1765 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1766 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1767 } 1768 1769 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1770 enum pr_type type, unsigned flags) 1771 { 1772 u32 cdw10; 1773 1774 if (flags & ~PR_FL_IGNORE_KEY) 1775 return -EOPNOTSUPP; 1776 1777 cdw10 = nvme_pr_type(type) << 8; 1778 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1779 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1780 } 1781 1782 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1783 enum pr_type type, bool abort) 1784 { 1785 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1786 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1787 } 1788 1789 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1790 { 1791 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1792 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1793 } 1794 1795 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1796 { 1797 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1798 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1799 } 1800 1801 static const struct pr_ops nvme_pr_ops = { 1802 .pr_register = nvme_pr_register, 1803 .pr_reserve = nvme_pr_reserve, 1804 .pr_release = nvme_pr_release, 1805 .pr_preempt = nvme_pr_preempt, 1806 .pr_clear = nvme_pr_clear, 1807 }; 1808 1809 #ifdef CONFIG_BLK_SED_OPAL 1810 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1811 bool send) 1812 { 1813 struct nvme_ctrl *ctrl = data; 1814 struct nvme_command cmd; 1815 1816 memset(&cmd, 0, sizeof(cmd)); 1817 if (send) 1818 cmd.common.opcode = nvme_admin_security_send; 1819 else 1820 cmd.common.opcode = nvme_admin_security_recv; 1821 cmd.common.nsid = 0; 1822 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1823 cmd.common.cdw11 = cpu_to_le32(len); 1824 1825 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1826 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 1827 } 1828 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1829 #endif /* CONFIG_BLK_SED_OPAL */ 1830 1831 static const struct block_device_operations nvme_fops = { 1832 .owner = THIS_MODULE, 1833 .ioctl = nvme_ioctl, 1834 .compat_ioctl = nvme_ioctl, 1835 .open = nvme_open, 1836 .release = nvme_release, 1837 .getgeo = nvme_getgeo, 1838 .revalidate_disk= nvme_revalidate_disk, 1839 .pr_ops = &nvme_pr_ops, 1840 }; 1841 1842 #ifdef CONFIG_NVME_MULTIPATH 1843 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1844 { 1845 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1846 1847 if (!kref_get_unless_zero(&head->ref)) 1848 return -ENXIO; 1849 return 0; 1850 } 1851 1852 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1853 { 1854 nvme_put_ns_head(disk->private_data); 1855 } 1856 1857 const struct block_device_operations nvme_ns_head_ops = { 1858 .owner = THIS_MODULE, 1859 .open = nvme_ns_head_open, 1860 .release = nvme_ns_head_release, 1861 .ioctl = nvme_ioctl, 1862 .compat_ioctl = nvme_ioctl, 1863 .getgeo = nvme_getgeo, 1864 .pr_ops = &nvme_pr_ops, 1865 }; 1866 #endif /* CONFIG_NVME_MULTIPATH */ 1867 1868 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1869 { 1870 unsigned long timeout = 1871 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1872 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1873 int ret; 1874 1875 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1876 if (csts == ~0) 1877 return -ENODEV; 1878 if ((csts & NVME_CSTS_RDY) == bit) 1879 break; 1880 1881 msleep(100); 1882 if (fatal_signal_pending(current)) 1883 return -EINTR; 1884 if (time_after(jiffies, timeout)) { 1885 dev_err(ctrl->device, 1886 "Device not ready; aborting %s\n", enabled ? 1887 "initialisation" : "reset"); 1888 return -ENODEV; 1889 } 1890 } 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * If the device has been passed off to us in an enabled state, just clear 1897 * the enabled bit. The spec says we should set the 'shutdown notification 1898 * bits', but doing so may cause the device to complete commands to the 1899 * admin queue ... and we don't know what memory that might be pointing at! 1900 */ 1901 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1902 { 1903 int ret; 1904 1905 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1906 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1907 1908 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1909 if (ret) 1910 return ret; 1911 1912 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1913 msleep(NVME_QUIRK_DELAY_AMOUNT); 1914 1915 return nvme_wait_ready(ctrl, cap, false); 1916 } 1917 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1918 1919 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1920 { 1921 /* 1922 * Default to a 4K page size, with the intention to update this 1923 * path in the future to accomodate architectures with differing 1924 * kernel and IO page sizes. 1925 */ 1926 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1927 int ret; 1928 1929 if (page_shift < dev_page_min) { 1930 dev_err(ctrl->device, 1931 "Minimum device page size %u too large for host (%u)\n", 1932 1 << dev_page_min, 1 << page_shift); 1933 return -ENODEV; 1934 } 1935 1936 ctrl->page_size = 1 << page_shift; 1937 1938 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1939 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1940 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1941 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1942 ctrl->ctrl_config |= NVME_CC_ENABLE; 1943 1944 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1945 if (ret) 1946 return ret; 1947 return nvme_wait_ready(ctrl, cap, true); 1948 } 1949 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1950 1951 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1952 { 1953 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1954 u32 csts; 1955 int ret; 1956 1957 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1958 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1959 1960 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1961 if (ret) 1962 return ret; 1963 1964 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1965 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1966 break; 1967 1968 msleep(100); 1969 if (fatal_signal_pending(current)) 1970 return -EINTR; 1971 if (time_after(jiffies, timeout)) { 1972 dev_err(ctrl->device, 1973 "Device shutdown incomplete; abort shutdown\n"); 1974 return -ENODEV; 1975 } 1976 } 1977 1978 return ret; 1979 } 1980 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1981 1982 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1983 struct request_queue *q) 1984 { 1985 bool vwc = false; 1986 1987 if (ctrl->max_hw_sectors) { 1988 u32 max_segments = 1989 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1990 1991 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1992 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1993 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1994 } 1995 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1996 is_power_of_2(ctrl->max_hw_sectors)) 1997 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1998 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1999 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2000 vwc = true; 2001 blk_queue_write_cache(q, vwc, vwc); 2002 } 2003 2004 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2005 { 2006 __le64 ts; 2007 int ret; 2008 2009 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2010 return 0; 2011 2012 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2013 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2014 NULL); 2015 if (ret) 2016 dev_warn_once(ctrl->device, 2017 "could not set timestamp (%d)\n", ret); 2018 return ret; 2019 } 2020 2021 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2022 { 2023 struct nvme_feat_host_behavior *host; 2024 int ret; 2025 2026 /* Don't bother enabling the feature if retry delay is not reported */ 2027 if (!ctrl->crdt[0]) 2028 return 0; 2029 2030 host = kzalloc(sizeof(*host), GFP_KERNEL); 2031 if (!host) 2032 return 0; 2033 2034 host->acre = NVME_ENABLE_ACRE; 2035 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2036 host, sizeof(*host), NULL); 2037 kfree(host); 2038 return ret; 2039 } 2040 2041 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2042 { 2043 /* 2044 * APST (Autonomous Power State Transition) lets us program a 2045 * table of power state transitions that the controller will 2046 * perform automatically. We configure it with a simple 2047 * heuristic: we are willing to spend at most 2% of the time 2048 * transitioning between power states. Therefore, when running 2049 * in any given state, we will enter the next lower-power 2050 * non-operational state after waiting 50 * (enlat + exlat) 2051 * microseconds, as long as that state's exit latency is under 2052 * the requested maximum latency. 2053 * 2054 * We will not autonomously enter any non-operational state for 2055 * which the total latency exceeds ps_max_latency_us. Users 2056 * can set ps_max_latency_us to zero to turn off APST. 2057 */ 2058 2059 unsigned apste; 2060 struct nvme_feat_auto_pst *table; 2061 u64 max_lat_us = 0; 2062 int max_ps = -1; 2063 int ret; 2064 2065 /* 2066 * If APST isn't supported or if we haven't been initialized yet, 2067 * then don't do anything. 2068 */ 2069 if (!ctrl->apsta) 2070 return 0; 2071 2072 if (ctrl->npss > 31) { 2073 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2074 return 0; 2075 } 2076 2077 table = kzalloc(sizeof(*table), GFP_KERNEL); 2078 if (!table) 2079 return 0; 2080 2081 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2082 /* Turn off APST. */ 2083 apste = 0; 2084 dev_dbg(ctrl->device, "APST disabled\n"); 2085 } else { 2086 __le64 target = cpu_to_le64(0); 2087 int state; 2088 2089 /* 2090 * Walk through all states from lowest- to highest-power. 2091 * According to the spec, lower-numbered states use more 2092 * power. NPSS, despite the name, is the index of the 2093 * lowest-power state, not the number of states. 2094 */ 2095 for (state = (int)ctrl->npss; state >= 0; state--) { 2096 u64 total_latency_us, exit_latency_us, transition_ms; 2097 2098 if (target) 2099 table->entries[state] = target; 2100 2101 /* 2102 * Don't allow transitions to the deepest state 2103 * if it's quirked off. 2104 */ 2105 if (state == ctrl->npss && 2106 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2107 continue; 2108 2109 /* 2110 * Is this state a useful non-operational state for 2111 * higher-power states to autonomously transition to? 2112 */ 2113 if (!(ctrl->psd[state].flags & 2114 NVME_PS_FLAGS_NON_OP_STATE)) 2115 continue; 2116 2117 exit_latency_us = 2118 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2119 if (exit_latency_us > ctrl->ps_max_latency_us) 2120 continue; 2121 2122 total_latency_us = 2123 exit_latency_us + 2124 le32_to_cpu(ctrl->psd[state].entry_lat); 2125 2126 /* 2127 * This state is good. Use it as the APST idle 2128 * target for higher power states. 2129 */ 2130 transition_ms = total_latency_us + 19; 2131 do_div(transition_ms, 20); 2132 if (transition_ms > (1 << 24) - 1) 2133 transition_ms = (1 << 24) - 1; 2134 2135 target = cpu_to_le64((state << 3) | 2136 (transition_ms << 8)); 2137 2138 if (max_ps == -1) 2139 max_ps = state; 2140 2141 if (total_latency_us > max_lat_us) 2142 max_lat_us = total_latency_us; 2143 } 2144 2145 apste = 1; 2146 2147 if (max_ps == -1) { 2148 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2149 } else { 2150 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2151 max_ps, max_lat_us, (int)sizeof(*table), table); 2152 } 2153 } 2154 2155 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2156 table, sizeof(*table), NULL); 2157 if (ret) 2158 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2159 2160 kfree(table); 2161 return ret; 2162 } 2163 2164 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2165 { 2166 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2167 u64 latency; 2168 2169 switch (val) { 2170 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2171 case PM_QOS_LATENCY_ANY: 2172 latency = U64_MAX; 2173 break; 2174 2175 default: 2176 latency = val; 2177 } 2178 2179 if (ctrl->ps_max_latency_us != latency) { 2180 ctrl->ps_max_latency_us = latency; 2181 nvme_configure_apst(ctrl); 2182 } 2183 } 2184 2185 struct nvme_core_quirk_entry { 2186 /* 2187 * NVMe model and firmware strings are padded with spaces. For 2188 * simplicity, strings in the quirk table are padded with NULLs 2189 * instead. 2190 */ 2191 u16 vid; 2192 const char *mn; 2193 const char *fr; 2194 unsigned long quirks; 2195 }; 2196 2197 static const struct nvme_core_quirk_entry core_quirks[] = { 2198 { 2199 /* 2200 * This Toshiba device seems to die using any APST states. See: 2201 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2202 */ 2203 .vid = 0x1179, 2204 .mn = "THNSF5256GPUK TOSHIBA", 2205 .quirks = NVME_QUIRK_NO_APST, 2206 } 2207 }; 2208 2209 /* match is null-terminated but idstr is space-padded. */ 2210 static bool string_matches(const char *idstr, const char *match, size_t len) 2211 { 2212 size_t matchlen; 2213 2214 if (!match) 2215 return true; 2216 2217 matchlen = strlen(match); 2218 WARN_ON_ONCE(matchlen > len); 2219 2220 if (memcmp(idstr, match, matchlen)) 2221 return false; 2222 2223 for (; matchlen < len; matchlen++) 2224 if (idstr[matchlen] != ' ') 2225 return false; 2226 2227 return true; 2228 } 2229 2230 static bool quirk_matches(const struct nvme_id_ctrl *id, 2231 const struct nvme_core_quirk_entry *q) 2232 { 2233 return q->vid == le16_to_cpu(id->vid) && 2234 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2235 string_matches(id->fr, q->fr, sizeof(id->fr)); 2236 } 2237 2238 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2239 struct nvme_id_ctrl *id) 2240 { 2241 size_t nqnlen; 2242 int off; 2243 2244 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2245 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2246 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2247 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2248 return; 2249 } 2250 2251 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2252 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2253 } 2254 2255 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2256 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2257 "nqn.2014.08.org.nvmexpress:%04x%04x", 2258 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2259 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2260 off += sizeof(id->sn); 2261 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2262 off += sizeof(id->mn); 2263 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2264 } 2265 2266 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2267 { 2268 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2269 kfree(subsys); 2270 } 2271 2272 static void nvme_release_subsystem(struct device *dev) 2273 { 2274 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2275 } 2276 2277 static void nvme_destroy_subsystem(struct kref *ref) 2278 { 2279 struct nvme_subsystem *subsys = 2280 container_of(ref, struct nvme_subsystem, ref); 2281 2282 mutex_lock(&nvme_subsystems_lock); 2283 list_del(&subsys->entry); 2284 mutex_unlock(&nvme_subsystems_lock); 2285 2286 ida_destroy(&subsys->ns_ida); 2287 device_del(&subsys->dev); 2288 put_device(&subsys->dev); 2289 } 2290 2291 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2292 { 2293 kref_put(&subsys->ref, nvme_destroy_subsystem); 2294 } 2295 2296 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2297 { 2298 struct nvme_subsystem *subsys; 2299 2300 lockdep_assert_held(&nvme_subsystems_lock); 2301 2302 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2303 if (strcmp(subsys->subnqn, subsysnqn)) 2304 continue; 2305 if (!kref_get_unless_zero(&subsys->ref)) 2306 continue; 2307 return subsys; 2308 } 2309 2310 return NULL; 2311 } 2312 2313 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2314 struct device_attribute subsys_attr_##_name = \ 2315 __ATTR(_name, _mode, _show, NULL) 2316 2317 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2318 struct device_attribute *attr, 2319 char *buf) 2320 { 2321 struct nvme_subsystem *subsys = 2322 container_of(dev, struct nvme_subsystem, dev); 2323 2324 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2325 } 2326 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2327 2328 #define nvme_subsys_show_str_function(field) \ 2329 static ssize_t subsys_##field##_show(struct device *dev, \ 2330 struct device_attribute *attr, char *buf) \ 2331 { \ 2332 struct nvme_subsystem *subsys = \ 2333 container_of(dev, struct nvme_subsystem, dev); \ 2334 return sprintf(buf, "%.*s\n", \ 2335 (int)sizeof(subsys->field), subsys->field); \ 2336 } \ 2337 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2338 2339 nvme_subsys_show_str_function(model); 2340 nvme_subsys_show_str_function(serial); 2341 nvme_subsys_show_str_function(firmware_rev); 2342 2343 static struct attribute *nvme_subsys_attrs[] = { 2344 &subsys_attr_model.attr, 2345 &subsys_attr_serial.attr, 2346 &subsys_attr_firmware_rev.attr, 2347 &subsys_attr_subsysnqn.attr, 2348 #ifdef CONFIG_NVME_MULTIPATH 2349 &subsys_attr_iopolicy.attr, 2350 #endif 2351 NULL, 2352 }; 2353 2354 static struct attribute_group nvme_subsys_attrs_group = { 2355 .attrs = nvme_subsys_attrs, 2356 }; 2357 2358 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2359 &nvme_subsys_attrs_group, 2360 NULL, 2361 }; 2362 2363 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2364 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2365 { 2366 struct nvme_ctrl *tmp; 2367 2368 lockdep_assert_held(&nvme_subsystems_lock); 2369 2370 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2371 if (ctrl->state == NVME_CTRL_DELETING || 2372 ctrl->state == NVME_CTRL_DEAD) 2373 continue; 2374 2375 if (tmp->cntlid == ctrl->cntlid) { 2376 dev_err(ctrl->device, 2377 "Duplicate cntlid %u with %s, rejecting\n", 2378 ctrl->cntlid, dev_name(tmp->device)); 2379 return false; 2380 } 2381 2382 if ((id->cmic & (1 << 1)) || 2383 (ctrl->opts && ctrl->opts->discovery_nqn)) 2384 continue; 2385 2386 dev_err(ctrl->device, 2387 "Subsystem does not support multiple controllers\n"); 2388 return false; 2389 } 2390 2391 return true; 2392 } 2393 2394 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2395 { 2396 struct nvme_subsystem *subsys, *found; 2397 int ret; 2398 2399 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2400 if (!subsys) 2401 return -ENOMEM; 2402 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2403 if (ret < 0) { 2404 kfree(subsys); 2405 return ret; 2406 } 2407 subsys->instance = ret; 2408 mutex_init(&subsys->lock); 2409 kref_init(&subsys->ref); 2410 INIT_LIST_HEAD(&subsys->ctrls); 2411 INIT_LIST_HEAD(&subsys->nsheads); 2412 nvme_init_subnqn(subsys, ctrl, id); 2413 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2414 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2415 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2416 subsys->vendor_id = le16_to_cpu(id->vid); 2417 subsys->cmic = id->cmic; 2418 #ifdef CONFIG_NVME_MULTIPATH 2419 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2420 #endif 2421 2422 subsys->dev.class = nvme_subsys_class; 2423 subsys->dev.release = nvme_release_subsystem; 2424 subsys->dev.groups = nvme_subsys_attrs_groups; 2425 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2426 device_initialize(&subsys->dev); 2427 2428 mutex_lock(&nvme_subsystems_lock); 2429 found = __nvme_find_get_subsystem(subsys->subnqn); 2430 if (found) { 2431 __nvme_release_subsystem(subsys); 2432 subsys = found; 2433 2434 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2435 ret = -EINVAL; 2436 goto out_put_subsystem; 2437 } 2438 } else { 2439 ret = device_add(&subsys->dev); 2440 if (ret) { 2441 dev_err(ctrl->device, 2442 "failed to register subsystem device.\n"); 2443 goto out_unlock; 2444 } 2445 ida_init(&subsys->ns_ida); 2446 list_add_tail(&subsys->entry, &nvme_subsystems); 2447 } 2448 2449 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2450 dev_name(ctrl->device))) { 2451 dev_err(ctrl->device, 2452 "failed to create sysfs link from subsystem.\n"); 2453 goto out_put_subsystem; 2454 } 2455 2456 ctrl->subsys = subsys; 2457 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2458 mutex_unlock(&nvme_subsystems_lock); 2459 return 0; 2460 2461 out_put_subsystem: 2462 nvme_put_subsystem(subsys); 2463 out_unlock: 2464 mutex_unlock(&nvme_subsystems_lock); 2465 put_device(&subsys->dev); 2466 return ret; 2467 } 2468 2469 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2470 void *log, size_t size, u64 offset) 2471 { 2472 struct nvme_command c = { }; 2473 unsigned long dwlen = size / 4 - 1; 2474 2475 c.get_log_page.opcode = nvme_admin_get_log_page; 2476 c.get_log_page.nsid = cpu_to_le32(nsid); 2477 c.get_log_page.lid = log_page; 2478 c.get_log_page.lsp = lsp; 2479 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2480 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2481 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2482 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2483 2484 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2485 } 2486 2487 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2488 { 2489 int ret; 2490 2491 if (!ctrl->effects) 2492 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2493 2494 if (!ctrl->effects) 2495 return 0; 2496 2497 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2498 ctrl->effects, sizeof(*ctrl->effects), 0); 2499 if (ret) { 2500 kfree(ctrl->effects); 2501 ctrl->effects = NULL; 2502 } 2503 return ret; 2504 } 2505 2506 /* 2507 * Initialize the cached copies of the Identify data and various controller 2508 * register in our nvme_ctrl structure. This should be called as soon as 2509 * the admin queue is fully up and running. 2510 */ 2511 int nvme_init_identify(struct nvme_ctrl *ctrl) 2512 { 2513 struct nvme_id_ctrl *id; 2514 u64 cap; 2515 int ret, page_shift; 2516 u32 max_hw_sectors; 2517 bool prev_apst_enabled; 2518 2519 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2520 if (ret) { 2521 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2522 return ret; 2523 } 2524 2525 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2526 if (ret) { 2527 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2528 return ret; 2529 } 2530 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2531 2532 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2533 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2534 2535 ret = nvme_identify_ctrl(ctrl, &id); 2536 if (ret) { 2537 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2538 return -EIO; 2539 } 2540 2541 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2542 ret = nvme_get_effects_log(ctrl); 2543 if (ret < 0) 2544 goto out_free; 2545 } 2546 2547 if (!ctrl->identified) { 2548 int i; 2549 2550 ret = nvme_init_subsystem(ctrl, id); 2551 if (ret) 2552 goto out_free; 2553 2554 /* 2555 * Check for quirks. Quirk can depend on firmware version, 2556 * so, in principle, the set of quirks present can change 2557 * across a reset. As a possible future enhancement, we 2558 * could re-scan for quirks every time we reinitialize 2559 * the device, but we'd have to make sure that the driver 2560 * behaves intelligently if the quirks change. 2561 */ 2562 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2563 if (quirk_matches(id, &core_quirks[i])) 2564 ctrl->quirks |= core_quirks[i].quirks; 2565 } 2566 } 2567 2568 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2569 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2570 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2571 } 2572 2573 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2574 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2575 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2576 2577 ctrl->oacs = le16_to_cpu(id->oacs); 2578 ctrl->oncs = le16_to_cpu(id->oncs); 2579 ctrl->mtfa = le16_to_cpu(id->mtfa); 2580 ctrl->oaes = le32_to_cpu(id->oaes); 2581 atomic_set(&ctrl->abort_limit, id->acl + 1); 2582 ctrl->vwc = id->vwc; 2583 if (id->mdts) 2584 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2585 else 2586 max_hw_sectors = UINT_MAX; 2587 ctrl->max_hw_sectors = 2588 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2589 2590 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2591 ctrl->sgls = le32_to_cpu(id->sgls); 2592 ctrl->kas = le16_to_cpu(id->kas); 2593 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2594 ctrl->ctratt = le32_to_cpu(id->ctratt); 2595 2596 if (id->rtd3e) { 2597 /* us -> s */ 2598 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2599 2600 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2601 shutdown_timeout, 60); 2602 2603 if (ctrl->shutdown_timeout != shutdown_timeout) 2604 dev_info(ctrl->device, 2605 "Shutdown timeout set to %u seconds\n", 2606 ctrl->shutdown_timeout); 2607 } else 2608 ctrl->shutdown_timeout = shutdown_timeout; 2609 2610 ctrl->npss = id->npss; 2611 ctrl->apsta = id->apsta; 2612 prev_apst_enabled = ctrl->apst_enabled; 2613 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2614 if (force_apst && id->apsta) { 2615 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2616 ctrl->apst_enabled = true; 2617 } else { 2618 ctrl->apst_enabled = false; 2619 } 2620 } else { 2621 ctrl->apst_enabled = id->apsta; 2622 } 2623 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2624 2625 if (ctrl->ops->flags & NVME_F_FABRICS) { 2626 ctrl->icdoff = le16_to_cpu(id->icdoff); 2627 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2628 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2629 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2630 2631 /* 2632 * In fabrics we need to verify the cntlid matches the 2633 * admin connect 2634 */ 2635 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2636 ret = -EINVAL; 2637 goto out_free; 2638 } 2639 2640 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2641 dev_err(ctrl->device, 2642 "keep-alive support is mandatory for fabrics\n"); 2643 ret = -EINVAL; 2644 goto out_free; 2645 } 2646 } else { 2647 ctrl->cntlid = le16_to_cpu(id->cntlid); 2648 ctrl->hmpre = le32_to_cpu(id->hmpre); 2649 ctrl->hmmin = le32_to_cpu(id->hmmin); 2650 ctrl->hmminds = le32_to_cpu(id->hmminds); 2651 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2652 } 2653 2654 ret = nvme_mpath_init(ctrl, id); 2655 kfree(id); 2656 2657 if (ret < 0) 2658 return ret; 2659 2660 if (ctrl->apst_enabled && !prev_apst_enabled) 2661 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2662 else if (!ctrl->apst_enabled && prev_apst_enabled) 2663 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2664 2665 ret = nvme_configure_apst(ctrl); 2666 if (ret < 0) 2667 return ret; 2668 2669 ret = nvme_configure_timestamp(ctrl); 2670 if (ret < 0) 2671 return ret; 2672 2673 ret = nvme_configure_directives(ctrl); 2674 if (ret < 0) 2675 return ret; 2676 2677 ret = nvme_configure_acre(ctrl); 2678 if (ret < 0) 2679 return ret; 2680 2681 ctrl->identified = true; 2682 2683 return 0; 2684 2685 out_free: 2686 kfree(id); 2687 return ret; 2688 } 2689 EXPORT_SYMBOL_GPL(nvme_init_identify); 2690 2691 static int nvme_dev_open(struct inode *inode, struct file *file) 2692 { 2693 struct nvme_ctrl *ctrl = 2694 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2695 2696 switch (ctrl->state) { 2697 case NVME_CTRL_LIVE: 2698 case NVME_CTRL_ADMIN_ONLY: 2699 break; 2700 default: 2701 return -EWOULDBLOCK; 2702 } 2703 2704 file->private_data = ctrl; 2705 return 0; 2706 } 2707 2708 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2709 { 2710 struct nvme_ns *ns; 2711 int ret; 2712 2713 down_read(&ctrl->namespaces_rwsem); 2714 if (list_empty(&ctrl->namespaces)) { 2715 ret = -ENOTTY; 2716 goto out_unlock; 2717 } 2718 2719 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2720 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2721 dev_warn(ctrl->device, 2722 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2723 ret = -EINVAL; 2724 goto out_unlock; 2725 } 2726 2727 dev_warn(ctrl->device, 2728 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2729 kref_get(&ns->kref); 2730 up_read(&ctrl->namespaces_rwsem); 2731 2732 ret = nvme_user_cmd(ctrl, ns, argp); 2733 nvme_put_ns(ns); 2734 return ret; 2735 2736 out_unlock: 2737 up_read(&ctrl->namespaces_rwsem); 2738 return ret; 2739 } 2740 2741 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2742 unsigned long arg) 2743 { 2744 struct nvme_ctrl *ctrl = file->private_data; 2745 void __user *argp = (void __user *)arg; 2746 2747 switch (cmd) { 2748 case NVME_IOCTL_ADMIN_CMD: 2749 return nvme_user_cmd(ctrl, NULL, argp); 2750 case NVME_IOCTL_IO_CMD: 2751 return nvme_dev_user_cmd(ctrl, argp); 2752 case NVME_IOCTL_RESET: 2753 dev_warn(ctrl->device, "resetting controller\n"); 2754 return nvme_reset_ctrl_sync(ctrl); 2755 case NVME_IOCTL_SUBSYS_RESET: 2756 return nvme_reset_subsystem(ctrl); 2757 case NVME_IOCTL_RESCAN: 2758 nvme_queue_scan(ctrl); 2759 return 0; 2760 default: 2761 return -ENOTTY; 2762 } 2763 } 2764 2765 static const struct file_operations nvme_dev_fops = { 2766 .owner = THIS_MODULE, 2767 .open = nvme_dev_open, 2768 .unlocked_ioctl = nvme_dev_ioctl, 2769 .compat_ioctl = nvme_dev_ioctl, 2770 }; 2771 2772 static ssize_t nvme_sysfs_reset(struct device *dev, 2773 struct device_attribute *attr, const char *buf, 2774 size_t count) 2775 { 2776 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2777 int ret; 2778 2779 ret = nvme_reset_ctrl_sync(ctrl); 2780 if (ret < 0) 2781 return ret; 2782 return count; 2783 } 2784 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2785 2786 static ssize_t nvme_sysfs_rescan(struct device *dev, 2787 struct device_attribute *attr, const char *buf, 2788 size_t count) 2789 { 2790 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2791 2792 nvme_queue_scan(ctrl); 2793 return count; 2794 } 2795 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2796 2797 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2798 { 2799 struct gendisk *disk = dev_to_disk(dev); 2800 2801 if (disk->fops == &nvme_fops) 2802 return nvme_get_ns_from_dev(dev)->head; 2803 else 2804 return disk->private_data; 2805 } 2806 2807 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2808 char *buf) 2809 { 2810 struct nvme_ns_head *head = dev_to_ns_head(dev); 2811 struct nvme_ns_ids *ids = &head->ids; 2812 struct nvme_subsystem *subsys = head->subsys; 2813 int serial_len = sizeof(subsys->serial); 2814 int model_len = sizeof(subsys->model); 2815 2816 if (!uuid_is_null(&ids->uuid)) 2817 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2818 2819 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2820 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2821 2822 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2823 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2824 2825 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2826 subsys->serial[serial_len - 1] == '\0')) 2827 serial_len--; 2828 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2829 subsys->model[model_len - 1] == '\0')) 2830 model_len--; 2831 2832 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2833 serial_len, subsys->serial, model_len, subsys->model, 2834 head->ns_id); 2835 } 2836 static DEVICE_ATTR_RO(wwid); 2837 2838 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2839 char *buf) 2840 { 2841 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2842 } 2843 static DEVICE_ATTR_RO(nguid); 2844 2845 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2846 char *buf) 2847 { 2848 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2849 2850 /* For backward compatibility expose the NGUID to userspace if 2851 * we have no UUID set 2852 */ 2853 if (uuid_is_null(&ids->uuid)) { 2854 printk_ratelimited(KERN_WARNING 2855 "No UUID available providing old NGUID\n"); 2856 return sprintf(buf, "%pU\n", ids->nguid); 2857 } 2858 return sprintf(buf, "%pU\n", &ids->uuid); 2859 } 2860 static DEVICE_ATTR_RO(uuid); 2861 2862 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2863 char *buf) 2864 { 2865 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2866 } 2867 static DEVICE_ATTR_RO(eui); 2868 2869 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2870 char *buf) 2871 { 2872 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2873 } 2874 static DEVICE_ATTR_RO(nsid); 2875 2876 static struct attribute *nvme_ns_id_attrs[] = { 2877 &dev_attr_wwid.attr, 2878 &dev_attr_uuid.attr, 2879 &dev_attr_nguid.attr, 2880 &dev_attr_eui.attr, 2881 &dev_attr_nsid.attr, 2882 #ifdef CONFIG_NVME_MULTIPATH 2883 &dev_attr_ana_grpid.attr, 2884 &dev_attr_ana_state.attr, 2885 #endif 2886 NULL, 2887 }; 2888 2889 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2890 struct attribute *a, int n) 2891 { 2892 struct device *dev = container_of(kobj, struct device, kobj); 2893 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2894 2895 if (a == &dev_attr_uuid.attr) { 2896 if (uuid_is_null(&ids->uuid) && 2897 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2898 return 0; 2899 } 2900 if (a == &dev_attr_nguid.attr) { 2901 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2902 return 0; 2903 } 2904 if (a == &dev_attr_eui.attr) { 2905 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2906 return 0; 2907 } 2908 #ifdef CONFIG_NVME_MULTIPATH 2909 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2910 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2911 return 0; 2912 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2913 return 0; 2914 } 2915 #endif 2916 return a->mode; 2917 } 2918 2919 static const struct attribute_group nvme_ns_id_attr_group = { 2920 .attrs = nvme_ns_id_attrs, 2921 .is_visible = nvme_ns_id_attrs_are_visible, 2922 }; 2923 2924 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2925 &nvme_ns_id_attr_group, 2926 #ifdef CONFIG_NVM 2927 &nvme_nvm_attr_group, 2928 #endif 2929 NULL, 2930 }; 2931 2932 #define nvme_show_str_function(field) \ 2933 static ssize_t field##_show(struct device *dev, \ 2934 struct device_attribute *attr, char *buf) \ 2935 { \ 2936 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2937 return sprintf(buf, "%.*s\n", \ 2938 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2939 } \ 2940 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2941 2942 nvme_show_str_function(model); 2943 nvme_show_str_function(serial); 2944 nvme_show_str_function(firmware_rev); 2945 2946 #define nvme_show_int_function(field) \ 2947 static ssize_t field##_show(struct device *dev, \ 2948 struct device_attribute *attr, char *buf) \ 2949 { \ 2950 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2951 return sprintf(buf, "%d\n", ctrl->field); \ 2952 } \ 2953 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2954 2955 nvme_show_int_function(cntlid); 2956 nvme_show_int_function(numa_node); 2957 2958 static ssize_t nvme_sysfs_delete(struct device *dev, 2959 struct device_attribute *attr, const char *buf, 2960 size_t count) 2961 { 2962 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2963 2964 if (device_remove_file_self(dev, attr)) 2965 nvme_delete_ctrl_sync(ctrl); 2966 return count; 2967 } 2968 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2969 2970 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2971 struct device_attribute *attr, 2972 char *buf) 2973 { 2974 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2975 2976 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2977 } 2978 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2979 2980 static ssize_t nvme_sysfs_show_state(struct device *dev, 2981 struct device_attribute *attr, 2982 char *buf) 2983 { 2984 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2985 static const char *const state_name[] = { 2986 [NVME_CTRL_NEW] = "new", 2987 [NVME_CTRL_LIVE] = "live", 2988 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2989 [NVME_CTRL_RESETTING] = "resetting", 2990 [NVME_CTRL_CONNECTING] = "connecting", 2991 [NVME_CTRL_DELETING] = "deleting", 2992 [NVME_CTRL_DEAD] = "dead", 2993 }; 2994 2995 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2996 state_name[ctrl->state]) 2997 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2998 2999 return sprintf(buf, "unknown state\n"); 3000 } 3001 3002 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3003 3004 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3005 struct device_attribute *attr, 3006 char *buf) 3007 { 3008 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3009 3010 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3011 } 3012 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3013 3014 static ssize_t nvme_sysfs_show_address(struct device *dev, 3015 struct device_attribute *attr, 3016 char *buf) 3017 { 3018 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3019 3020 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3021 } 3022 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3023 3024 static struct attribute *nvme_dev_attrs[] = { 3025 &dev_attr_reset_controller.attr, 3026 &dev_attr_rescan_controller.attr, 3027 &dev_attr_model.attr, 3028 &dev_attr_serial.attr, 3029 &dev_attr_firmware_rev.attr, 3030 &dev_attr_cntlid.attr, 3031 &dev_attr_delete_controller.attr, 3032 &dev_attr_transport.attr, 3033 &dev_attr_subsysnqn.attr, 3034 &dev_attr_address.attr, 3035 &dev_attr_state.attr, 3036 &dev_attr_numa_node.attr, 3037 NULL 3038 }; 3039 3040 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3041 struct attribute *a, int n) 3042 { 3043 struct device *dev = container_of(kobj, struct device, kobj); 3044 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3045 3046 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3047 return 0; 3048 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3049 return 0; 3050 3051 return a->mode; 3052 } 3053 3054 static struct attribute_group nvme_dev_attrs_group = { 3055 .attrs = nvme_dev_attrs, 3056 .is_visible = nvme_dev_attrs_are_visible, 3057 }; 3058 3059 static const struct attribute_group *nvme_dev_attr_groups[] = { 3060 &nvme_dev_attrs_group, 3061 NULL, 3062 }; 3063 3064 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3065 unsigned nsid) 3066 { 3067 struct nvme_ns_head *h; 3068 3069 lockdep_assert_held(&subsys->lock); 3070 3071 list_for_each_entry(h, &subsys->nsheads, entry) { 3072 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3073 return h; 3074 } 3075 3076 return NULL; 3077 } 3078 3079 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3080 struct nvme_ns_head *new) 3081 { 3082 struct nvme_ns_head *h; 3083 3084 lockdep_assert_held(&subsys->lock); 3085 3086 list_for_each_entry(h, &subsys->nsheads, entry) { 3087 if (nvme_ns_ids_valid(&new->ids) && 3088 !list_empty(&h->list) && 3089 nvme_ns_ids_equal(&new->ids, &h->ids)) 3090 return -EINVAL; 3091 } 3092 3093 return 0; 3094 } 3095 3096 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3097 unsigned nsid, struct nvme_id_ns *id) 3098 { 3099 struct nvme_ns_head *head; 3100 size_t size = sizeof(*head); 3101 int ret = -ENOMEM; 3102 3103 #ifdef CONFIG_NVME_MULTIPATH 3104 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3105 #endif 3106 3107 head = kzalloc(size, GFP_KERNEL); 3108 if (!head) 3109 goto out; 3110 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3111 if (ret < 0) 3112 goto out_free_head; 3113 head->instance = ret; 3114 INIT_LIST_HEAD(&head->list); 3115 ret = init_srcu_struct(&head->srcu); 3116 if (ret) 3117 goto out_ida_remove; 3118 head->subsys = ctrl->subsys; 3119 head->ns_id = nsid; 3120 kref_init(&head->ref); 3121 3122 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3123 3124 ret = __nvme_check_ids(ctrl->subsys, head); 3125 if (ret) { 3126 dev_err(ctrl->device, 3127 "duplicate IDs for nsid %d\n", nsid); 3128 goto out_cleanup_srcu; 3129 } 3130 3131 ret = nvme_mpath_alloc_disk(ctrl, head); 3132 if (ret) 3133 goto out_cleanup_srcu; 3134 3135 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3136 3137 kref_get(&ctrl->subsys->ref); 3138 3139 return head; 3140 out_cleanup_srcu: 3141 cleanup_srcu_struct(&head->srcu); 3142 out_ida_remove: 3143 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3144 out_free_head: 3145 kfree(head); 3146 out: 3147 return ERR_PTR(ret); 3148 } 3149 3150 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3151 struct nvme_id_ns *id) 3152 { 3153 struct nvme_ctrl *ctrl = ns->ctrl; 3154 bool is_shared = id->nmic & (1 << 0); 3155 struct nvme_ns_head *head = NULL; 3156 int ret = 0; 3157 3158 mutex_lock(&ctrl->subsys->lock); 3159 if (is_shared) 3160 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3161 if (!head) { 3162 head = nvme_alloc_ns_head(ctrl, nsid, id); 3163 if (IS_ERR(head)) { 3164 ret = PTR_ERR(head); 3165 goto out_unlock; 3166 } 3167 } else { 3168 struct nvme_ns_ids ids; 3169 3170 nvme_report_ns_ids(ctrl, nsid, id, &ids); 3171 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3172 dev_err(ctrl->device, 3173 "IDs don't match for shared namespace %d\n", 3174 nsid); 3175 ret = -EINVAL; 3176 goto out_unlock; 3177 } 3178 } 3179 3180 list_add_tail(&ns->siblings, &head->list); 3181 ns->head = head; 3182 3183 out_unlock: 3184 mutex_unlock(&ctrl->subsys->lock); 3185 return ret; 3186 } 3187 3188 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3189 { 3190 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3191 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3192 3193 return nsa->head->ns_id - nsb->head->ns_id; 3194 } 3195 3196 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3197 { 3198 struct nvme_ns *ns, *ret = NULL; 3199 3200 down_read(&ctrl->namespaces_rwsem); 3201 list_for_each_entry(ns, &ctrl->namespaces, list) { 3202 if (ns->head->ns_id == nsid) { 3203 if (!kref_get_unless_zero(&ns->kref)) 3204 continue; 3205 ret = ns; 3206 break; 3207 } 3208 if (ns->head->ns_id > nsid) 3209 break; 3210 } 3211 up_read(&ctrl->namespaces_rwsem); 3212 return ret; 3213 } 3214 3215 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3216 { 3217 struct streams_directive_params s; 3218 int ret; 3219 3220 if (!ctrl->nr_streams) 3221 return 0; 3222 3223 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3224 if (ret) 3225 return ret; 3226 3227 ns->sws = le32_to_cpu(s.sws); 3228 ns->sgs = le16_to_cpu(s.sgs); 3229 3230 if (ns->sws) { 3231 unsigned int bs = 1 << ns->lba_shift; 3232 3233 blk_queue_io_min(ns->queue, bs * ns->sws); 3234 if (ns->sgs) 3235 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3236 } 3237 3238 return 0; 3239 } 3240 3241 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3242 { 3243 struct nvme_ns *ns; 3244 struct gendisk *disk; 3245 struct nvme_id_ns *id; 3246 char disk_name[DISK_NAME_LEN]; 3247 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3248 3249 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3250 if (!ns) 3251 return -ENOMEM; 3252 3253 ns->queue = blk_mq_init_queue(ctrl->tagset); 3254 if (IS_ERR(ns->queue)) { 3255 ret = PTR_ERR(ns->queue); 3256 goto out_free_ns; 3257 } 3258 3259 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3260 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3261 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3262 3263 ns->queue->queuedata = ns; 3264 ns->ctrl = ctrl; 3265 3266 kref_init(&ns->kref); 3267 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3268 3269 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3270 nvme_set_queue_limits(ctrl, ns->queue); 3271 3272 id = nvme_identify_ns(ctrl, nsid); 3273 if (!id) { 3274 ret = -EIO; 3275 goto out_free_queue; 3276 } 3277 3278 if (id->ncap == 0) { 3279 ret = -EINVAL; 3280 goto out_free_id; 3281 } 3282 3283 ret = nvme_init_ns_head(ns, nsid, id); 3284 if (ret) 3285 goto out_free_id; 3286 nvme_setup_streams_ns(ctrl, ns); 3287 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3288 3289 disk = alloc_disk_node(0, node); 3290 if (!disk) { 3291 ret = -ENOMEM; 3292 goto out_unlink_ns; 3293 } 3294 3295 disk->fops = &nvme_fops; 3296 disk->private_data = ns; 3297 disk->queue = ns->queue; 3298 disk->flags = flags; 3299 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3300 ns->disk = disk; 3301 3302 __nvme_revalidate_disk(disk, id); 3303 3304 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3305 ret = nvme_nvm_register(ns, disk_name, node); 3306 if (ret) { 3307 dev_warn(ctrl->device, "LightNVM init failure\n"); 3308 goto out_put_disk; 3309 } 3310 } 3311 3312 down_write(&ctrl->namespaces_rwsem); 3313 list_add_tail(&ns->list, &ctrl->namespaces); 3314 up_write(&ctrl->namespaces_rwsem); 3315 3316 nvme_get_ctrl(ctrl); 3317 3318 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3319 3320 nvme_mpath_add_disk(ns, id); 3321 nvme_fault_inject_init(ns); 3322 kfree(id); 3323 3324 return 0; 3325 out_put_disk: 3326 put_disk(ns->disk); 3327 out_unlink_ns: 3328 mutex_lock(&ctrl->subsys->lock); 3329 list_del_rcu(&ns->siblings); 3330 mutex_unlock(&ctrl->subsys->lock); 3331 nvme_put_ns_head(ns->head); 3332 out_free_id: 3333 kfree(id); 3334 out_free_queue: 3335 blk_cleanup_queue(ns->queue); 3336 out_free_ns: 3337 kfree(ns); 3338 return ret; 3339 } 3340 3341 static void nvme_ns_remove(struct nvme_ns *ns) 3342 { 3343 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3344 return; 3345 3346 nvme_fault_inject_fini(ns); 3347 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3348 del_gendisk(ns->disk); 3349 blk_cleanup_queue(ns->queue); 3350 if (blk_get_integrity(ns->disk)) 3351 blk_integrity_unregister(ns->disk); 3352 } 3353 3354 mutex_lock(&ns->ctrl->subsys->lock); 3355 list_del_rcu(&ns->siblings); 3356 nvme_mpath_clear_current_path(ns); 3357 mutex_unlock(&ns->ctrl->subsys->lock); 3358 3359 down_write(&ns->ctrl->namespaces_rwsem); 3360 list_del_init(&ns->list); 3361 up_write(&ns->ctrl->namespaces_rwsem); 3362 3363 synchronize_srcu(&ns->head->srcu); 3364 nvme_mpath_check_last_path(ns); 3365 nvme_put_ns(ns); 3366 } 3367 3368 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3369 { 3370 struct nvme_ns *ns; 3371 3372 ns = nvme_find_get_ns(ctrl, nsid); 3373 if (ns) { 3374 if (ns->disk && revalidate_disk(ns->disk)) 3375 nvme_ns_remove(ns); 3376 nvme_put_ns(ns); 3377 } else 3378 nvme_alloc_ns(ctrl, nsid); 3379 } 3380 3381 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3382 unsigned nsid) 3383 { 3384 struct nvme_ns *ns, *next; 3385 LIST_HEAD(rm_list); 3386 3387 down_write(&ctrl->namespaces_rwsem); 3388 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3389 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3390 list_move_tail(&ns->list, &rm_list); 3391 } 3392 up_write(&ctrl->namespaces_rwsem); 3393 3394 list_for_each_entry_safe(ns, next, &rm_list, list) 3395 nvme_ns_remove(ns); 3396 3397 } 3398 3399 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3400 { 3401 struct nvme_ns *ns; 3402 __le32 *ns_list; 3403 unsigned i, j, nsid, prev = 0; 3404 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3405 int ret = 0; 3406 3407 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3408 if (!ns_list) 3409 return -ENOMEM; 3410 3411 for (i = 0; i < num_lists; i++) { 3412 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3413 if (ret) 3414 goto free; 3415 3416 for (j = 0; j < min(nn, 1024U); j++) { 3417 nsid = le32_to_cpu(ns_list[j]); 3418 if (!nsid) 3419 goto out; 3420 3421 nvme_validate_ns(ctrl, nsid); 3422 3423 while (++prev < nsid) { 3424 ns = nvme_find_get_ns(ctrl, prev); 3425 if (ns) { 3426 nvme_ns_remove(ns); 3427 nvme_put_ns(ns); 3428 } 3429 } 3430 } 3431 nn -= j; 3432 } 3433 out: 3434 nvme_remove_invalid_namespaces(ctrl, prev); 3435 free: 3436 kfree(ns_list); 3437 return ret; 3438 } 3439 3440 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3441 { 3442 unsigned i; 3443 3444 for (i = 1; i <= nn; i++) 3445 nvme_validate_ns(ctrl, i); 3446 3447 nvme_remove_invalid_namespaces(ctrl, nn); 3448 } 3449 3450 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3451 { 3452 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3453 __le32 *log; 3454 int error; 3455 3456 log = kzalloc(log_size, GFP_KERNEL); 3457 if (!log) 3458 return; 3459 3460 /* 3461 * We need to read the log to clear the AEN, but we don't want to rely 3462 * on it for the changed namespace information as userspace could have 3463 * raced with us in reading the log page, which could cause us to miss 3464 * updates. 3465 */ 3466 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3467 log_size, 0); 3468 if (error) 3469 dev_warn(ctrl->device, 3470 "reading changed ns log failed: %d\n", error); 3471 3472 kfree(log); 3473 } 3474 3475 static void nvme_scan_work(struct work_struct *work) 3476 { 3477 struct nvme_ctrl *ctrl = 3478 container_of(work, struct nvme_ctrl, scan_work); 3479 struct nvme_id_ctrl *id; 3480 unsigned nn; 3481 3482 if (ctrl->state != NVME_CTRL_LIVE) 3483 return; 3484 3485 WARN_ON_ONCE(!ctrl->tagset); 3486 3487 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3488 dev_info(ctrl->device, "rescanning namespaces.\n"); 3489 nvme_clear_changed_ns_log(ctrl); 3490 } 3491 3492 if (nvme_identify_ctrl(ctrl, &id)) 3493 return; 3494 3495 mutex_lock(&ctrl->scan_lock); 3496 nn = le32_to_cpu(id->nn); 3497 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3498 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3499 if (!nvme_scan_ns_list(ctrl, nn)) 3500 goto out_free_id; 3501 } 3502 nvme_scan_ns_sequential(ctrl, nn); 3503 out_free_id: 3504 mutex_unlock(&ctrl->scan_lock); 3505 kfree(id); 3506 down_write(&ctrl->namespaces_rwsem); 3507 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3508 up_write(&ctrl->namespaces_rwsem); 3509 } 3510 3511 /* 3512 * This function iterates the namespace list unlocked to allow recovery from 3513 * controller failure. It is up to the caller to ensure the namespace list is 3514 * not modified by scan work while this function is executing. 3515 */ 3516 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3517 { 3518 struct nvme_ns *ns, *next; 3519 LIST_HEAD(ns_list); 3520 3521 /* prevent racing with ns scanning */ 3522 flush_work(&ctrl->scan_work); 3523 3524 /* 3525 * The dead states indicates the controller was not gracefully 3526 * disconnected. In that case, we won't be able to flush any data while 3527 * removing the namespaces' disks; fail all the queues now to avoid 3528 * potentially having to clean up the failed sync later. 3529 */ 3530 if (ctrl->state == NVME_CTRL_DEAD) 3531 nvme_kill_queues(ctrl); 3532 3533 down_write(&ctrl->namespaces_rwsem); 3534 list_splice_init(&ctrl->namespaces, &ns_list); 3535 up_write(&ctrl->namespaces_rwsem); 3536 3537 list_for_each_entry_safe(ns, next, &ns_list, list) 3538 nvme_ns_remove(ns); 3539 } 3540 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3541 3542 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3543 { 3544 char *envp[2] = { NULL, NULL }; 3545 u32 aen_result = ctrl->aen_result; 3546 3547 ctrl->aen_result = 0; 3548 if (!aen_result) 3549 return; 3550 3551 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3552 if (!envp[0]) 3553 return; 3554 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3555 kfree(envp[0]); 3556 } 3557 3558 static void nvme_async_event_work(struct work_struct *work) 3559 { 3560 struct nvme_ctrl *ctrl = 3561 container_of(work, struct nvme_ctrl, async_event_work); 3562 3563 nvme_aen_uevent(ctrl); 3564 ctrl->ops->submit_async_event(ctrl); 3565 } 3566 3567 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3568 { 3569 3570 u32 csts; 3571 3572 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3573 return false; 3574 3575 if (csts == ~0) 3576 return false; 3577 3578 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3579 } 3580 3581 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3582 { 3583 struct nvme_fw_slot_info_log *log; 3584 3585 log = kmalloc(sizeof(*log), GFP_KERNEL); 3586 if (!log) 3587 return; 3588 3589 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3590 sizeof(*log), 0)) 3591 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3592 kfree(log); 3593 } 3594 3595 static void nvme_fw_act_work(struct work_struct *work) 3596 { 3597 struct nvme_ctrl *ctrl = container_of(work, 3598 struct nvme_ctrl, fw_act_work); 3599 unsigned long fw_act_timeout; 3600 3601 if (ctrl->mtfa) 3602 fw_act_timeout = jiffies + 3603 msecs_to_jiffies(ctrl->mtfa * 100); 3604 else 3605 fw_act_timeout = jiffies + 3606 msecs_to_jiffies(admin_timeout * 1000); 3607 3608 nvme_stop_queues(ctrl); 3609 while (nvme_ctrl_pp_status(ctrl)) { 3610 if (time_after(jiffies, fw_act_timeout)) { 3611 dev_warn(ctrl->device, 3612 "Fw activation timeout, reset controller\n"); 3613 nvme_reset_ctrl(ctrl); 3614 break; 3615 } 3616 msleep(100); 3617 } 3618 3619 if (ctrl->state != NVME_CTRL_LIVE) 3620 return; 3621 3622 nvme_start_queues(ctrl); 3623 /* read FW slot information to clear the AER */ 3624 nvme_get_fw_slot_info(ctrl); 3625 } 3626 3627 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3628 { 3629 u32 aer_notice_type = (result & 0xff00) >> 8; 3630 3631 trace_nvme_async_event(ctrl, aer_notice_type); 3632 3633 switch (aer_notice_type) { 3634 case NVME_AER_NOTICE_NS_CHANGED: 3635 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3636 nvme_queue_scan(ctrl); 3637 break; 3638 case NVME_AER_NOTICE_FW_ACT_STARTING: 3639 queue_work(nvme_wq, &ctrl->fw_act_work); 3640 break; 3641 #ifdef CONFIG_NVME_MULTIPATH 3642 case NVME_AER_NOTICE_ANA: 3643 if (!ctrl->ana_log_buf) 3644 break; 3645 queue_work(nvme_wq, &ctrl->ana_work); 3646 break; 3647 #endif 3648 default: 3649 dev_warn(ctrl->device, "async event result %08x\n", result); 3650 } 3651 } 3652 3653 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3654 volatile union nvme_result *res) 3655 { 3656 u32 result = le32_to_cpu(res->u32); 3657 u32 aer_type = result & 0x07; 3658 3659 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3660 return; 3661 3662 switch (aer_type) { 3663 case NVME_AER_NOTICE: 3664 nvme_handle_aen_notice(ctrl, result); 3665 break; 3666 case NVME_AER_ERROR: 3667 case NVME_AER_SMART: 3668 case NVME_AER_CSS: 3669 case NVME_AER_VS: 3670 trace_nvme_async_event(ctrl, aer_type); 3671 ctrl->aen_result = result; 3672 break; 3673 default: 3674 break; 3675 } 3676 queue_work(nvme_wq, &ctrl->async_event_work); 3677 } 3678 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3679 3680 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3681 { 3682 nvme_mpath_stop(ctrl); 3683 nvme_stop_keep_alive(ctrl); 3684 flush_work(&ctrl->async_event_work); 3685 cancel_work_sync(&ctrl->fw_act_work); 3686 } 3687 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3688 3689 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3690 { 3691 if (ctrl->kato) 3692 nvme_start_keep_alive(ctrl); 3693 3694 if (ctrl->queue_count > 1) { 3695 nvme_queue_scan(ctrl); 3696 nvme_enable_aen(ctrl); 3697 queue_work(nvme_wq, &ctrl->async_event_work); 3698 nvme_start_queues(ctrl); 3699 } 3700 } 3701 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3702 3703 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3704 { 3705 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3706 cdev_device_del(&ctrl->cdev, ctrl->device); 3707 } 3708 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3709 3710 static void nvme_free_ctrl(struct device *dev) 3711 { 3712 struct nvme_ctrl *ctrl = 3713 container_of(dev, struct nvme_ctrl, ctrl_device); 3714 struct nvme_subsystem *subsys = ctrl->subsys; 3715 3716 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3717 kfree(ctrl->effects); 3718 nvme_mpath_uninit(ctrl); 3719 __free_page(ctrl->discard_page); 3720 3721 if (subsys) { 3722 mutex_lock(&nvme_subsystems_lock); 3723 list_del(&ctrl->subsys_entry); 3724 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3725 mutex_unlock(&nvme_subsystems_lock); 3726 } 3727 3728 ctrl->ops->free_ctrl(ctrl); 3729 3730 if (subsys) 3731 nvme_put_subsystem(subsys); 3732 } 3733 3734 /* 3735 * Initialize a NVMe controller structures. This needs to be called during 3736 * earliest initialization so that we have the initialized structured around 3737 * during probing. 3738 */ 3739 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3740 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3741 { 3742 int ret; 3743 3744 ctrl->state = NVME_CTRL_NEW; 3745 spin_lock_init(&ctrl->lock); 3746 mutex_init(&ctrl->scan_lock); 3747 INIT_LIST_HEAD(&ctrl->namespaces); 3748 init_rwsem(&ctrl->namespaces_rwsem); 3749 ctrl->dev = dev; 3750 ctrl->ops = ops; 3751 ctrl->quirks = quirks; 3752 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3753 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3754 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3755 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3756 3757 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3758 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3759 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3760 3761 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 3762 PAGE_SIZE); 3763 ctrl->discard_page = alloc_page(GFP_KERNEL); 3764 if (!ctrl->discard_page) { 3765 ret = -ENOMEM; 3766 goto out; 3767 } 3768 3769 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3770 if (ret < 0) 3771 goto out; 3772 ctrl->instance = ret; 3773 3774 device_initialize(&ctrl->ctrl_device); 3775 ctrl->device = &ctrl->ctrl_device; 3776 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3777 ctrl->device->class = nvme_class; 3778 ctrl->device->parent = ctrl->dev; 3779 ctrl->device->groups = nvme_dev_attr_groups; 3780 ctrl->device->release = nvme_free_ctrl; 3781 dev_set_drvdata(ctrl->device, ctrl); 3782 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3783 if (ret) 3784 goto out_release_instance; 3785 3786 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3787 ctrl->cdev.owner = ops->module; 3788 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3789 if (ret) 3790 goto out_free_name; 3791 3792 /* 3793 * Initialize latency tolerance controls. The sysfs files won't 3794 * be visible to userspace unless the device actually supports APST. 3795 */ 3796 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3797 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3798 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3799 3800 return 0; 3801 out_free_name: 3802 kfree_const(ctrl->device->kobj.name); 3803 out_release_instance: 3804 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3805 out: 3806 if (ctrl->discard_page) 3807 __free_page(ctrl->discard_page); 3808 return ret; 3809 } 3810 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3811 3812 /** 3813 * nvme_kill_queues(): Ends all namespace queues 3814 * @ctrl: the dead controller that needs to end 3815 * 3816 * Call this function when the driver determines it is unable to get the 3817 * controller in a state capable of servicing IO. 3818 */ 3819 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3820 { 3821 struct nvme_ns *ns; 3822 3823 down_read(&ctrl->namespaces_rwsem); 3824 3825 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3826 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3827 blk_mq_unquiesce_queue(ctrl->admin_q); 3828 3829 list_for_each_entry(ns, &ctrl->namespaces, list) 3830 nvme_set_queue_dying(ns); 3831 3832 up_read(&ctrl->namespaces_rwsem); 3833 } 3834 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3835 3836 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3837 { 3838 struct nvme_ns *ns; 3839 3840 down_read(&ctrl->namespaces_rwsem); 3841 list_for_each_entry(ns, &ctrl->namespaces, list) 3842 blk_mq_unfreeze_queue(ns->queue); 3843 up_read(&ctrl->namespaces_rwsem); 3844 } 3845 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3846 3847 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3848 { 3849 struct nvme_ns *ns; 3850 3851 down_read(&ctrl->namespaces_rwsem); 3852 list_for_each_entry(ns, &ctrl->namespaces, list) { 3853 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3854 if (timeout <= 0) 3855 break; 3856 } 3857 up_read(&ctrl->namespaces_rwsem); 3858 } 3859 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3860 3861 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3862 { 3863 struct nvme_ns *ns; 3864 3865 down_read(&ctrl->namespaces_rwsem); 3866 list_for_each_entry(ns, &ctrl->namespaces, list) 3867 blk_mq_freeze_queue_wait(ns->queue); 3868 up_read(&ctrl->namespaces_rwsem); 3869 } 3870 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3871 3872 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3873 { 3874 struct nvme_ns *ns; 3875 3876 down_read(&ctrl->namespaces_rwsem); 3877 list_for_each_entry(ns, &ctrl->namespaces, list) 3878 blk_freeze_queue_start(ns->queue); 3879 up_read(&ctrl->namespaces_rwsem); 3880 } 3881 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3882 3883 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3884 { 3885 struct nvme_ns *ns; 3886 3887 down_read(&ctrl->namespaces_rwsem); 3888 list_for_each_entry(ns, &ctrl->namespaces, list) 3889 blk_mq_quiesce_queue(ns->queue); 3890 up_read(&ctrl->namespaces_rwsem); 3891 } 3892 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3893 3894 void nvme_start_queues(struct nvme_ctrl *ctrl) 3895 { 3896 struct nvme_ns *ns; 3897 3898 down_read(&ctrl->namespaces_rwsem); 3899 list_for_each_entry(ns, &ctrl->namespaces, list) 3900 blk_mq_unquiesce_queue(ns->queue); 3901 up_read(&ctrl->namespaces_rwsem); 3902 } 3903 EXPORT_SYMBOL_GPL(nvme_start_queues); 3904 3905 3906 void nvme_sync_queues(struct nvme_ctrl *ctrl) 3907 { 3908 struct nvme_ns *ns; 3909 3910 down_read(&ctrl->namespaces_rwsem); 3911 list_for_each_entry(ns, &ctrl->namespaces, list) 3912 blk_sync_queue(ns->queue); 3913 up_read(&ctrl->namespaces_rwsem); 3914 } 3915 EXPORT_SYMBOL_GPL(nvme_sync_queues); 3916 3917 /* 3918 * Check we didn't inadvertently grow the command structure sizes: 3919 */ 3920 static inline void _nvme_check_size(void) 3921 { 3922 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 3923 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 3924 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 3925 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 3926 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 3927 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 3928 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 3929 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 3930 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 3931 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 3932 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 3933 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 3934 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 3935 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 3936 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 3937 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 3938 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 3939 } 3940 3941 3942 static int __init nvme_core_init(void) 3943 { 3944 int result = -ENOMEM; 3945 3946 _nvme_check_size(); 3947 3948 nvme_wq = alloc_workqueue("nvme-wq", 3949 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3950 if (!nvme_wq) 3951 goto out; 3952 3953 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3954 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3955 if (!nvme_reset_wq) 3956 goto destroy_wq; 3957 3958 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3959 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3960 if (!nvme_delete_wq) 3961 goto destroy_reset_wq; 3962 3963 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3964 if (result < 0) 3965 goto destroy_delete_wq; 3966 3967 nvme_class = class_create(THIS_MODULE, "nvme"); 3968 if (IS_ERR(nvme_class)) { 3969 result = PTR_ERR(nvme_class); 3970 goto unregister_chrdev; 3971 } 3972 3973 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3974 if (IS_ERR(nvme_subsys_class)) { 3975 result = PTR_ERR(nvme_subsys_class); 3976 goto destroy_class; 3977 } 3978 return 0; 3979 3980 destroy_class: 3981 class_destroy(nvme_class); 3982 unregister_chrdev: 3983 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3984 destroy_delete_wq: 3985 destroy_workqueue(nvme_delete_wq); 3986 destroy_reset_wq: 3987 destroy_workqueue(nvme_reset_wq); 3988 destroy_wq: 3989 destroy_workqueue(nvme_wq); 3990 out: 3991 return result; 3992 } 3993 3994 static void __exit nvme_core_exit(void) 3995 { 3996 ida_destroy(&nvme_subsystems_ida); 3997 class_destroy(nvme_subsys_class); 3998 class_destroy(nvme_class); 3999 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4000 destroy_workqueue(nvme_delete_wq); 4001 destroy_workqueue(nvme_reset_wq); 4002 destroy_workqueue(nvme_wq); 4003 } 4004 4005 MODULE_LICENSE("GPL"); 4006 MODULE_VERSION("1.0"); 4007 module_init(nvme_core_init); 4008 module_exit(nvme_core_exit); 4009