1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 }; 42 43 unsigned int admin_timeout = 60; 44 module_param(admin_timeout, uint, 0644); 45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 46 EXPORT_SYMBOL_GPL(admin_timeout); 47 48 unsigned int nvme_io_timeout = 30; 49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 51 EXPORT_SYMBOL_GPL(nvme_io_timeout); 52 53 static unsigned char shutdown_timeout = 5; 54 module_param(shutdown_timeout, byte, 0644); 55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 56 57 static u8 nvme_max_retries = 5; 58 module_param_named(max_retries, nvme_max_retries, byte, 0644); 59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 60 61 static unsigned long default_ps_max_latency_us = 100000; 62 module_param(default_ps_max_latency_us, ulong, 0644); 63 MODULE_PARM_DESC(default_ps_max_latency_us, 64 "max power saving latency for new devices; use PM QOS to change per device"); 65 66 static bool force_apst; 67 module_param(force_apst, bool, 0644); 68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 69 70 static unsigned long apst_primary_timeout_ms = 100; 71 module_param(apst_primary_timeout_ms, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_timeout_ms, 73 "primary APST timeout in ms"); 74 75 static unsigned long apst_secondary_timeout_ms = 2000; 76 module_param(apst_secondary_timeout_ms, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_timeout_ms, 78 "secondary APST timeout in ms"); 79 80 static unsigned long apst_primary_latency_tol_us = 15000; 81 module_param(apst_primary_latency_tol_us, ulong, 0644); 82 MODULE_PARM_DESC(apst_primary_latency_tol_us, 83 "primary APST latency tolerance in us"); 84 85 static unsigned long apst_secondary_latency_tol_us = 100000; 86 module_param(apst_secondary_latency_tol_us, ulong, 0644); 87 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 88 "secondary APST latency tolerance in us"); 89 90 /* 91 * nvme_wq - hosts nvme related works that are not reset or delete 92 * nvme_reset_wq - hosts nvme reset works 93 * nvme_delete_wq - hosts nvme delete works 94 * 95 * nvme_wq will host works such as scan, aen handling, fw activation, 96 * keep-alive, periodic reconnects etc. nvme_reset_wq 97 * runs reset works which also flush works hosted on nvme_wq for 98 * serialization purposes. nvme_delete_wq host controller deletion 99 * works which flush reset works for serialization. 100 */ 101 struct workqueue_struct *nvme_wq; 102 EXPORT_SYMBOL_GPL(nvme_wq); 103 104 struct workqueue_struct *nvme_reset_wq; 105 EXPORT_SYMBOL_GPL(nvme_reset_wq); 106 107 struct workqueue_struct *nvme_delete_wq; 108 EXPORT_SYMBOL_GPL(nvme_delete_wq); 109 110 static LIST_HEAD(nvme_subsystems); 111 static DEFINE_MUTEX(nvme_subsystems_lock); 112 113 static DEFINE_IDA(nvme_instance_ida); 114 static dev_t nvme_ctrl_base_chr_devt; 115 static struct class *nvme_class; 116 static struct class *nvme_subsys_class; 117 118 static DEFINE_IDA(nvme_ns_chr_minor_ida); 119 static dev_t nvme_ns_chr_devt; 120 static struct class *nvme_ns_chr_class; 121 122 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 124 unsigned nsid); 125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 126 struct nvme_command *cmd); 127 128 void nvme_queue_scan(struct nvme_ctrl *ctrl) 129 { 130 /* 131 * Only new queue scan work when admin and IO queues are both alive 132 */ 133 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 134 queue_work(nvme_wq, &ctrl->scan_work); 135 } 136 137 /* 138 * Use this function to proceed with scheduling reset_work for a controller 139 * that had previously been set to the resetting state. This is intended for 140 * code paths that can't be interrupted by other reset attempts. A hot removal 141 * may prevent this from succeeding. 142 */ 143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 144 { 145 if (ctrl->state != NVME_CTRL_RESETTING) 146 return -EBUSY; 147 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 148 return -EBUSY; 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 152 153 static void nvme_failfast_work(struct work_struct *work) 154 { 155 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 156 struct nvme_ctrl, failfast_work); 157 158 if (ctrl->state != NVME_CTRL_CONNECTING) 159 return; 160 161 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 162 dev_info(ctrl->device, "failfast expired\n"); 163 nvme_kick_requeue_lists(ctrl); 164 } 165 166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 167 { 168 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 169 return; 170 171 schedule_delayed_work(&ctrl->failfast_work, 172 ctrl->opts->fast_io_fail_tmo * HZ); 173 } 174 175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 176 { 177 if (!ctrl->opts) 178 return; 179 180 cancel_delayed_work_sync(&ctrl->failfast_work); 181 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 182 } 183 184 185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 186 { 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 188 return -EBUSY; 189 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 190 return -EBUSY; 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 194 195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 196 { 197 int ret; 198 199 ret = nvme_reset_ctrl(ctrl); 200 if (!ret) { 201 flush_work(&ctrl->reset_work); 202 if (ctrl->state != NVME_CTRL_LIVE) 203 ret = -ENETRESET; 204 } 205 206 return ret; 207 } 208 209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 210 { 211 dev_info(ctrl->device, 212 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 213 214 flush_work(&ctrl->reset_work); 215 nvme_stop_ctrl(ctrl); 216 nvme_remove_namespaces(ctrl); 217 ctrl->ops->delete_ctrl(ctrl); 218 nvme_uninit_ctrl(ctrl); 219 } 220 221 static void nvme_delete_ctrl_work(struct work_struct *work) 222 { 223 struct nvme_ctrl *ctrl = 224 container_of(work, struct nvme_ctrl, delete_work); 225 226 nvme_do_delete_ctrl(ctrl); 227 } 228 229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 230 { 231 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 232 return -EBUSY; 233 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 234 return -EBUSY; 235 return 0; 236 } 237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 238 239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 240 { 241 /* 242 * Keep a reference until nvme_do_delete_ctrl() complete, 243 * since ->delete_ctrl can free the controller. 244 */ 245 nvme_get_ctrl(ctrl); 246 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 247 nvme_do_delete_ctrl(ctrl); 248 nvme_put_ctrl(ctrl); 249 } 250 251 static blk_status_t nvme_error_status(u16 status) 252 { 253 switch (status & 0x7ff) { 254 case NVME_SC_SUCCESS: 255 return BLK_STS_OK; 256 case NVME_SC_CAP_EXCEEDED: 257 return BLK_STS_NOSPC; 258 case NVME_SC_LBA_RANGE: 259 case NVME_SC_CMD_INTERRUPTED: 260 case NVME_SC_NS_NOT_READY: 261 return BLK_STS_TARGET; 262 case NVME_SC_BAD_ATTRIBUTES: 263 case NVME_SC_ONCS_NOT_SUPPORTED: 264 case NVME_SC_INVALID_OPCODE: 265 case NVME_SC_INVALID_FIELD: 266 case NVME_SC_INVALID_NS: 267 return BLK_STS_NOTSUPP; 268 case NVME_SC_WRITE_FAULT: 269 case NVME_SC_READ_ERROR: 270 case NVME_SC_UNWRITTEN_BLOCK: 271 case NVME_SC_ACCESS_DENIED: 272 case NVME_SC_READ_ONLY: 273 case NVME_SC_COMPARE_FAILED: 274 return BLK_STS_MEDIUM; 275 case NVME_SC_GUARD_CHECK: 276 case NVME_SC_APPTAG_CHECK: 277 case NVME_SC_REFTAG_CHECK: 278 case NVME_SC_INVALID_PI: 279 return BLK_STS_PROTECTION; 280 case NVME_SC_RESERVATION_CONFLICT: 281 return BLK_STS_NEXUS; 282 case NVME_SC_HOST_PATH_ERROR: 283 return BLK_STS_TRANSPORT; 284 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 285 return BLK_STS_ZONE_ACTIVE_RESOURCE; 286 case NVME_SC_ZONE_TOO_MANY_OPEN: 287 return BLK_STS_ZONE_OPEN_RESOURCE; 288 default: 289 return BLK_STS_IOERR; 290 } 291 } 292 293 static void nvme_retry_req(struct request *req) 294 { 295 unsigned long delay = 0; 296 u16 crd; 297 298 /* The mask and shift result must be <= 3 */ 299 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 300 if (crd) 301 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 302 303 nvme_req(req)->retries++; 304 blk_mq_requeue_request(req, false); 305 blk_mq_delay_kick_requeue_list(req->q, delay); 306 } 307 308 static void nvme_log_error(struct request *req) 309 { 310 struct nvme_ns *ns = req->q->queuedata; 311 struct nvme_request *nr = nvme_req(req); 312 313 if (ns) { 314 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 315 ns->disk ? ns->disk->disk_name : "?", 316 nvme_get_opcode_str(nr->cmd->common.opcode), 317 nr->cmd->common.opcode, 318 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 319 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 320 nvme_get_error_status_str(nr->status), 321 nr->status >> 8 & 7, /* Status Code Type */ 322 nr->status & 0xff, /* Status Code */ 323 nr->status & NVME_SC_MORE ? "MORE " : "", 324 nr->status & NVME_SC_DNR ? "DNR " : ""); 325 return; 326 } 327 328 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 329 dev_name(nr->ctrl->device), 330 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 331 nr->cmd->common.opcode, 332 nvme_get_error_status_str(nr->status), 333 nr->status >> 8 & 7, /* Status Code Type */ 334 nr->status & 0xff, /* Status Code */ 335 nr->status & NVME_SC_MORE ? "MORE " : "", 336 nr->status & NVME_SC_DNR ? "DNR " : ""); 337 } 338 339 enum nvme_disposition { 340 COMPLETE, 341 RETRY, 342 FAILOVER, 343 AUTHENTICATE, 344 }; 345 346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 347 { 348 if (likely(nvme_req(req)->status == 0)) 349 return COMPLETE; 350 351 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 352 return AUTHENTICATE; 353 354 if (blk_noretry_request(req) || 355 (nvme_req(req)->status & NVME_SC_DNR) || 356 nvme_req(req)->retries >= nvme_max_retries) 357 return COMPLETE; 358 359 if (req->cmd_flags & REQ_NVME_MPATH) { 360 if (nvme_is_path_error(nvme_req(req)->status) || 361 blk_queue_dying(req->q)) 362 return FAILOVER; 363 } else { 364 if (blk_queue_dying(req->q)) 365 return COMPLETE; 366 } 367 368 return RETRY; 369 } 370 371 static inline void nvme_end_req_zoned(struct request *req) 372 { 373 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 374 req_op(req) == REQ_OP_ZONE_APPEND) 375 req->__sector = nvme_lba_to_sect(req->q->queuedata, 376 le64_to_cpu(nvme_req(req)->result.u64)); 377 } 378 379 static inline void nvme_end_req(struct request *req) 380 { 381 blk_status_t status = nvme_error_status(nvme_req(req)->status); 382 383 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 384 nvme_log_error(req); 385 nvme_end_req_zoned(req); 386 nvme_trace_bio_complete(req); 387 blk_mq_end_request(req, status); 388 } 389 390 void nvme_complete_rq(struct request *req) 391 { 392 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 393 394 trace_nvme_complete_rq(req); 395 nvme_cleanup_cmd(req); 396 397 if (ctrl->kas) 398 ctrl->comp_seen = true; 399 400 switch (nvme_decide_disposition(req)) { 401 case COMPLETE: 402 nvme_end_req(req); 403 return; 404 case RETRY: 405 nvme_retry_req(req); 406 return; 407 case FAILOVER: 408 nvme_failover_req(req); 409 return; 410 case AUTHENTICATE: 411 #ifdef CONFIG_NVME_AUTH 412 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 413 nvme_retry_req(req); 414 #else 415 nvme_end_req(req); 416 #endif 417 return; 418 } 419 } 420 EXPORT_SYMBOL_GPL(nvme_complete_rq); 421 422 void nvme_complete_batch_req(struct request *req) 423 { 424 trace_nvme_complete_rq(req); 425 nvme_cleanup_cmd(req); 426 nvme_end_req_zoned(req); 427 } 428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 429 430 /* 431 * Called to unwind from ->queue_rq on a failed command submission so that the 432 * multipathing code gets called to potentially failover to another path. 433 * The caller needs to unwind all transport specific resource allocations and 434 * must return propagate the return value. 435 */ 436 blk_status_t nvme_host_path_error(struct request *req) 437 { 438 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 439 blk_mq_set_request_complete(req); 440 nvme_complete_rq(req); 441 return BLK_STS_OK; 442 } 443 EXPORT_SYMBOL_GPL(nvme_host_path_error); 444 445 bool nvme_cancel_request(struct request *req, void *data) 446 { 447 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 448 "Cancelling I/O %d", req->tag); 449 450 /* don't abort one completed request */ 451 if (blk_mq_request_completed(req)) 452 return true; 453 454 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 455 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 456 blk_mq_complete_request(req); 457 return true; 458 } 459 EXPORT_SYMBOL_GPL(nvme_cancel_request); 460 461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 462 { 463 if (ctrl->tagset) { 464 blk_mq_tagset_busy_iter(ctrl->tagset, 465 nvme_cancel_request, ctrl); 466 blk_mq_tagset_wait_completed_request(ctrl->tagset); 467 } 468 } 469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 470 471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 472 { 473 if (ctrl->admin_tagset) { 474 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 475 nvme_cancel_request, ctrl); 476 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 477 } 478 } 479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 480 481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 482 enum nvme_ctrl_state new_state) 483 { 484 enum nvme_ctrl_state old_state; 485 unsigned long flags; 486 bool changed = false; 487 488 spin_lock_irqsave(&ctrl->lock, flags); 489 490 old_state = ctrl->state; 491 switch (new_state) { 492 case NVME_CTRL_LIVE: 493 switch (old_state) { 494 case NVME_CTRL_NEW: 495 case NVME_CTRL_RESETTING: 496 case NVME_CTRL_CONNECTING: 497 changed = true; 498 fallthrough; 499 default: 500 break; 501 } 502 break; 503 case NVME_CTRL_RESETTING: 504 switch (old_state) { 505 case NVME_CTRL_NEW: 506 case NVME_CTRL_LIVE: 507 changed = true; 508 fallthrough; 509 default: 510 break; 511 } 512 break; 513 case NVME_CTRL_CONNECTING: 514 switch (old_state) { 515 case NVME_CTRL_NEW: 516 case NVME_CTRL_RESETTING: 517 changed = true; 518 fallthrough; 519 default: 520 break; 521 } 522 break; 523 case NVME_CTRL_DELETING: 524 switch (old_state) { 525 case NVME_CTRL_LIVE: 526 case NVME_CTRL_RESETTING: 527 case NVME_CTRL_CONNECTING: 528 changed = true; 529 fallthrough; 530 default: 531 break; 532 } 533 break; 534 case NVME_CTRL_DELETING_NOIO: 535 switch (old_state) { 536 case NVME_CTRL_DELETING: 537 case NVME_CTRL_DEAD: 538 changed = true; 539 fallthrough; 540 default: 541 break; 542 } 543 break; 544 case NVME_CTRL_DEAD: 545 switch (old_state) { 546 case NVME_CTRL_DELETING: 547 changed = true; 548 fallthrough; 549 default: 550 break; 551 } 552 break; 553 default: 554 break; 555 } 556 557 if (changed) { 558 ctrl->state = new_state; 559 wake_up_all(&ctrl->state_wq); 560 } 561 562 spin_unlock_irqrestore(&ctrl->lock, flags); 563 if (!changed) 564 return false; 565 566 if (ctrl->state == NVME_CTRL_LIVE) { 567 if (old_state == NVME_CTRL_CONNECTING) 568 nvme_stop_failfast_work(ctrl); 569 nvme_kick_requeue_lists(ctrl); 570 } else if (ctrl->state == NVME_CTRL_CONNECTING && 571 old_state == NVME_CTRL_RESETTING) { 572 nvme_start_failfast_work(ctrl); 573 } 574 return changed; 575 } 576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 577 578 /* 579 * Returns true for sink states that can't ever transition back to live. 580 */ 581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 582 { 583 switch (ctrl->state) { 584 case NVME_CTRL_NEW: 585 case NVME_CTRL_LIVE: 586 case NVME_CTRL_RESETTING: 587 case NVME_CTRL_CONNECTING: 588 return false; 589 case NVME_CTRL_DELETING: 590 case NVME_CTRL_DELETING_NOIO: 591 case NVME_CTRL_DEAD: 592 return true; 593 default: 594 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 595 return true; 596 } 597 } 598 599 /* 600 * Waits for the controller state to be resetting, or returns false if it is 601 * not possible to ever transition to that state. 602 */ 603 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 604 { 605 wait_event(ctrl->state_wq, 606 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 607 nvme_state_terminal(ctrl)); 608 return ctrl->state == NVME_CTRL_RESETTING; 609 } 610 EXPORT_SYMBOL_GPL(nvme_wait_reset); 611 612 static void nvme_free_ns_head(struct kref *ref) 613 { 614 struct nvme_ns_head *head = 615 container_of(ref, struct nvme_ns_head, ref); 616 617 nvme_mpath_remove_disk(head); 618 ida_free(&head->subsys->ns_ida, head->instance); 619 cleanup_srcu_struct(&head->srcu); 620 nvme_put_subsystem(head->subsys); 621 kfree(head); 622 } 623 624 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 625 { 626 return kref_get_unless_zero(&head->ref); 627 } 628 629 void nvme_put_ns_head(struct nvme_ns_head *head) 630 { 631 kref_put(&head->ref, nvme_free_ns_head); 632 } 633 634 static void nvme_free_ns(struct kref *kref) 635 { 636 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 637 638 put_disk(ns->disk); 639 nvme_put_ns_head(ns->head); 640 nvme_put_ctrl(ns->ctrl); 641 kfree(ns); 642 } 643 644 static inline bool nvme_get_ns(struct nvme_ns *ns) 645 { 646 return kref_get_unless_zero(&ns->kref); 647 } 648 649 void nvme_put_ns(struct nvme_ns *ns) 650 { 651 kref_put(&ns->kref, nvme_free_ns); 652 } 653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 654 655 static inline void nvme_clear_nvme_request(struct request *req) 656 { 657 nvme_req(req)->status = 0; 658 nvme_req(req)->retries = 0; 659 nvme_req(req)->flags = 0; 660 req->rq_flags |= RQF_DONTPREP; 661 } 662 663 /* initialize a passthrough request */ 664 void nvme_init_request(struct request *req, struct nvme_command *cmd) 665 { 666 if (req->q->queuedata) 667 req->timeout = NVME_IO_TIMEOUT; 668 else /* no queuedata implies admin queue */ 669 req->timeout = NVME_ADMIN_TIMEOUT; 670 671 /* passthru commands should let the driver set the SGL flags */ 672 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 673 674 req->cmd_flags |= REQ_FAILFAST_DRIVER; 675 if (req->mq_hctx->type == HCTX_TYPE_POLL) 676 req->cmd_flags |= REQ_POLLED; 677 nvme_clear_nvme_request(req); 678 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 679 } 680 EXPORT_SYMBOL_GPL(nvme_init_request); 681 682 /* 683 * For something we're not in a state to send to the device the default action 684 * is to busy it and retry it after the controller state is recovered. However, 685 * if the controller is deleting or if anything is marked for failfast or 686 * nvme multipath it is immediately failed. 687 * 688 * Note: commands used to initialize the controller will be marked for failfast. 689 * Note: nvme cli/ioctl commands are marked for failfast. 690 */ 691 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 692 struct request *rq) 693 { 694 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 695 ctrl->state != NVME_CTRL_DELETING && 696 ctrl->state != NVME_CTRL_DEAD && 697 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 698 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 699 return BLK_STS_RESOURCE; 700 return nvme_host_path_error(rq); 701 } 702 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 703 704 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 705 bool queue_live) 706 { 707 struct nvme_request *req = nvme_req(rq); 708 709 /* 710 * currently we have a problem sending passthru commands 711 * on the admin_q if the controller is not LIVE because we can't 712 * make sure that they are going out after the admin connect, 713 * controller enable and/or other commands in the initialization 714 * sequence. until the controller will be LIVE, fail with 715 * BLK_STS_RESOURCE so that they will be rescheduled. 716 */ 717 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 718 return false; 719 720 if (ctrl->ops->flags & NVME_F_FABRICS) { 721 /* 722 * Only allow commands on a live queue, except for the connect 723 * command, which is require to set the queue live in the 724 * appropinquate states. 725 */ 726 switch (ctrl->state) { 727 case NVME_CTRL_CONNECTING: 728 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 729 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 730 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 731 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 732 return true; 733 break; 734 default: 735 break; 736 case NVME_CTRL_DEAD: 737 return false; 738 } 739 } 740 741 return queue_live; 742 } 743 EXPORT_SYMBOL_GPL(__nvme_check_ready); 744 745 static inline void nvme_setup_flush(struct nvme_ns *ns, 746 struct nvme_command *cmnd) 747 { 748 memset(cmnd, 0, sizeof(*cmnd)); 749 cmnd->common.opcode = nvme_cmd_flush; 750 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 751 } 752 753 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 754 struct nvme_command *cmnd) 755 { 756 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 757 struct nvme_dsm_range *range; 758 struct bio *bio; 759 760 /* 761 * Some devices do not consider the DSM 'Number of Ranges' field when 762 * determining how much data to DMA. Always allocate memory for maximum 763 * number of segments to prevent device reading beyond end of buffer. 764 */ 765 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 766 767 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 768 if (!range) { 769 /* 770 * If we fail allocation our range, fallback to the controller 771 * discard page. If that's also busy, it's safe to return 772 * busy, as we know we can make progress once that's freed. 773 */ 774 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 775 return BLK_STS_RESOURCE; 776 777 range = page_address(ns->ctrl->discard_page); 778 } 779 780 __rq_for_each_bio(bio, req) { 781 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 782 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 783 784 if (n < segments) { 785 range[n].cattr = cpu_to_le32(0); 786 range[n].nlb = cpu_to_le32(nlb); 787 range[n].slba = cpu_to_le64(slba); 788 } 789 n++; 790 } 791 792 if (WARN_ON_ONCE(n != segments)) { 793 if (virt_to_page(range) == ns->ctrl->discard_page) 794 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 795 else 796 kfree(range); 797 return BLK_STS_IOERR; 798 } 799 800 memset(cmnd, 0, sizeof(*cmnd)); 801 cmnd->dsm.opcode = nvme_cmd_dsm; 802 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 803 cmnd->dsm.nr = cpu_to_le32(segments - 1); 804 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 805 806 req->special_vec.bv_page = virt_to_page(range); 807 req->special_vec.bv_offset = offset_in_page(range); 808 req->special_vec.bv_len = alloc_size; 809 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 810 811 return BLK_STS_OK; 812 } 813 814 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 815 struct request *req) 816 { 817 u32 upper, lower; 818 u64 ref48; 819 820 /* both rw and write zeroes share the same reftag format */ 821 switch (ns->guard_type) { 822 case NVME_NVM_NS_16B_GUARD: 823 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 824 break; 825 case NVME_NVM_NS_64B_GUARD: 826 ref48 = ext_pi_ref_tag(req); 827 lower = lower_32_bits(ref48); 828 upper = upper_32_bits(ref48); 829 830 cmnd->rw.reftag = cpu_to_le32(lower); 831 cmnd->rw.cdw3 = cpu_to_le32(upper); 832 break; 833 default: 834 break; 835 } 836 } 837 838 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 839 struct request *req, struct nvme_command *cmnd) 840 { 841 memset(cmnd, 0, sizeof(*cmnd)); 842 843 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 844 return nvme_setup_discard(ns, req, cmnd); 845 846 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 847 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 848 cmnd->write_zeroes.slba = 849 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 850 cmnd->write_zeroes.length = 851 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 852 853 if (nvme_ns_has_pi(ns)) { 854 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 855 856 switch (ns->pi_type) { 857 case NVME_NS_DPS_PI_TYPE1: 858 case NVME_NS_DPS_PI_TYPE2: 859 nvme_set_ref_tag(ns, cmnd, req); 860 break; 861 } 862 } 863 864 return BLK_STS_OK; 865 } 866 867 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 868 struct request *req, struct nvme_command *cmnd, 869 enum nvme_opcode op) 870 { 871 u16 control = 0; 872 u32 dsmgmt = 0; 873 874 if (req->cmd_flags & REQ_FUA) 875 control |= NVME_RW_FUA; 876 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 877 control |= NVME_RW_LR; 878 879 if (req->cmd_flags & REQ_RAHEAD) 880 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 881 882 cmnd->rw.opcode = op; 883 cmnd->rw.flags = 0; 884 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 885 cmnd->rw.cdw2 = 0; 886 cmnd->rw.cdw3 = 0; 887 cmnd->rw.metadata = 0; 888 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 889 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 890 cmnd->rw.reftag = 0; 891 cmnd->rw.apptag = 0; 892 cmnd->rw.appmask = 0; 893 894 if (ns->ms) { 895 /* 896 * If formated with metadata, the block layer always provides a 897 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 898 * we enable the PRACT bit for protection information or set the 899 * namespace capacity to zero to prevent any I/O. 900 */ 901 if (!blk_integrity_rq(req)) { 902 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 903 return BLK_STS_NOTSUPP; 904 control |= NVME_RW_PRINFO_PRACT; 905 } 906 907 switch (ns->pi_type) { 908 case NVME_NS_DPS_PI_TYPE3: 909 control |= NVME_RW_PRINFO_PRCHK_GUARD; 910 break; 911 case NVME_NS_DPS_PI_TYPE1: 912 case NVME_NS_DPS_PI_TYPE2: 913 control |= NVME_RW_PRINFO_PRCHK_GUARD | 914 NVME_RW_PRINFO_PRCHK_REF; 915 if (op == nvme_cmd_zone_append) 916 control |= NVME_RW_APPEND_PIREMAP; 917 nvme_set_ref_tag(ns, cmnd, req); 918 break; 919 } 920 } 921 922 cmnd->rw.control = cpu_to_le16(control); 923 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 924 return 0; 925 } 926 927 void nvme_cleanup_cmd(struct request *req) 928 { 929 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 930 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 931 932 if (req->special_vec.bv_page == ctrl->discard_page) 933 clear_bit_unlock(0, &ctrl->discard_page_busy); 934 else 935 kfree(bvec_virt(&req->special_vec)); 936 } 937 } 938 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 939 940 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 941 { 942 struct nvme_command *cmd = nvme_req(req)->cmd; 943 blk_status_t ret = BLK_STS_OK; 944 945 if (!(req->rq_flags & RQF_DONTPREP)) 946 nvme_clear_nvme_request(req); 947 948 switch (req_op(req)) { 949 case REQ_OP_DRV_IN: 950 case REQ_OP_DRV_OUT: 951 /* these are setup prior to execution in nvme_init_request() */ 952 break; 953 case REQ_OP_FLUSH: 954 nvme_setup_flush(ns, cmd); 955 break; 956 case REQ_OP_ZONE_RESET_ALL: 957 case REQ_OP_ZONE_RESET: 958 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 959 break; 960 case REQ_OP_ZONE_OPEN: 961 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 962 break; 963 case REQ_OP_ZONE_CLOSE: 964 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 965 break; 966 case REQ_OP_ZONE_FINISH: 967 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 968 break; 969 case REQ_OP_WRITE_ZEROES: 970 ret = nvme_setup_write_zeroes(ns, req, cmd); 971 break; 972 case REQ_OP_DISCARD: 973 ret = nvme_setup_discard(ns, req, cmd); 974 break; 975 case REQ_OP_READ: 976 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 977 break; 978 case REQ_OP_WRITE: 979 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 980 break; 981 case REQ_OP_ZONE_APPEND: 982 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 983 break; 984 default: 985 WARN_ON_ONCE(1); 986 return BLK_STS_IOERR; 987 } 988 989 cmd->common.command_id = nvme_cid(req); 990 trace_nvme_setup_cmd(req, cmd); 991 return ret; 992 } 993 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 994 995 /* 996 * Return values: 997 * 0: success 998 * >0: nvme controller's cqe status response 999 * <0: kernel error in lieu of controller response 1000 */ 1001 static int nvme_execute_rq(struct request *rq, bool at_head) 1002 { 1003 blk_status_t status; 1004 1005 status = blk_execute_rq(rq, at_head); 1006 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1007 return -EINTR; 1008 if (nvme_req(rq)->status) 1009 return nvme_req(rq)->status; 1010 return blk_status_to_errno(status); 1011 } 1012 1013 /* 1014 * Returns 0 on success. If the result is negative, it's a Linux error code; 1015 * if the result is positive, it's an NVM Express status code 1016 */ 1017 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1018 union nvme_result *result, void *buffer, unsigned bufflen, 1019 int qid, int at_head, blk_mq_req_flags_t flags) 1020 { 1021 struct request *req; 1022 int ret; 1023 1024 if (qid == NVME_QID_ANY) 1025 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1026 else 1027 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1028 qid - 1); 1029 1030 if (IS_ERR(req)) 1031 return PTR_ERR(req); 1032 nvme_init_request(req, cmd); 1033 1034 if (buffer && bufflen) { 1035 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1036 if (ret) 1037 goto out; 1038 } 1039 1040 req->rq_flags |= RQF_QUIET; 1041 ret = nvme_execute_rq(req, at_head); 1042 if (result && ret >= 0) 1043 *result = nvme_req(req)->result; 1044 out: 1045 blk_mq_free_request(req); 1046 return ret; 1047 } 1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1049 1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1051 void *buffer, unsigned bufflen) 1052 { 1053 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1054 NVME_QID_ANY, 0, 0); 1055 } 1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1057 1058 static u32 nvme_known_admin_effects(u8 opcode) 1059 { 1060 switch (opcode) { 1061 case nvme_admin_format_nvm: 1062 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1063 NVME_CMD_EFFECTS_CSE_MASK; 1064 case nvme_admin_sanitize_nvm: 1065 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1066 default: 1067 break; 1068 } 1069 return 0; 1070 } 1071 1072 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1073 { 1074 u32 effects = 0; 1075 1076 if (ns) { 1077 if (ns->head->effects) 1078 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1079 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1080 dev_warn_once(ctrl->device, 1081 "IO command:%02x has unhandled effects:%08x\n", 1082 opcode, effects); 1083 return 0; 1084 } 1085 1086 if (ctrl->effects) 1087 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1088 effects |= nvme_known_admin_effects(opcode); 1089 1090 return effects; 1091 } 1092 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1093 1094 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1095 u8 opcode) 1096 { 1097 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1098 1099 /* 1100 * For simplicity, IO to all namespaces is quiesced even if the command 1101 * effects say only one namespace is affected. 1102 */ 1103 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1104 mutex_lock(&ctrl->scan_lock); 1105 mutex_lock(&ctrl->subsys->lock); 1106 nvme_mpath_start_freeze(ctrl->subsys); 1107 nvme_mpath_wait_freeze(ctrl->subsys); 1108 nvme_start_freeze(ctrl); 1109 nvme_wait_freeze(ctrl); 1110 } 1111 return effects; 1112 } 1113 1114 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1115 struct nvme_command *cmd, int status) 1116 { 1117 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1118 nvme_unfreeze(ctrl); 1119 nvme_mpath_unfreeze(ctrl->subsys); 1120 mutex_unlock(&ctrl->subsys->lock); 1121 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1122 mutex_unlock(&ctrl->scan_lock); 1123 } 1124 if (effects & NVME_CMD_EFFECTS_CCC) 1125 nvme_init_ctrl_finish(ctrl); 1126 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1127 nvme_queue_scan(ctrl); 1128 flush_work(&ctrl->scan_work); 1129 } 1130 1131 switch (cmd->common.opcode) { 1132 case nvme_admin_set_features: 1133 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1134 case NVME_FEAT_KATO: 1135 /* 1136 * Keep alive commands interval on the host should be 1137 * updated when KATO is modified by Set Features 1138 * commands. 1139 */ 1140 if (!status) 1141 nvme_update_keep_alive(ctrl, cmd); 1142 break; 1143 default: 1144 break; 1145 } 1146 break; 1147 default: 1148 break; 1149 } 1150 } 1151 1152 int nvme_execute_passthru_rq(struct request *rq) 1153 { 1154 struct nvme_command *cmd = nvme_req(rq)->cmd; 1155 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1156 struct nvme_ns *ns = rq->q->queuedata; 1157 u32 effects; 1158 int ret; 1159 1160 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1161 ret = nvme_execute_rq(rq, false); 1162 if (effects) /* nothing to be done for zero cmd effects */ 1163 nvme_passthru_end(ctrl, effects, cmd, ret); 1164 1165 return ret; 1166 } 1167 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1168 1169 /* 1170 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1171 * 1172 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1173 * accounting for transport roundtrip times [..]. 1174 */ 1175 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1176 { 1177 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1178 } 1179 1180 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1181 { 1182 struct nvme_ctrl *ctrl = rq->end_io_data; 1183 unsigned long flags; 1184 bool startka = false; 1185 1186 blk_mq_free_request(rq); 1187 1188 if (status) { 1189 dev_err(ctrl->device, 1190 "failed nvme_keep_alive_end_io error=%d\n", 1191 status); 1192 return; 1193 } 1194 1195 ctrl->comp_seen = false; 1196 spin_lock_irqsave(&ctrl->lock, flags); 1197 if (ctrl->state == NVME_CTRL_LIVE || 1198 ctrl->state == NVME_CTRL_CONNECTING) 1199 startka = true; 1200 spin_unlock_irqrestore(&ctrl->lock, flags); 1201 if (startka) 1202 nvme_queue_keep_alive_work(ctrl); 1203 } 1204 1205 static void nvme_keep_alive_work(struct work_struct *work) 1206 { 1207 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1208 struct nvme_ctrl, ka_work); 1209 bool comp_seen = ctrl->comp_seen; 1210 struct request *rq; 1211 1212 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1213 dev_dbg(ctrl->device, 1214 "reschedule traffic based keep-alive timer\n"); 1215 ctrl->comp_seen = false; 1216 nvme_queue_keep_alive_work(ctrl); 1217 return; 1218 } 1219 1220 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1221 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1222 if (IS_ERR(rq)) { 1223 /* allocation failure, reset the controller */ 1224 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1225 nvme_reset_ctrl(ctrl); 1226 return; 1227 } 1228 nvme_init_request(rq, &ctrl->ka_cmd); 1229 1230 rq->timeout = ctrl->kato * HZ; 1231 rq->end_io = nvme_keep_alive_end_io; 1232 rq->end_io_data = ctrl; 1233 rq->rq_flags |= RQF_QUIET; 1234 blk_execute_rq_nowait(rq, false); 1235 } 1236 1237 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1238 { 1239 if (unlikely(ctrl->kato == 0)) 1240 return; 1241 1242 nvme_queue_keep_alive_work(ctrl); 1243 } 1244 1245 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1246 { 1247 if (unlikely(ctrl->kato == 0)) 1248 return; 1249 1250 cancel_delayed_work_sync(&ctrl->ka_work); 1251 } 1252 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1253 1254 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1255 struct nvme_command *cmd) 1256 { 1257 unsigned int new_kato = 1258 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1259 1260 dev_info(ctrl->device, 1261 "keep alive interval updated from %u ms to %u ms\n", 1262 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1263 1264 nvme_stop_keep_alive(ctrl); 1265 ctrl->kato = new_kato; 1266 nvme_start_keep_alive(ctrl); 1267 } 1268 1269 /* 1270 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1271 * flag, thus sending any new CNS opcodes has a big chance of not working. 1272 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1273 * (but not for any later version). 1274 */ 1275 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1276 { 1277 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1278 return ctrl->vs < NVME_VS(1, 2, 0); 1279 return ctrl->vs < NVME_VS(1, 1, 0); 1280 } 1281 1282 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1283 { 1284 struct nvme_command c = { }; 1285 int error; 1286 1287 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1288 c.identify.opcode = nvme_admin_identify; 1289 c.identify.cns = NVME_ID_CNS_CTRL; 1290 1291 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1292 if (!*id) 1293 return -ENOMEM; 1294 1295 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1296 sizeof(struct nvme_id_ctrl)); 1297 if (error) 1298 kfree(*id); 1299 return error; 1300 } 1301 1302 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1303 struct nvme_ns_id_desc *cur, bool *csi_seen) 1304 { 1305 const char *warn_str = "ctrl returned bogus length:"; 1306 void *data = cur; 1307 1308 switch (cur->nidt) { 1309 case NVME_NIDT_EUI64: 1310 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1311 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1312 warn_str, cur->nidl); 1313 return -1; 1314 } 1315 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1316 return NVME_NIDT_EUI64_LEN; 1317 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1318 return NVME_NIDT_EUI64_LEN; 1319 case NVME_NIDT_NGUID: 1320 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1321 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1322 warn_str, cur->nidl); 1323 return -1; 1324 } 1325 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1326 return NVME_NIDT_NGUID_LEN; 1327 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1328 return NVME_NIDT_NGUID_LEN; 1329 case NVME_NIDT_UUID: 1330 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1331 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1332 warn_str, cur->nidl); 1333 return -1; 1334 } 1335 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1336 return NVME_NIDT_UUID_LEN; 1337 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1338 return NVME_NIDT_UUID_LEN; 1339 case NVME_NIDT_CSI: 1340 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1341 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1342 warn_str, cur->nidl); 1343 return -1; 1344 } 1345 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1346 *csi_seen = true; 1347 return NVME_NIDT_CSI_LEN; 1348 default: 1349 /* Skip unknown types */ 1350 return cur->nidl; 1351 } 1352 } 1353 1354 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1355 struct nvme_ns_info *info) 1356 { 1357 struct nvme_command c = { }; 1358 bool csi_seen = false; 1359 int status, pos, len; 1360 void *data; 1361 1362 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1363 return 0; 1364 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1365 return 0; 1366 1367 c.identify.opcode = nvme_admin_identify; 1368 c.identify.nsid = cpu_to_le32(info->nsid); 1369 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1370 1371 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1372 if (!data) 1373 return -ENOMEM; 1374 1375 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1376 NVME_IDENTIFY_DATA_SIZE); 1377 if (status) { 1378 dev_warn(ctrl->device, 1379 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1380 info->nsid, status); 1381 goto free_data; 1382 } 1383 1384 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1385 struct nvme_ns_id_desc *cur = data + pos; 1386 1387 if (cur->nidl == 0) 1388 break; 1389 1390 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1391 if (len < 0) 1392 break; 1393 1394 len += sizeof(*cur); 1395 } 1396 1397 if (nvme_multi_css(ctrl) && !csi_seen) { 1398 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1399 info->nsid); 1400 status = -EINVAL; 1401 } 1402 1403 free_data: 1404 kfree(data); 1405 return status; 1406 } 1407 1408 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1409 struct nvme_id_ns **id) 1410 { 1411 struct nvme_command c = { }; 1412 int error; 1413 1414 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1415 c.identify.opcode = nvme_admin_identify; 1416 c.identify.nsid = cpu_to_le32(nsid); 1417 c.identify.cns = NVME_ID_CNS_NS; 1418 1419 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1420 if (!*id) 1421 return -ENOMEM; 1422 1423 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1424 if (error) { 1425 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1426 goto out_free_id; 1427 } 1428 1429 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1430 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1431 goto out_free_id; 1432 return 0; 1433 1434 out_free_id: 1435 kfree(*id); 1436 return error; 1437 } 1438 1439 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1440 struct nvme_ns_info *info) 1441 { 1442 struct nvme_ns_ids *ids = &info->ids; 1443 struct nvme_id_ns *id; 1444 int ret; 1445 1446 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1447 if (ret) 1448 return ret; 1449 info->anagrpid = id->anagrpid; 1450 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1451 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1452 info->is_ready = true; 1453 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1454 dev_info(ctrl->device, 1455 "Ignoring bogus Namespace Identifiers\n"); 1456 } else { 1457 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1458 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1459 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1460 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1461 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1462 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1463 } 1464 kfree(id); 1465 return 0; 1466 } 1467 1468 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1469 struct nvme_ns_info *info) 1470 { 1471 struct nvme_id_ns_cs_indep *id; 1472 struct nvme_command c = { 1473 .identify.opcode = nvme_admin_identify, 1474 .identify.nsid = cpu_to_le32(info->nsid), 1475 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1476 }; 1477 int ret; 1478 1479 id = kmalloc(sizeof(*id), GFP_KERNEL); 1480 if (!id) 1481 return -ENOMEM; 1482 1483 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1484 if (!ret) { 1485 info->anagrpid = id->anagrpid; 1486 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1487 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1488 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1489 } 1490 kfree(id); 1491 return ret; 1492 } 1493 1494 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1495 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1496 { 1497 union nvme_result res = { 0 }; 1498 struct nvme_command c = { }; 1499 int ret; 1500 1501 c.features.opcode = op; 1502 c.features.fid = cpu_to_le32(fid); 1503 c.features.dword11 = cpu_to_le32(dword11); 1504 1505 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1506 buffer, buflen, NVME_QID_ANY, 0, 0); 1507 if (ret >= 0 && result) 1508 *result = le32_to_cpu(res.u32); 1509 return ret; 1510 } 1511 1512 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1513 unsigned int dword11, void *buffer, size_t buflen, 1514 u32 *result) 1515 { 1516 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1517 buflen, result); 1518 } 1519 EXPORT_SYMBOL_GPL(nvme_set_features); 1520 1521 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1522 unsigned int dword11, void *buffer, size_t buflen, 1523 u32 *result) 1524 { 1525 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1526 buflen, result); 1527 } 1528 EXPORT_SYMBOL_GPL(nvme_get_features); 1529 1530 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1531 { 1532 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1533 u32 result; 1534 int status, nr_io_queues; 1535 1536 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1537 &result); 1538 if (status < 0) 1539 return status; 1540 1541 /* 1542 * Degraded controllers might return an error when setting the queue 1543 * count. We still want to be able to bring them online and offer 1544 * access to the admin queue, as that might be only way to fix them up. 1545 */ 1546 if (status > 0) { 1547 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1548 *count = 0; 1549 } else { 1550 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1551 *count = min(*count, nr_io_queues); 1552 } 1553 1554 return 0; 1555 } 1556 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1557 1558 #define NVME_AEN_SUPPORTED \ 1559 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1560 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1561 1562 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1563 { 1564 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1565 int status; 1566 1567 if (!supported_aens) 1568 return; 1569 1570 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1571 NULL, 0, &result); 1572 if (status) 1573 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1574 supported_aens); 1575 1576 queue_work(nvme_wq, &ctrl->async_event_work); 1577 } 1578 1579 static int nvme_ns_open(struct nvme_ns *ns) 1580 { 1581 1582 /* should never be called due to GENHD_FL_HIDDEN */ 1583 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1584 goto fail; 1585 if (!nvme_get_ns(ns)) 1586 goto fail; 1587 if (!try_module_get(ns->ctrl->ops->module)) 1588 goto fail_put_ns; 1589 1590 return 0; 1591 1592 fail_put_ns: 1593 nvme_put_ns(ns); 1594 fail: 1595 return -ENXIO; 1596 } 1597 1598 static void nvme_ns_release(struct nvme_ns *ns) 1599 { 1600 1601 module_put(ns->ctrl->ops->module); 1602 nvme_put_ns(ns); 1603 } 1604 1605 static int nvme_open(struct block_device *bdev, fmode_t mode) 1606 { 1607 return nvme_ns_open(bdev->bd_disk->private_data); 1608 } 1609 1610 static void nvme_release(struct gendisk *disk, fmode_t mode) 1611 { 1612 nvme_ns_release(disk->private_data); 1613 } 1614 1615 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1616 { 1617 /* some standard values */ 1618 geo->heads = 1 << 6; 1619 geo->sectors = 1 << 5; 1620 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1621 return 0; 1622 } 1623 1624 #ifdef CONFIG_BLK_DEV_INTEGRITY 1625 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1626 u32 max_integrity_segments) 1627 { 1628 struct blk_integrity integrity = { }; 1629 1630 switch (ns->pi_type) { 1631 case NVME_NS_DPS_PI_TYPE3: 1632 switch (ns->guard_type) { 1633 case NVME_NVM_NS_16B_GUARD: 1634 integrity.profile = &t10_pi_type3_crc; 1635 integrity.tag_size = sizeof(u16) + sizeof(u32); 1636 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1637 break; 1638 case NVME_NVM_NS_64B_GUARD: 1639 integrity.profile = &ext_pi_type3_crc64; 1640 integrity.tag_size = sizeof(u16) + 6; 1641 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1642 break; 1643 default: 1644 integrity.profile = NULL; 1645 break; 1646 } 1647 break; 1648 case NVME_NS_DPS_PI_TYPE1: 1649 case NVME_NS_DPS_PI_TYPE2: 1650 switch (ns->guard_type) { 1651 case NVME_NVM_NS_16B_GUARD: 1652 integrity.profile = &t10_pi_type1_crc; 1653 integrity.tag_size = sizeof(u16); 1654 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1655 break; 1656 case NVME_NVM_NS_64B_GUARD: 1657 integrity.profile = &ext_pi_type1_crc64; 1658 integrity.tag_size = sizeof(u16); 1659 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1660 break; 1661 default: 1662 integrity.profile = NULL; 1663 break; 1664 } 1665 break; 1666 default: 1667 integrity.profile = NULL; 1668 break; 1669 } 1670 1671 integrity.tuple_size = ns->ms; 1672 blk_integrity_register(disk, &integrity); 1673 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1674 } 1675 #else 1676 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1677 u32 max_integrity_segments) 1678 { 1679 } 1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1681 1682 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1683 { 1684 struct nvme_ctrl *ctrl = ns->ctrl; 1685 struct request_queue *queue = disk->queue; 1686 u32 size = queue_logical_block_size(queue); 1687 1688 if (ctrl->max_discard_sectors == 0) { 1689 blk_queue_max_discard_sectors(queue, 0); 1690 return; 1691 } 1692 1693 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1694 NVME_DSM_MAX_RANGES); 1695 1696 queue->limits.discard_granularity = size; 1697 1698 /* If discard is already enabled, don't reset queue limits */ 1699 if (queue->limits.max_discard_sectors) 1700 return; 1701 1702 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1703 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1704 1705 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1706 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1707 1708 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1709 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1710 } 1711 1712 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1713 { 1714 return uuid_equal(&a->uuid, &b->uuid) && 1715 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1716 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1717 a->csi == b->csi; 1718 } 1719 1720 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1721 { 1722 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1723 unsigned lbaf = nvme_lbaf_index(id->flbas); 1724 struct nvme_ctrl *ctrl = ns->ctrl; 1725 struct nvme_command c = { }; 1726 struct nvme_id_ns_nvm *nvm; 1727 int ret = 0; 1728 u32 elbaf; 1729 1730 ns->pi_size = 0; 1731 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1732 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1733 ns->pi_size = sizeof(struct t10_pi_tuple); 1734 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1735 goto set_pi; 1736 } 1737 1738 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1739 if (!nvm) 1740 return -ENOMEM; 1741 1742 c.identify.opcode = nvme_admin_identify; 1743 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1744 c.identify.cns = NVME_ID_CNS_CS_NS; 1745 c.identify.csi = NVME_CSI_NVM; 1746 1747 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1748 if (ret) 1749 goto free_data; 1750 1751 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1752 1753 /* no support for storage tag formats right now */ 1754 if (nvme_elbaf_sts(elbaf)) 1755 goto free_data; 1756 1757 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1758 switch (ns->guard_type) { 1759 case NVME_NVM_NS_64B_GUARD: 1760 ns->pi_size = sizeof(struct crc64_pi_tuple); 1761 break; 1762 case NVME_NVM_NS_16B_GUARD: 1763 ns->pi_size = sizeof(struct t10_pi_tuple); 1764 break; 1765 default: 1766 break; 1767 } 1768 1769 free_data: 1770 kfree(nvm); 1771 set_pi: 1772 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1773 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1774 else 1775 ns->pi_type = 0; 1776 1777 return ret; 1778 } 1779 1780 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1781 { 1782 struct nvme_ctrl *ctrl = ns->ctrl; 1783 1784 if (nvme_init_ms(ns, id)) 1785 return; 1786 1787 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1788 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1789 return; 1790 1791 if (ctrl->ops->flags & NVME_F_FABRICS) { 1792 /* 1793 * The NVMe over Fabrics specification only supports metadata as 1794 * part of the extended data LBA. We rely on HCA/HBA support to 1795 * remap the separate metadata buffer from the block layer. 1796 */ 1797 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1798 return; 1799 1800 ns->features |= NVME_NS_EXT_LBAS; 1801 1802 /* 1803 * The current fabrics transport drivers support namespace 1804 * metadata formats only if nvme_ns_has_pi() returns true. 1805 * Suppress support for all other formats so the namespace will 1806 * have a 0 capacity and not be usable through the block stack. 1807 * 1808 * Note, this check will need to be modified if any drivers 1809 * gain the ability to use other metadata formats. 1810 */ 1811 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1812 ns->features |= NVME_NS_METADATA_SUPPORTED; 1813 } else { 1814 /* 1815 * For PCIe controllers, we can't easily remap the separate 1816 * metadata buffer from the block layer and thus require a 1817 * separate metadata buffer for block layer metadata/PI support. 1818 * We allow extended LBAs for the passthrough interface, though. 1819 */ 1820 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1821 ns->features |= NVME_NS_EXT_LBAS; 1822 else 1823 ns->features |= NVME_NS_METADATA_SUPPORTED; 1824 } 1825 } 1826 1827 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1828 struct request_queue *q) 1829 { 1830 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1831 1832 if (ctrl->max_hw_sectors) { 1833 u32 max_segments = 1834 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1835 1836 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1837 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1838 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1839 } 1840 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1841 blk_queue_dma_alignment(q, 3); 1842 blk_queue_write_cache(q, vwc, vwc); 1843 } 1844 1845 static void nvme_update_disk_info(struct gendisk *disk, 1846 struct nvme_ns *ns, struct nvme_id_ns *id) 1847 { 1848 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1849 unsigned short bs = 1 << ns->lba_shift; 1850 u32 atomic_bs, phys_bs, io_opt = 0; 1851 1852 /* 1853 * The block layer can't support LBA sizes larger than the page size 1854 * yet, so catch this early and don't allow block I/O. 1855 */ 1856 if (ns->lba_shift > PAGE_SHIFT) { 1857 capacity = 0; 1858 bs = (1 << 9); 1859 } 1860 1861 blk_integrity_unregister(disk); 1862 1863 atomic_bs = phys_bs = bs; 1864 if (id->nabo == 0) { 1865 /* 1866 * Bit 1 indicates whether NAWUPF is defined for this namespace 1867 * and whether it should be used instead of AWUPF. If NAWUPF == 1868 * 0 then AWUPF must be used instead. 1869 */ 1870 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1871 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1872 else 1873 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1874 } 1875 1876 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1877 /* NPWG = Namespace Preferred Write Granularity */ 1878 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1879 /* NOWS = Namespace Optimal Write Size */ 1880 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1881 } 1882 1883 blk_queue_logical_block_size(disk->queue, bs); 1884 /* 1885 * Linux filesystems assume writing a single physical block is 1886 * an atomic operation. Hence limit the physical block size to the 1887 * value of the Atomic Write Unit Power Fail parameter. 1888 */ 1889 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1890 blk_queue_io_min(disk->queue, phys_bs); 1891 blk_queue_io_opt(disk->queue, io_opt); 1892 1893 /* 1894 * Register a metadata profile for PI, or the plain non-integrity NVMe 1895 * metadata masquerading as Type 0 if supported, otherwise reject block 1896 * I/O to namespaces with metadata except when the namespace supports 1897 * PI, as it can strip/insert in that case. 1898 */ 1899 if (ns->ms) { 1900 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1901 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1902 nvme_init_integrity(disk, ns, 1903 ns->ctrl->max_integrity_segments); 1904 else if (!nvme_ns_has_pi(ns)) 1905 capacity = 0; 1906 } 1907 1908 set_capacity_and_notify(disk, capacity); 1909 1910 nvme_config_discard(disk, ns); 1911 blk_queue_max_write_zeroes_sectors(disk->queue, 1912 ns->ctrl->max_zeroes_sectors); 1913 } 1914 1915 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1916 { 1917 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1918 } 1919 1920 static inline bool nvme_first_scan(struct gendisk *disk) 1921 { 1922 /* nvme_alloc_ns() scans the disk prior to adding it */ 1923 return !disk_live(disk); 1924 } 1925 1926 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1927 { 1928 struct nvme_ctrl *ctrl = ns->ctrl; 1929 u32 iob; 1930 1931 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1932 is_power_of_2(ctrl->max_hw_sectors)) 1933 iob = ctrl->max_hw_sectors; 1934 else 1935 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1936 1937 if (!iob) 1938 return; 1939 1940 if (!is_power_of_2(iob)) { 1941 if (nvme_first_scan(ns->disk)) 1942 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1943 ns->disk->disk_name, iob); 1944 return; 1945 } 1946 1947 if (blk_queue_is_zoned(ns->disk->queue)) { 1948 if (nvme_first_scan(ns->disk)) 1949 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1950 ns->disk->disk_name); 1951 return; 1952 } 1953 1954 blk_queue_chunk_sectors(ns->queue, iob); 1955 } 1956 1957 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 1958 struct nvme_ns_info *info) 1959 { 1960 blk_mq_freeze_queue(ns->disk->queue); 1961 nvme_set_queue_limits(ns->ctrl, ns->queue); 1962 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 1963 blk_mq_unfreeze_queue(ns->disk->queue); 1964 1965 if (nvme_ns_head_multipath(ns->head)) { 1966 blk_mq_freeze_queue(ns->head->disk->queue); 1967 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 1968 nvme_mpath_revalidate_paths(ns); 1969 blk_stack_limits(&ns->head->disk->queue->limits, 1970 &ns->queue->limits, 0); 1971 ns->head->disk->flags |= GENHD_FL_HIDDEN; 1972 blk_mq_unfreeze_queue(ns->head->disk->queue); 1973 } 1974 1975 /* Hide the block-interface for these devices */ 1976 ns->disk->flags |= GENHD_FL_HIDDEN; 1977 set_bit(NVME_NS_READY, &ns->flags); 1978 1979 return 0; 1980 } 1981 1982 static int nvme_update_ns_info_block(struct nvme_ns *ns, 1983 struct nvme_ns_info *info) 1984 { 1985 struct nvme_id_ns *id; 1986 unsigned lbaf; 1987 int ret; 1988 1989 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 1990 if (ret) 1991 return ret; 1992 1993 blk_mq_freeze_queue(ns->disk->queue); 1994 lbaf = nvme_lbaf_index(id->flbas); 1995 ns->lba_shift = id->lbaf[lbaf].ds; 1996 nvme_set_queue_limits(ns->ctrl, ns->queue); 1997 1998 nvme_configure_metadata(ns, id); 1999 nvme_set_chunk_sectors(ns, id); 2000 nvme_update_disk_info(ns->disk, ns, id); 2001 2002 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2003 ret = nvme_update_zone_info(ns, lbaf); 2004 if (ret) { 2005 blk_mq_unfreeze_queue(ns->disk->queue); 2006 goto out; 2007 } 2008 } 2009 2010 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2011 set_bit(NVME_NS_READY, &ns->flags); 2012 blk_mq_unfreeze_queue(ns->disk->queue); 2013 2014 if (blk_queue_is_zoned(ns->queue)) { 2015 ret = nvme_revalidate_zones(ns); 2016 if (ret && !nvme_first_scan(ns->disk)) 2017 goto out; 2018 } 2019 2020 if (nvme_ns_head_multipath(ns->head)) { 2021 blk_mq_freeze_queue(ns->head->disk->queue); 2022 nvme_update_disk_info(ns->head->disk, ns, id); 2023 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2024 nvme_mpath_revalidate_paths(ns); 2025 blk_stack_limits(&ns->head->disk->queue->limits, 2026 &ns->queue->limits, 0); 2027 disk_update_readahead(ns->head->disk); 2028 blk_mq_unfreeze_queue(ns->head->disk->queue); 2029 } 2030 2031 ret = 0; 2032 out: 2033 /* 2034 * If probing fails due an unsupported feature, hide the block device, 2035 * but still allow other access. 2036 */ 2037 if (ret == -ENODEV) { 2038 ns->disk->flags |= GENHD_FL_HIDDEN; 2039 set_bit(NVME_NS_READY, &ns->flags); 2040 ret = 0; 2041 } 2042 kfree(id); 2043 return ret; 2044 } 2045 2046 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2047 { 2048 switch (info->ids.csi) { 2049 case NVME_CSI_ZNS: 2050 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2051 dev_info(ns->ctrl->device, 2052 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2053 info->nsid); 2054 return nvme_update_ns_info_generic(ns, info); 2055 } 2056 return nvme_update_ns_info_block(ns, info); 2057 case NVME_CSI_NVM: 2058 return nvme_update_ns_info_block(ns, info); 2059 default: 2060 dev_info(ns->ctrl->device, 2061 "block device for nsid %u not supported (csi %u)\n", 2062 info->nsid, info->ids.csi); 2063 return nvme_update_ns_info_generic(ns, info); 2064 } 2065 } 2066 2067 static char nvme_pr_type(enum pr_type type) 2068 { 2069 switch (type) { 2070 case PR_WRITE_EXCLUSIVE: 2071 return 1; 2072 case PR_EXCLUSIVE_ACCESS: 2073 return 2; 2074 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2075 return 3; 2076 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2077 return 4; 2078 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2079 return 5; 2080 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2081 return 6; 2082 default: 2083 return 0; 2084 } 2085 } 2086 2087 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 2088 struct nvme_command *c, u8 data[16]) 2089 { 2090 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2091 int srcu_idx = srcu_read_lock(&head->srcu); 2092 struct nvme_ns *ns = nvme_find_path(head); 2093 int ret = -EWOULDBLOCK; 2094 2095 if (ns) { 2096 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2097 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 2098 } 2099 srcu_read_unlock(&head->srcu, srcu_idx); 2100 return ret; 2101 } 2102 2103 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2104 u8 data[16]) 2105 { 2106 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2107 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2108 } 2109 2110 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2111 u64 key, u64 sa_key, u8 op) 2112 { 2113 struct nvme_command c = { }; 2114 u8 data[16] = { 0, }; 2115 2116 put_unaligned_le64(key, &data[0]); 2117 put_unaligned_le64(sa_key, &data[8]); 2118 2119 c.common.opcode = op; 2120 c.common.cdw10 = cpu_to_le32(cdw10); 2121 2122 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2123 bdev->bd_disk->fops == &nvme_ns_head_ops) 2124 return nvme_send_ns_head_pr_command(bdev, &c, data); 2125 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2126 } 2127 2128 static int nvme_pr_register(struct block_device *bdev, u64 old, 2129 u64 new, unsigned flags) 2130 { 2131 u32 cdw10; 2132 2133 if (flags & ~PR_FL_IGNORE_KEY) 2134 return -EOPNOTSUPP; 2135 2136 cdw10 = old ? 2 : 0; 2137 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2138 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2139 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2140 } 2141 2142 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2143 enum pr_type type, unsigned flags) 2144 { 2145 u32 cdw10; 2146 2147 if (flags & ~PR_FL_IGNORE_KEY) 2148 return -EOPNOTSUPP; 2149 2150 cdw10 = nvme_pr_type(type) << 8; 2151 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2152 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2153 } 2154 2155 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2156 enum pr_type type, bool abort) 2157 { 2158 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2159 2160 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2161 } 2162 2163 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2164 { 2165 u32 cdw10 = 1 | (key ? 0 : 1 << 3); 2166 2167 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2168 } 2169 2170 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2171 { 2172 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3); 2173 2174 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2175 } 2176 2177 const struct pr_ops nvme_pr_ops = { 2178 .pr_register = nvme_pr_register, 2179 .pr_reserve = nvme_pr_reserve, 2180 .pr_release = nvme_pr_release, 2181 .pr_preempt = nvme_pr_preempt, 2182 .pr_clear = nvme_pr_clear, 2183 }; 2184 2185 #ifdef CONFIG_BLK_SED_OPAL 2186 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2187 bool send) 2188 { 2189 struct nvme_ctrl *ctrl = data; 2190 struct nvme_command cmd = { }; 2191 2192 if (send) 2193 cmd.common.opcode = nvme_admin_security_send; 2194 else 2195 cmd.common.opcode = nvme_admin_security_recv; 2196 cmd.common.nsid = 0; 2197 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2198 cmd.common.cdw11 = cpu_to_le32(len); 2199 2200 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2201 NVME_QID_ANY, 1, 0); 2202 } 2203 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2204 #endif /* CONFIG_BLK_SED_OPAL */ 2205 2206 #ifdef CONFIG_BLK_DEV_ZONED 2207 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2208 unsigned int nr_zones, report_zones_cb cb, void *data) 2209 { 2210 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2211 data); 2212 } 2213 #else 2214 #define nvme_report_zones NULL 2215 #endif /* CONFIG_BLK_DEV_ZONED */ 2216 2217 static const struct block_device_operations nvme_bdev_ops = { 2218 .owner = THIS_MODULE, 2219 .ioctl = nvme_ioctl, 2220 .compat_ioctl = blkdev_compat_ptr_ioctl, 2221 .open = nvme_open, 2222 .release = nvme_release, 2223 .getgeo = nvme_getgeo, 2224 .report_zones = nvme_report_zones, 2225 .pr_ops = &nvme_pr_ops, 2226 }; 2227 2228 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled) 2229 { 2230 unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies; 2231 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2232 int ret; 2233 2234 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2235 if (csts == ~0) 2236 return -ENODEV; 2237 if ((csts & NVME_CSTS_RDY) == bit) 2238 break; 2239 2240 usleep_range(1000, 2000); 2241 if (fatal_signal_pending(current)) 2242 return -EINTR; 2243 if (time_after(jiffies, timeout_jiffies)) { 2244 dev_err(ctrl->device, 2245 "Device not ready; aborting %s, CSTS=0x%x\n", 2246 enabled ? "initialisation" : "reset", csts); 2247 return -ENODEV; 2248 } 2249 } 2250 2251 return ret; 2252 } 2253 2254 /* 2255 * If the device has been passed off to us in an enabled state, just clear 2256 * the enabled bit. The spec says we should set the 'shutdown notification 2257 * bits', but doing so may cause the device to complete commands to the 2258 * admin queue ... and we don't know what memory that might be pointing at! 2259 */ 2260 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2261 { 2262 int ret; 2263 2264 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2265 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2266 2267 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2268 if (ret) 2269 return ret; 2270 2271 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2272 msleep(NVME_QUIRK_DELAY_AMOUNT); 2273 2274 return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false); 2275 } 2276 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2277 2278 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2279 { 2280 unsigned dev_page_min; 2281 u32 timeout; 2282 int ret; 2283 2284 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2285 if (ret) { 2286 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2287 return ret; 2288 } 2289 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2290 2291 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2292 dev_err(ctrl->device, 2293 "Minimum device page size %u too large for host (%u)\n", 2294 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2295 return -ENODEV; 2296 } 2297 2298 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2299 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2300 else 2301 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2302 2303 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2304 u32 crto; 2305 2306 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2307 if (ret) { 2308 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2309 ret); 2310 return ret; 2311 } 2312 2313 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) { 2314 ctrl->ctrl_config |= NVME_CC_CRIME; 2315 timeout = NVME_CRTO_CRIMT(crto); 2316 } else { 2317 timeout = NVME_CRTO_CRWMT(crto); 2318 } 2319 } else { 2320 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2321 } 2322 2323 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2324 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2325 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2326 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2327 if (ret) 2328 return ret; 2329 2330 /* Flush write to device (required if transport is PCI) */ 2331 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2332 if (ret) 2333 return ret; 2334 2335 ctrl->ctrl_config |= NVME_CC_ENABLE; 2336 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2337 if (ret) 2338 return ret; 2339 return nvme_wait_ready(ctrl, timeout, true); 2340 } 2341 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2342 2343 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2344 { 2345 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2346 u32 csts; 2347 int ret; 2348 2349 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2350 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2351 2352 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2353 if (ret) 2354 return ret; 2355 2356 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2357 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2358 break; 2359 2360 msleep(100); 2361 if (fatal_signal_pending(current)) 2362 return -EINTR; 2363 if (time_after(jiffies, timeout)) { 2364 dev_err(ctrl->device, 2365 "Device shutdown incomplete; abort shutdown\n"); 2366 return -ENODEV; 2367 } 2368 } 2369 2370 return ret; 2371 } 2372 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2373 2374 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2375 { 2376 __le64 ts; 2377 int ret; 2378 2379 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2380 return 0; 2381 2382 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2383 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2384 NULL); 2385 if (ret) 2386 dev_warn_once(ctrl->device, 2387 "could not set timestamp (%d)\n", ret); 2388 return ret; 2389 } 2390 2391 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2392 { 2393 struct nvme_feat_host_behavior *host; 2394 u8 acre = 0, lbafee = 0; 2395 int ret; 2396 2397 /* Don't bother enabling the feature if retry delay is not reported */ 2398 if (ctrl->crdt[0]) 2399 acre = NVME_ENABLE_ACRE; 2400 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2401 lbafee = NVME_ENABLE_LBAFEE; 2402 2403 if (!acre && !lbafee) 2404 return 0; 2405 2406 host = kzalloc(sizeof(*host), GFP_KERNEL); 2407 if (!host) 2408 return 0; 2409 2410 host->acre = acre; 2411 host->lbafee = lbafee; 2412 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2413 host, sizeof(*host), NULL); 2414 kfree(host); 2415 return ret; 2416 } 2417 2418 /* 2419 * The function checks whether the given total (exlat + enlat) latency of 2420 * a power state allows the latter to be used as an APST transition target. 2421 * It does so by comparing the latency to the primary and secondary latency 2422 * tolerances defined by module params. If there's a match, the corresponding 2423 * timeout value is returned and the matching tolerance index (1 or 2) is 2424 * reported. 2425 */ 2426 static bool nvme_apst_get_transition_time(u64 total_latency, 2427 u64 *transition_time, unsigned *last_index) 2428 { 2429 if (total_latency <= apst_primary_latency_tol_us) { 2430 if (*last_index == 1) 2431 return false; 2432 *last_index = 1; 2433 *transition_time = apst_primary_timeout_ms; 2434 return true; 2435 } 2436 if (apst_secondary_timeout_ms && 2437 total_latency <= apst_secondary_latency_tol_us) { 2438 if (*last_index <= 2) 2439 return false; 2440 *last_index = 2; 2441 *transition_time = apst_secondary_timeout_ms; 2442 return true; 2443 } 2444 return false; 2445 } 2446 2447 /* 2448 * APST (Autonomous Power State Transition) lets us program a table of power 2449 * state transitions that the controller will perform automatically. 2450 * 2451 * Depending on module params, one of the two supported techniques will be used: 2452 * 2453 * - If the parameters provide explicit timeouts and tolerances, they will be 2454 * used to build a table with up to 2 non-operational states to transition to. 2455 * The default parameter values were selected based on the values used by 2456 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2457 * regeneration of the APST table in the event of switching between external 2458 * and battery power, the timeouts and tolerances reflect a compromise 2459 * between values used by Microsoft for AC and battery scenarios. 2460 * - If not, we'll configure the table with a simple heuristic: we are willing 2461 * to spend at most 2% of the time transitioning between power states. 2462 * Therefore, when running in any given state, we will enter the next 2463 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2464 * microseconds, as long as that state's exit latency is under the requested 2465 * maximum latency. 2466 * 2467 * We will not autonomously enter any non-operational state for which the total 2468 * latency exceeds ps_max_latency_us. 2469 * 2470 * Users can set ps_max_latency_us to zero to turn off APST. 2471 */ 2472 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2473 { 2474 struct nvme_feat_auto_pst *table; 2475 unsigned apste = 0; 2476 u64 max_lat_us = 0; 2477 __le64 target = 0; 2478 int max_ps = -1; 2479 int state; 2480 int ret; 2481 unsigned last_lt_index = UINT_MAX; 2482 2483 /* 2484 * If APST isn't supported or if we haven't been initialized yet, 2485 * then don't do anything. 2486 */ 2487 if (!ctrl->apsta) 2488 return 0; 2489 2490 if (ctrl->npss > 31) { 2491 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2492 return 0; 2493 } 2494 2495 table = kzalloc(sizeof(*table), GFP_KERNEL); 2496 if (!table) 2497 return 0; 2498 2499 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2500 /* Turn off APST. */ 2501 dev_dbg(ctrl->device, "APST disabled\n"); 2502 goto done; 2503 } 2504 2505 /* 2506 * Walk through all states from lowest- to highest-power. 2507 * According to the spec, lower-numbered states use more power. NPSS, 2508 * despite the name, is the index of the lowest-power state, not the 2509 * number of states. 2510 */ 2511 for (state = (int)ctrl->npss; state >= 0; state--) { 2512 u64 total_latency_us, exit_latency_us, transition_ms; 2513 2514 if (target) 2515 table->entries[state] = target; 2516 2517 /* 2518 * Don't allow transitions to the deepest state if it's quirked 2519 * off. 2520 */ 2521 if (state == ctrl->npss && 2522 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2523 continue; 2524 2525 /* 2526 * Is this state a useful non-operational state for higher-power 2527 * states to autonomously transition to? 2528 */ 2529 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2530 continue; 2531 2532 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2533 if (exit_latency_us > ctrl->ps_max_latency_us) 2534 continue; 2535 2536 total_latency_us = exit_latency_us + 2537 le32_to_cpu(ctrl->psd[state].entry_lat); 2538 2539 /* 2540 * This state is good. It can be used as the APST idle target 2541 * for higher power states. 2542 */ 2543 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2544 if (!nvme_apst_get_transition_time(total_latency_us, 2545 &transition_ms, &last_lt_index)) 2546 continue; 2547 } else { 2548 transition_ms = total_latency_us + 19; 2549 do_div(transition_ms, 20); 2550 if (transition_ms > (1 << 24) - 1) 2551 transition_ms = (1 << 24) - 1; 2552 } 2553 2554 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2555 if (max_ps == -1) 2556 max_ps = state; 2557 if (total_latency_us > max_lat_us) 2558 max_lat_us = total_latency_us; 2559 } 2560 2561 if (max_ps == -1) 2562 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2563 else 2564 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2565 max_ps, max_lat_us, (int)sizeof(*table), table); 2566 apste = 1; 2567 2568 done: 2569 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2570 table, sizeof(*table), NULL); 2571 if (ret) 2572 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2573 kfree(table); 2574 return ret; 2575 } 2576 2577 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2578 { 2579 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2580 u64 latency; 2581 2582 switch (val) { 2583 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2584 case PM_QOS_LATENCY_ANY: 2585 latency = U64_MAX; 2586 break; 2587 2588 default: 2589 latency = val; 2590 } 2591 2592 if (ctrl->ps_max_latency_us != latency) { 2593 ctrl->ps_max_latency_us = latency; 2594 if (ctrl->state == NVME_CTRL_LIVE) 2595 nvme_configure_apst(ctrl); 2596 } 2597 } 2598 2599 struct nvme_core_quirk_entry { 2600 /* 2601 * NVMe model and firmware strings are padded with spaces. For 2602 * simplicity, strings in the quirk table are padded with NULLs 2603 * instead. 2604 */ 2605 u16 vid; 2606 const char *mn; 2607 const char *fr; 2608 unsigned long quirks; 2609 }; 2610 2611 static const struct nvme_core_quirk_entry core_quirks[] = { 2612 { 2613 /* 2614 * This Toshiba device seems to die using any APST states. See: 2615 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2616 */ 2617 .vid = 0x1179, 2618 .mn = "THNSF5256GPUK TOSHIBA", 2619 .quirks = NVME_QUIRK_NO_APST, 2620 }, 2621 { 2622 /* 2623 * This LiteON CL1-3D*-Q11 firmware version has a race 2624 * condition associated with actions related to suspend to idle 2625 * LiteON has resolved the problem in future firmware 2626 */ 2627 .vid = 0x14a4, 2628 .fr = "22301111", 2629 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2630 }, 2631 { 2632 /* 2633 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2634 * aborts I/O during any load, but more easily reproducible 2635 * with discards (fstrim). 2636 * 2637 * The device is left in a state where it is also not possible 2638 * to use "nvme set-feature" to disable APST, but booting with 2639 * nvme_core.default_ps_max_latency=0 works. 2640 */ 2641 .vid = 0x1e0f, 2642 .mn = "KCD6XVUL6T40", 2643 .quirks = NVME_QUIRK_NO_APST, 2644 }, 2645 { 2646 /* 2647 * The external Samsung X5 SSD fails initialization without a 2648 * delay before checking if it is ready and has a whole set of 2649 * other problems. To make this even more interesting, it 2650 * shares the PCI ID with internal Samsung 970 Evo Plus that 2651 * does not need or want these quirks. 2652 */ 2653 .vid = 0x144d, 2654 .mn = "Samsung Portable SSD X5", 2655 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2656 NVME_QUIRK_NO_DEEPEST_PS | 2657 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2658 } 2659 }; 2660 2661 /* match is null-terminated but idstr is space-padded. */ 2662 static bool string_matches(const char *idstr, const char *match, size_t len) 2663 { 2664 size_t matchlen; 2665 2666 if (!match) 2667 return true; 2668 2669 matchlen = strlen(match); 2670 WARN_ON_ONCE(matchlen > len); 2671 2672 if (memcmp(idstr, match, matchlen)) 2673 return false; 2674 2675 for (; matchlen < len; matchlen++) 2676 if (idstr[matchlen] != ' ') 2677 return false; 2678 2679 return true; 2680 } 2681 2682 static bool quirk_matches(const struct nvme_id_ctrl *id, 2683 const struct nvme_core_quirk_entry *q) 2684 { 2685 return q->vid == le16_to_cpu(id->vid) && 2686 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2687 string_matches(id->fr, q->fr, sizeof(id->fr)); 2688 } 2689 2690 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2691 struct nvme_id_ctrl *id) 2692 { 2693 size_t nqnlen; 2694 int off; 2695 2696 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2697 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2698 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2699 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2700 return; 2701 } 2702 2703 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2704 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2705 } 2706 2707 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2708 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2709 "nqn.2014.08.org.nvmexpress:%04x%04x", 2710 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2711 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2712 off += sizeof(id->sn); 2713 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2714 off += sizeof(id->mn); 2715 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2716 } 2717 2718 static void nvme_release_subsystem(struct device *dev) 2719 { 2720 struct nvme_subsystem *subsys = 2721 container_of(dev, struct nvme_subsystem, dev); 2722 2723 if (subsys->instance >= 0) 2724 ida_free(&nvme_instance_ida, subsys->instance); 2725 kfree(subsys); 2726 } 2727 2728 static void nvme_destroy_subsystem(struct kref *ref) 2729 { 2730 struct nvme_subsystem *subsys = 2731 container_of(ref, struct nvme_subsystem, ref); 2732 2733 mutex_lock(&nvme_subsystems_lock); 2734 list_del(&subsys->entry); 2735 mutex_unlock(&nvme_subsystems_lock); 2736 2737 ida_destroy(&subsys->ns_ida); 2738 device_del(&subsys->dev); 2739 put_device(&subsys->dev); 2740 } 2741 2742 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2743 { 2744 kref_put(&subsys->ref, nvme_destroy_subsystem); 2745 } 2746 2747 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2748 { 2749 struct nvme_subsystem *subsys; 2750 2751 lockdep_assert_held(&nvme_subsystems_lock); 2752 2753 /* 2754 * Fail matches for discovery subsystems. This results 2755 * in each discovery controller bound to a unique subsystem. 2756 * This avoids issues with validating controller values 2757 * that can only be true when there is a single unique subsystem. 2758 * There may be multiple and completely independent entities 2759 * that provide discovery controllers. 2760 */ 2761 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2762 return NULL; 2763 2764 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2765 if (strcmp(subsys->subnqn, subsysnqn)) 2766 continue; 2767 if (!kref_get_unless_zero(&subsys->ref)) 2768 continue; 2769 return subsys; 2770 } 2771 2772 return NULL; 2773 } 2774 2775 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2776 struct device_attribute subsys_attr_##_name = \ 2777 __ATTR(_name, _mode, _show, NULL) 2778 2779 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2780 struct device_attribute *attr, 2781 char *buf) 2782 { 2783 struct nvme_subsystem *subsys = 2784 container_of(dev, struct nvme_subsystem, dev); 2785 2786 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2787 } 2788 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2789 2790 static ssize_t nvme_subsys_show_type(struct device *dev, 2791 struct device_attribute *attr, 2792 char *buf) 2793 { 2794 struct nvme_subsystem *subsys = 2795 container_of(dev, struct nvme_subsystem, dev); 2796 2797 switch (subsys->subtype) { 2798 case NVME_NQN_DISC: 2799 return sysfs_emit(buf, "discovery\n"); 2800 case NVME_NQN_NVME: 2801 return sysfs_emit(buf, "nvm\n"); 2802 default: 2803 return sysfs_emit(buf, "reserved\n"); 2804 } 2805 } 2806 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2807 2808 #define nvme_subsys_show_str_function(field) \ 2809 static ssize_t subsys_##field##_show(struct device *dev, \ 2810 struct device_attribute *attr, char *buf) \ 2811 { \ 2812 struct nvme_subsystem *subsys = \ 2813 container_of(dev, struct nvme_subsystem, dev); \ 2814 return sysfs_emit(buf, "%.*s\n", \ 2815 (int)sizeof(subsys->field), subsys->field); \ 2816 } \ 2817 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2818 2819 nvme_subsys_show_str_function(model); 2820 nvme_subsys_show_str_function(serial); 2821 nvme_subsys_show_str_function(firmware_rev); 2822 2823 static struct attribute *nvme_subsys_attrs[] = { 2824 &subsys_attr_model.attr, 2825 &subsys_attr_serial.attr, 2826 &subsys_attr_firmware_rev.attr, 2827 &subsys_attr_subsysnqn.attr, 2828 &subsys_attr_subsystype.attr, 2829 #ifdef CONFIG_NVME_MULTIPATH 2830 &subsys_attr_iopolicy.attr, 2831 #endif 2832 NULL, 2833 }; 2834 2835 static const struct attribute_group nvme_subsys_attrs_group = { 2836 .attrs = nvme_subsys_attrs, 2837 }; 2838 2839 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2840 &nvme_subsys_attrs_group, 2841 NULL, 2842 }; 2843 2844 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2845 { 2846 return ctrl->opts && ctrl->opts->discovery_nqn; 2847 } 2848 2849 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2850 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2851 { 2852 struct nvme_ctrl *tmp; 2853 2854 lockdep_assert_held(&nvme_subsystems_lock); 2855 2856 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2857 if (nvme_state_terminal(tmp)) 2858 continue; 2859 2860 if (tmp->cntlid == ctrl->cntlid) { 2861 dev_err(ctrl->device, 2862 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2863 ctrl->cntlid, dev_name(tmp->device), 2864 subsys->subnqn); 2865 return false; 2866 } 2867 2868 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2869 nvme_discovery_ctrl(ctrl)) 2870 continue; 2871 2872 dev_err(ctrl->device, 2873 "Subsystem does not support multiple controllers\n"); 2874 return false; 2875 } 2876 2877 return true; 2878 } 2879 2880 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2881 { 2882 struct nvme_subsystem *subsys, *found; 2883 int ret; 2884 2885 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2886 if (!subsys) 2887 return -ENOMEM; 2888 2889 subsys->instance = -1; 2890 mutex_init(&subsys->lock); 2891 kref_init(&subsys->ref); 2892 INIT_LIST_HEAD(&subsys->ctrls); 2893 INIT_LIST_HEAD(&subsys->nsheads); 2894 nvme_init_subnqn(subsys, ctrl, id); 2895 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2896 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2897 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2898 subsys->vendor_id = le16_to_cpu(id->vid); 2899 subsys->cmic = id->cmic; 2900 2901 /* Versions prior to 1.4 don't necessarily report a valid type */ 2902 if (id->cntrltype == NVME_CTRL_DISC || 2903 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2904 subsys->subtype = NVME_NQN_DISC; 2905 else 2906 subsys->subtype = NVME_NQN_NVME; 2907 2908 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2909 dev_err(ctrl->device, 2910 "Subsystem %s is not a discovery controller", 2911 subsys->subnqn); 2912 kfree(subsys); 2913 return -EINVAL; 2914 } 2915 subsys->awupf = le16_to_cpu(id->awupf); 2916 nvme_mpath_default_iopolicy(subsys); 2917 2918 subsys->dev.class = nvme_subsys_class; 2919 subsys->dev.release = nvme_release_subsystem; 2920 subsys->dev.groups = nvme_subsys_attrs_groups; 2921 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2922 device_initialize(&subsys->dev); 2923 2924 mutex_lock(&nvme_subsystems_lock); 2925 found = __nvme_find_get_subsystem(subsys->subnqn); 2926 if (found) { 2927 put_device(&subsys->dev); 2928 subsys = found; 2929 2930 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2931 ret = -EINVAL; 2932 goto out_put_subsystem; 2933 } 2934 } else { 2935 ret = device_add(&subsys->dev); 2936 if (ret) { 2937 dev_err(ctrl->device, 2938 "failed to register subsystem device.\n"); 2939 put_device(&subsys->dev); 2940 goto out_unlock; 2941 } 2942 ida_init(&subsys->ns_ida); 2943 list_add_tail(&subsys->entry, &nvme_subsystems); 2944 } 2945 2946 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2947 dev_name(ctrl->device)); 2948 if (ret) { 2949 dev_err(ctrl->device, 2950 "failed to create sysfs link from subsystem.\n"); 2951 goto out_put_subsystem; 2952 } 2953 2954 if (!found) 2955 subsys->instance = ctrl->instance; 2956 ctrl->subsys = subsys; 2957 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2958 mutex_unlock(&nvme_subsystems_lock); 2959 return 0; 2960 2961 out_put_subsystem: 2962 nvme_put_subsystem(subsys); 2963 out_unlock: 2964 mutex_unlock(&nvme_subsystems_lock); 2965 return ret; 2966 } 2967 2968 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2969 void *log, size_t size, u64 offset) 2970 { 2971 struct nvme_command c = { }; 2972 u32 dwlen = nvme_bytes_to_numd(size); 2973 2974 c.get_log_page.opcode = nvme_admin_get_log_page; 2975 c.get_log_page.nsid = cpu_to_le32(nsid); 2976 c.get_log_page.lid = log_page; 2977 c.get_log_page.lsp = lsp; 2978 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2979 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2980 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2981 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2982 c.get_log_page.csi = csi; 2983 2984 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2985 } 2986 2987 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2988 struct nvme_effects_log **log) 2989 { 2990 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2991 int ret; 2992 2993 if (cel) 2994 goto out; 2995 2996 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2997 if (!cel) 2998 return -ENOMEM; 2999 3000 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3001 cel, sizeof(*cel), 0); 3002 if (ret) { 3003 kfree(cel); 3004 return ret; 3005 } 3006 3007 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3008 out: 3009 *log = cel; 3010 return 0; 3011 } 3012 3013 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3014 { 3015 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3016 3017 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3018 return UINT_MAX; 3019 return val; 3020 } 3021 3022 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3023 { 3024 struct nvme_command c = { }; 3025 struct nvme_id_ctrl_nvm *id; 3026 int ret; 3027 3028 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 3029 ctrl->max_discard_sectors = UINT_MAX; 3030 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 3031 } else { 3032 ctrl->max_discard_sectors = 0; 3033 ctrl->max_discard_segments = 0; 3034 } 3035 3036 /* 3037 * Even though NVMe spec explicitly states that MDTS is not applicable 3038 * to the write-zeroes, we are cautious and limit the size to the 3039 * controllers max_hw_sectors value, which is based on the MDTS field 3040 * and possibly other limiting factors. 3041 */ 3042 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3043 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3044 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3045 else 3046 ctrl->max_zeroes_sectors = 0; 3047 3048 if (nvme_ctrl_limited_cns(ctrl)) 3049 return 0; 3050 3051 id = kzalloc(sizeof(*id), GFP_KERNEL); 3052 if (!id) 3053 return 0; 3054 3055 c.identify.opcode = nvme_admin_identify; 3056 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3057 c.identify.csi = NVME_CSI_NVM; 3058 3059 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3060 if (ret) 3061 goto free_data; 3062 3063 if (id->dmrl) 3064 ctrl->max_discard_segments = id->dmrl; 3065 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3066 if (id->wzsl) 3067 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3068 3069 free_data: 3070 kfree(id); 3071 return ret; 3072 } 3073 3074 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3075 { 3076 struct nvme_id_ctrl *id; 3077 u32 max_hw_sectors; 3078 bool prev_apst_enabled; 3079 int ret; 3080 3081 ret = nvme_identify_ctrl(ctrl, &id); 3082 if (ret) { 3083 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3084 return -EIO; 3085 } 3086 3087 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3088 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3089 if (ret < 0) 3090 goto out_free; 3091 } 3092 3093 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3094 ctrl->cntlid = le16_to_cpu(id->cntlid); 3095 3096 if (!ctrl->identified) { 3097 unsigned int i; 3098 3099 ret = nvme_init_subsystem(ctrl, id); 3100 if (ret) 3101 goto out_free; 3102 3103 /* 3104 * Check for quirks. Quirk can depend on firmware version, 3105 * so, in principle, the set of quirks present can change 3106 * across a reset. As a possible future enhancement, we 3107 * could re-scan for quirks every time we reinitialize 3108 * the device, but we'd have to make sure that the driver 3109 * behaves intelligently if the quirks change. 3110 */ 3111 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3112 if (quirk_matches(id, &core_quirks[i])) 3113 ctrl->quirks |= core_quirks[i].quirks; 3114 } 3115 } 3116 3117 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3118 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3119 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3120 } 3121 3122 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3123 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3124 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3125 3126 ctrl->oacs = le16_to_cpu(id->oacs); 3127 ctrl->oncs = le16_to_cpu(id->oncs); 3128 ctrl->mtfa = le16_to_cpu(id->mtfa); 3129 ctrl->oaes = le32_to_cpu(id->oaes); 3130 ctrl->wctemp = le16_to_cpu(id->wctemp); 3131 ctrl->cctemp = le16_to_cpu(id->cctemp); 3132 3133 atomic_set(&ctrl->abort_limit, id->acl + 1); 3134 ctrl->vwc = id->vwc; 3135 if (id->mdts) 3136 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3137 else 3138 max_hw_sectors = UINT_MAX; 3139 ctrl->max_hw_sectors = 3140 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3141 3142 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3143 ctrl->sgls = le32_to_cpu(id->sgls); 3144 ctrl->kas = le16_to_cpu(id->kas); 3145 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3146 ctrl->ctratt = le32_to_cpu(id->ctratt); 3147 3148 ctrl->cntrltype = id->cntrltype; 3149 ctrl->dctype = id->dctype; 3150 3151 if (id->rtd3e) { 3152 /* us -> s */ 3153 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3154 3155 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3156 shutdown_timeout, 60); 3157 3158 if (ctrl->shutdown_timeout != shutdown_timeout) 3159 dev_info(ctrl->device, 3160 "Shutdown timeout set to %u seconds\n", 3161 ctrl->shutdown_timeout); 3162 } else 3163 ctrl->shutdown_timeout = shutdown_timeout; 3164 3165 ctrl->npss = id->npss; 3166 ctrl->apsta = id->apsta; 3167 prev_apst_enabled = ctrl->apst_enabled; 3168 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3169 if (force_apst && id->apsta) { 3170 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3171 ctrl->apst_enabled = true; 3172 } else { 3173 ctrl->apst_enabled = false; 3174 } 3175 } else { 3176 ctrl->apst_enabled = id->apsta; 3177 } 3178 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3179 3180 if (ctrl->ops->flags & NVME_F_FABRICS) { 3181 ctrl->icdoff = le16_to_cpu(id->icdoff); 3182 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3183 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3184 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3185 3186 /* 3187 * In fabrics we need to verify the cntlid matches the 3188 * admin connect 3189 */ 3190 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3191 dev_err(ctrl->device, 3192 "Mismatching cntlid: Connect %u vs Identify " 3193 "%u, rejecting\n", 3194 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3195 ret = -EINVAL; 3196 goto out_free; 3197 } 3198 3199 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3200 dev_err(ctrl->device, 3201 "keep-alive support is mandatory for fabrics\n"); 3202 ret = -EINVAL; 3203 goto out_free; 3204 } 3205 } else { 3206 ctrl->hmpre = le32_to_cpu(id->hmpre); 3207 ctrl->hmmin = le32_to_cpu(id->hmmin); 3208 ctrl->hmminds = le32_to_cpu(id->hmminds); 3209 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3210 } 3211 3212 ret = nvme_mpath_init_identify(ctrl, id); 3213 if (ret < 0) 3214 goto out_free; 3215 3216 if (ctrl->apst_enabled && !prev_apst_enabled) 3217 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3218 else if (!ctrl->apst_enabled && prev_apst_enabled) 3219 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3220 3221 out_free: 3222 kfree(id); 3223 return ret; 3224 } 3225 3226 /* 3227 * Initialize the cached copies of the Identify data and various controller 3228 * register in our nvme_ctrl structure. This should be called as soon as 3229 * the admin queue is fully up and running. 3230 */ 3231 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3232 { 3233 int ret; 3234 3235 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3236 if (ret) { 3237 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3238 return ret; 3239 } 3240 3241 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3242 3243 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3244 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3245 3246 ret = nvme_init_identify(ctrl); 3247 if (ret) 3248 return ret; 3249 3250 ret = nvme_configure_apst(ctrl); 3251 if (ret < 0) 3252 return ret; 3253 3254 ret = nvme_configure_timestamp(ctrl); 3255 if (ret < 0) 3256 return ret; 3257 3258 ret = nvme_configure_host_options(ctrl); 3259 if (ret < 0) 3260 return ret; 3261 3262 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3263 ret = nvme_hwmon_init(ctrl); 3264 if (ret < 0) 3265 return ret; 3266 } 3267 3268 ctrl->identified = true; 3269 3270 return 0; 3271 } 3272 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3273 3274 static int nvme_dev_open(struct inode *inode, struct file *file) 3275 { 3276 struct nvme_ctrl *ctrl = 3277 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3278 3279 switch (ctrl->state) { 3280 case NVME_CTRL_LIVE: 3281 break; 3282 default: 3283 return -EWOULDBLOCK; 3284 } 3285 3286 nvme_get_ctrl(ctrl); 3287 if (!try_module_get(ctrl->ops->module)) { 3288 nvme_put_ctrl(ctrl); 3289 return -EINVAL; 3290 } 3291 3292 file->private_data = ctrl; 3293 return 0; 3294 } 3295 3296 static int nvme_dev_release(struct inode *inode, struct file *file) 3297 { 3298 struct nvme_ctrl *ctrl = 3299 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3300 3301 module_put(ctrl->ops->module); 3302 nvme_put_ctrl(ctrl); 3303 return 0; 3304 } 3305 3306 static const struct file_operations nvme_dev_fops = { 3307 .owner = THIS_MODULE, 3308 .open = nvme_dev_open, 3309 .release = nvme_dev_release, 3310 .unlocked_ioctl = nvme_dev_ioctl, 3311 .compat_ioctl = compat_ptr_ioctl, 3312 .uring_cmd = nvme_dev_uring_cmd, 3313 }; 3314 3315 static ssize_t nvme_sysfs_reset(struct device *dev, 3316 struct device_attribute *attr, const char *buf, 3317 size_t count) 3318 { 3319 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3320 int ret; 3321 3322 ret = nvme_reset_ctrl_sync(ctrl); 3323 if (ret < 0) 3324 return ret; 3325 return count; 3326 } 3327 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3328 3329 static ssize_t nvme_sysfs_rescan(struct device *dev, 3330 struct device_attribute *attr, const char *buf, 3331 size_t count) 3332 { 3333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3334 3335 nvme_queue_scan(ctrl); 3336 return count; 3337 } 3338 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3339 3340 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3341 { 3342 struct gendisk *disk = dev_to_disk(dev); 3343 3344 if (disk->fops == &nvme_bdev_ops) 3345 return nvme_get_ns_from_dev(dev)->head; 3346 else 3347 return disk->private_data; 3348 } 3349 3350 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3351 char *buf) 3352 { 3353 struct nvme_ns_head *head = dev_to_ns_head(dev); 3354 struct nvme_ns_ids *ids = &head->ids; 3355 struct nvme_subsystem *subsys = head->subsys; 3356 int serial_len = sizeof(subsys->serial); 3357 int model_len = sizeof(subsys->model); 3358 3359 if (!uuid_is_null(&ids->uuid)) 3360 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3361 3362 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3363 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3364 3365 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3366 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3367 3368 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3369 subsys->serial[serial_len - 1] == '\0')) 3370 serial_len--; 3371 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3372 subsys->model[model_len - 1] == '\0')) 3373 model_len--; 3374 3375 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3376 serial_len, subsys->serial, model_len, subsys->model, 3377 head->ns_id); 3378 } 3379 static DEVICE_ATTR_RO(wwid); 3380 3381 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3382 char *buf) 3383 { 3384 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3385 } 3386 static DEVICE_ATTR_RO(nguid); 3387 3388 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3389 char *buf) 3390 { 3391 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3392 3393 /* For backward compatibility expose the NGUID to userspace if 3394 * we have no UUID set 3395 */ 3396 if (uuid_is_null(&ids->uuid)) { 3397 dev_warn_ratelimited(dev, 3398 "No UUID available providing old NGUID\n"); 3399 return sysfs_emit(buf, "%pU\n", ids->nguid); 3400 } 3401 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3402 } 3403 static DEVICE_ATTR_RO(uuid); 3404 3405 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3406 char *buf) 3407 { 3408 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3409 } 3410 static DEVICE_ATTR_RO(eui); 3411 3412 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3413 char *buf) 3414 { 3415 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3416 } 3417 static DEVICE_ATTR_RO(nsid); 3418 3419 static struct attribute *nvme_ns_id_attrs[] = { 3420 &dev_attr_wwid.attr, 3421 &dev_attr_uuid.attr, 3422 &dev_attr_nguid.attr, 3423 &dev_attr_eui.attr, 3424 &dev_attr_nsid.attr, 3425 #ifdef CONFIG_NVME_MULTIPATH 3426 &dev_attr_ana_grpid.attr, 3427 &dev_attr_ana_state.attr, 3428 #endif 3429 NULL, 3430 }; 3431 3432 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3433 struct attribute *a, int n) 3434 { 3435 struct device *dev = container_of(kobj, struct device, kobj); 3436 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3437 3438 if (a == &dev_attr_uuid.attr) { 3439 if (uuid_is_null(&ids->uuid) && 3440 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3441 return 0; 3442 } 3443 if (a == &dev_attr_nguid.attr) { 3444 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3445 return 0; 3446 } 3447 if (a == &dev_attr_eui.attr) { 3448 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3449 return 0; 3450 } 3451 #ifdef CONFIG_NVME_MULTIPATH 3452 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3453 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3454 return 0; 3455 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3456 return 0; 3457 } 3458 #endif 3459 return a->mode; 3460 } 3461 3462 static const struct attribute_group nvme_ns_id_attr_group = { 3463 .attrs = nvme_ns_id_attrs, 3464 .is_visible = nvme_ns_id_attrs_are_visible, 3465 }; 3466 3467 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3468 &nvme_ns_id_attr_group, 3469 NULL, 3470 }; 3471 3472 #define nvme_show_str_function(field) \ 3473 static ssize_t field##_show(struct device *dev, \ 3474 struct device_attribute *attr, char *buf) \ 3475 { \ 3476 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3477 return sysfs_emit(buf, "%.*s\n", \ 3478 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3479 } \ 3480 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3481 3482 nvme_show_str_function(model); 3483 nvme_show_str_function(serial); 3484 nvme_show_str_function(firmware_rev); 3485 3486 #define nvme_show_int_function(field) \ 3487 static ssize_t field##_show(struct device *dev, \ 3488 struct device_attribute *attr, char *buf) \ 3489 { \ 3490 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3491 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3492 } \ 3493 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3494 3495 nvme_show_int_function(cntlid); 3496 nvme_show_int_function(numa_node); 3497 nvme_show_int_function(queue_count); 3498 nvme_show_int_function(sqsize); 3499 nvme_show_int_function(kato); 3500 3501 static ssize_t nvme_sysfs_delete(struct device *dev, 3502 struct device_attribute *attr, const char *buf, 3503 size_t count) 3504 { 3505 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3506 3507 if (device_remove_file_self(dev, attr)) 3508 nvme_delete_ctrl_sync(ctrl); 3509 return count; 3510 } 3511 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3512 3513 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3514 struct device_attribute *attr, 3515 char *buf) 3516 { 3517 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3518 3519 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3520 } 3521 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3522 3523 static ssize_t nvme_sysfs_show_state(struct device *dev, 3524 struct device_attribute *attr, 3525 char *buf) 3526 { 3527 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3528 static const char *const state_name[] = { 3529 [NVME_CTRL_NEW] = "new", 3530 [NVME_CTRL_LIVE] = "live", 3531 [NVME_CTRL_RESETTING] = "resetting", 3532 [NVME_CTRL_CONNECTING] = "connecting", 3533 [NVME_CTRL_DELETING] = "deleting", 3534 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3535 [NVME_CTRL_DEAD] = "dead", 3536 }; 3537 3538 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3539 state_name[ctrl->state]) 3540 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3541 3542 return sysfs_emit(buf, "unknown state\n"); 3543 } 3544 3545 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3546 3547 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3548 struct device_attribute *attr, 3549 char *buf) 3550 { 3551 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3552 3553 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3554 } 3555 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3556 3557 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3558 struct device_attribute *attr, 3559 char *buf) 3560 { 3561 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3562 3563 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3564 } 3565 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3566 3567 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3568 struct device_attribute *attr, 3569 char *buf) 3570 { 3571 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3572 3573 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3574 } 3575 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3576 3577 static ssize_t nvme_sysfs_show_address(struct device *dev, 3578 struct device_attribute *attr, 3579 char *buf) 3580 { 3581 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3582 3583 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3584 } 3585 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3586 3587 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3588 struct device_attribute *attr, char *buf) 3589 { 3590 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3591 struct nvmf_ctrl_options *opts = ctrl->opts; 3592 3593 if (ctrl->opts->max_reconnects == -1) 3594 return sysfs_emit(buf, "off\n"); 3595 return sysfs_emit(buf, "%d\n", 3596 opts->max_reconnects * opts->reconnect_delay); 3597 } 3598 3599 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3600 struct device_attribute *attr, const char *buf, size_t count) 3601 { 3602 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3603 struct nvmf_ctrl_options *opts = ctrl->opts; 3604 int ctrl_loss_tmo, err; 3605 3606 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3607 if (err) 3608 return -EINVAL; 3609 3610 if (ctrl_loss_tmo < 0) 3611 opts->max_reconnects = -1; 3612 else 3613 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3614 opts->reconnect_delay); 3615 return count; 3616 } 3617 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3618 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3619 3620 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3621 struct device_attribute *attr, char *buf) 3622 { 3623 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3624 3625 if (ctrl->opts->reconnect_delay == -1) 3626 return sysfs_emit(buf, "off\n"); 3627 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3628 } 3629 3630 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3631 struct device_attribute *attr, const char *buf, size_t count) 3632 { 3633 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3634 unsigned int v; 3635 int err; 3636 3637 err = kstrtou32(buf, 10, &v); 3638 if (err) 3639 return err; 3640 3641 ctrl->opts->reconnect_delay = v; 3642 return count; 3643 } 3644 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3645 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3646 3647 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3648 struct device_attribute *attr, char *buf) 3649 { 3650 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3651 3652 if (ctrl->opts->fast_io_fail_tmo == -1) 3653 return sysfs_emit(buf, "off\n"); 3654 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3655 } 3656 3657 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3658 struct device_attribute *attr, const char *buf, size_t count) 3659 { 3660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3661 struct nvmf_ctrl_options *opts = ctrl->opts; 3662 int fast_io_fail_tmo, err; 3663 3664 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3665 if (err) 3666 return -EINVAL; 3667 3668 if (fast_io_fail_tmo < 0) 3669 opts->fast_io_fail_tmo = -1; 3670 else 3671 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3672 return count; 3673 } 3674 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3675 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3676 3677 static ssize_t cntrltype_show(struct device *dev, 3678 struct device_attribute *attr, char *buf) 3679 { 3680 static const char * const type[] = { 3681 [NVME_CTRL_IO] = "io\n", 3682 [NVME_CTRL_DISC] = "discovery\n", 3683 [NVME_CTRL_ADMIN] = "admin\n", 3684 }; 3685 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3686 3687 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3688 return sysfs_emit(buf, "reserved\n"); 3689 3690 return sysfs_emit(buf, type[ctrl->cntrltype]); 3691 } 3692 static DEVICE_ATTR_RO(cntrltype); 3693 3694 static ssize_t dctype_show(struct device *dev, 3695 struct device_attribute *attr, char *buf) 3696 { 3697 static const char * const type[] = { 3698 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3699 [NVME_DCTYPE_DDC] = "ddc\n", 3700 [NVME_DCTYPE_CDC] = "cdc\n", 3701 }; 3702 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3703 3704 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3705 return sysfs_emit(buf, "reserved\n"); 3706 3707 return sysfs_emit(buf, type[ctrl->dctype]); 3708 } 3709 static DEVICE_ATTR_RO(dctype); 3710 3711 #ifdef CONFIG_NVME_AUTH 3712 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev, 3713 struct device_attribute *attr, char *buf) 3714 { 3715 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3716 struct nvmf_ctrl_options *opts = ctrl->opts; 3717 3718 if (!opts->dhchap_secret) 3719 return sysfs_emit(buf, "none\n"); 3720 return sysfs_emit(buf, "%s\n", opts->dhchap_secret); 3721 } 3722 3723 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev, 3724 struct device_attribute *attr, const char *buf, size_t count) 3725 { 3726 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3727 struct nvmf_ctrl_options *opts = ctrl->opts; 3728 char *dhchap_secret; 3729 3730 if (!ctrl->opts->dhchap_secret) 3731 return -EINVAL; 3732 if (count < 7) 3733 return -EINVAL; 3734 if (memcmp(buf, "DHHC-1:", 7)) 3735 return -EINVAL; 3736 3737 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3738 if (!dhchap_secret) 3739 return -ENOMEM; 3740 memcpy(dhchap_secret, buf, count); 3741 nvme_auth_stop(ctrl); 3742 if (strcmp(dhchap_secret, opts->dhchap_secret)) { 3743 int ret; 3744 3745 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->host_key); 3746 if (ret) 3747 return ret; 3748 kfree(opts->dhchap_secret); 3749 opts->dhchap_secret = dhchap_secret; 3750 /* Key has changed; re-authentication with new key */ 3751 nvme_auth_reset(ctrl); 3752 } 3753 /* Start re-authentication */ 3754 dev_info(ctrl->device, "re-authenticating controller\n"); 3755 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3756 3757 return count; 3758 } 3759 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR, 3760 nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store); 3761 3762 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev, 3763 struct device_attribute *attr, char *buf) 3764 { 3765 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3766 struct nvmf_ctrl_options *opts = ctrl->opts; 3767 3768 if (!opts->dhchap_ctrl_secret) 3769 return sysfs_emit(buf, "none\n"); 3770 return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret); 3771 } 3772 3773 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev, 3774 struct device_attribute *attr, const char *buf, size_t count) 3775 { 3776 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3777 struct nvmf_ctrl_options *opts = ctrl->opts; 3778 char *dhchap_secret; 3779 3780 if (!ctrl->opts->dhchap_ctrl_secret) 3781 return -EINVAL; 3782 if (count < 7) 3783 return -EINVAL; 3784 if (memcmp(buf, "DHHC-1:", 7)) 3785 return -EINVAL; 3786 3787 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3788 if (!dhchap_secret) 3789 return -ENOMEM; 3790 memcpy(dhchap_secret, buf, count); 3791 nvme_auth_stop(ctrl); 3792 if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) { 3793 int ret; 3794 3795 ret = nvme_auth_generate_key(dhchap_secret, &ctrl->ctrl_key); 3796 if (ret) 3797 return ret; 3798 kfree(opts->dhchap_ctrl_secret); 3799 opts->dhchap_ctrl_secret = dhchap_secret; 3800 /* Key has changed; re-authentication with new key */ 3801 nvme_auth_reset(ctrl); 3802 } 3803 /* Start re-authentication */ 3804 dev_info(ctrl->device, "re-authenticating controller\n"); 3805 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3806 3807 return count; 3808 } 3809 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR, 3810 nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store); 3811 #endif 3812 3813 static struct attribute *nvme_dev_attrs[] = { 3814 &dev_attr_reset_controller.attr, 3815 &dev_attr_rescan_controller.attr, 3816 &dev_attr_model.attr, 3817 &dev_attr_serial.attr, 3818 &dev_attr_firmware_rev.attr, 3819 &dev_attr_cntlid.attr, 3820 &dev_attr_delete_controller.attr, 3821 &dev_attr_transport.attr, 3822 &dev_attr_subsysnqn.attr, 3823 &dev_attr_address.attr, 3824 &dev_attr_state.attr, 3825 &dev_attr_numa_node.attr, 3826 &dev_attr_queue_count.attr, 3827 &dev_attr_sqsize.attr, 3828 &dev_attr_hostnqn.attr, 3829 &dev_attr_hostid.attr, 3830 &dev_attr_ctrl_loss_tmo.attr, 3831 &dev_attr_reconnect_delay.attr, 3832 &dev_attr_fast_io_fail_tmo.attr, 3833 &dev_attr_kato.attr, 3834 &dev_attr_cntrltype.attr, 3835 &dev_attr_dctype.attr, 3836 #ifdef CONFIG_NVME_AUTH 3837 &dev_attr_dhchap_secret.attr, 3838 &dev_attr_dhchap_ctrl_secret.attr, 3839 #endif 3840 NULL 3841 }; 3842 3843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3844 struct attribute *a, int n) 3845 { 3846 struct device *dev = container_of(kobj, struct device, kobj); 3847 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3848 3849 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3850 return 0; 3851 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3852 return 0; 3853 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3854 return 0; 3855 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3856 return 0; 3857 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3858 return 0; 3859 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3860 return 0; 3861 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3862 return 0; 3863 #ifdef CONFIG_NVME_AUTH 3864 if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts) 3865 return 0; 3866 if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts) 3867 return 0; 3868 #endif 3869 3870 return a->mode; 3871 } 3872 3873 static const struct attribute_group nvme_dev_attrs_group = { 3874 .attrs = nvme_dev_attrs, 3875 .is_visible = nvme_dev_attrs_are_visible, 3876 }; 3877 3878 static const struct attribute_group *nvme_dev_attr_groups[] = { 3879 &nvme_dev_attrs_group, 3880 NULL, 3881 }; 3882 3883 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3884 unsigned nsid) 3885 { 3886 struct nvme_ns_head *h; 3887 3888 lockdep_assert_held(&ctrl->subsys->lock); 3889 3890 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3891 /* 3892 * Private namespaces can share NSIDs under some conditions. 3893 * In that case we can't use the same ns_head for namespaces 3894 * with the same NSID. 3895 */ 3896 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3897 continue; 3898 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3899 return h; 3900 } 3901 3902 return NULL; 3903 } 3904 3905 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3906 struct nvme_ns_ids *ids) 3907 { 3908 bool has_uuid = !uuid_is_null(&ids->uuid); 3909 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3910 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3911 struct nvme_ns_head *h; 3912 3913 lockdep_assert_held(&subsys->lock); 3914 3915 list_for_each_entry(h, &subsys->nsheads, entry) { 3916 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3917 return -EINVAL; 3918 if (has_nguid && 3919 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3920 return -EINVAL; 3921 if (has_eui64 && 3922 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3923 return -EINVAL; 3924 } 3925 3926 return 0; 3927 } 3928 3929 static void nvme_cdev_rel(struct device *dev) 3930 { 3931 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3932 } 3933 3934 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3935 { 3936 cdev_device_del(cdev, cdev_device); 3937 put_device(cdev_device); 3938 } 3939 3940 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3941 const struct file_operations *fops, struct module *owner) 3942 { 3943 int minor, ret; 3944 3945 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3946 if (minor < 0) 3947 return minor; 3948 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3949 cdev_device->class = nvme_ns_chr_class; 3950 cdev_device->release = nvme_cdev_rel; 3951 device_initialize(cdev_device); 3952 cdev_init(cdev, fops); 3953 cdev->owner = owner; 3954 ret = cdev_device_add(cdev, cdev_device); 3955 if (ret) 3956 put_device(cdev_device); 3957 3958 return ret; 3959 } 3960 3961 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3962 { 3963 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3964 } 3965 3966 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3967 { 3968 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3969 return 0; 3970 } 3971 3972 static const struct file_operations nvme_ns_chr_fops = { 3973 .owner = THIS_MODULE, 3974 .open = nvme_ns_chr_open, 3975 .release = nvme_ns_chr_release, 3976 .unlocked_ioctl = nvme_ns_chr_ioctl, 3977 .compat_ioctl = compat_ptr_ioctl, 3978 .uring_cmd = nvme_ns_chr_uring_cmd, 3979 }; 3980 3981 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3982 { 3983 int ret; 3984 3985 ns->cdev_device.parent = ns->ctrl->device; 3986 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3987 ns->ctrl->instance, ns->head->instance); 3988 if (ret) 3989 return ret; 3990 3991 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3992 ns->ctrl->ops->module); 3993 } 3994 3995 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3996 struct nvme_ns_info *info) 3997 { 3998 struct nvme_ns_head *head; 3999 size_t size = sizeof(*head); 4000 int ret = -ENOMEM; 4001 4002 #ifdef CONFIG_NVME_MULTIPATH 4003 size += num_possible_nodes() * sizeof(struct nvme_ns *); 4004 #endif 4005 4006 head = kzalloc(size, GFP_KERNEL); 4007 if (!head) 4008 goto out; 4009 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 4010 if (ret < 0) 4011 goto out_free_head; 4012 head->instance = ret; 4013 INIT_LIST_HEAD(&head->list); 4014 ret = init_srcu_struct(&head->srcu); 4015 if (ret) 4016 goto out_ida_remove; 4017 head->subsys = ctrl->subsys; 4018 head->ns_id = info->nsid; 4019 head->ids = info->ids; 4020 head->shared = info->is_shared; 4021 kref_init(&head->ref); 4022 4023 if (head->ids.csi) { 4024 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 4025 if (ret) 4026 goto out_cleanup_srcu; 4027 } else 4028 head->effects = ctrl->effects; 4029 4030 ret = nvme_mpath_alloc_disk(ctrl, head); 4031 if (ret) 4032 goto out_cleanup_srcu; 4033 4034 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 4035 4036 kref_get(&ctrl->subsys->ref); 4037 4038 return head; 4039 out_cleanup_srcu: 4040 cleanup_srcu_struct(&head->srcu); 4041 out_ida_remove: 4042 ida_free(&ctrl->subsys->ns_ida, head->instance); 4043 out_free_head: 4044 kfree(head); 4045 out: 4046 if (ret > 0) 4047 ret = blk_status_to_errno(nvme_error_status(ret)); 4048 return ERR_PTR(ret); 4049 } 4050 4051 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 4052 struct nvme_ns_ids *ids) 4053 { 4054 struct nvme_subsystem *s; 4055 int ret = 0; 4056 4057 /* 4058 * Note that this check is racy as we try to avoid holding the global 4059 * lock over the whole ns_head creation. But it is only intended as 4060 * a sanity check anyway. 4061 */ 4062 mutex_lock(&nvme_subsystems_lock); 4063 list_for_each_entry(s, &nvme_subsystems, entry) { 4064 if (s == this) 4065 continue; 4066 mutex_lock(&s->lock); 4067 ret = nvme_subsys_check_duplicate_ids(s, ids); 4068 mutex_unlock(&s->lock); 4069 if (ret) 4070 break; 4071 } 4072 mutex_unlock(&nvme_subsystems_lock); 4073 4074 return ret; 4075 } 4076 4077 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 4078 { 4079 struct nvme_ctrl *ctrl = ns->ctrl; 4080 struct nvme_ns_head *head = NULL; 4081 int ret; 4082 4083 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 4084 if (ret) { 4085 dev_err(ctrl->device, 4086 "globally duplicate IDs for nsid %d\n", info->nsid); 4087 nvme_print_device_info(ctrl); 4088 return ret; 4089 } 4090 4091 mutex_lock(&ctrl->subsys->lock); 4092 head = nvme_find_ns_head(ctrl, info->nsid); 4093 if (!head) { 4094 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 4095 if (ret) { 4096 dev_err(ctrl->device, 4097 "duplicate IDs in subsystem for nsid %d\n", 4098 info->nsid); 4099 goto out_unlock; 4100 } 4101 head = nvme_alloc_ns_head(ctrl, info); 4102 if (IS_ERR(head)) { 4103 ret = PTR_ERR(head); 4104 goto out_unlock; 4105 } 4106 } else { 4107 ret = -EINVAL; 4108 if (!info->is_shared || !head->shared) { 4109 dev_err(ctrl->device, 4110 "Duplicate unshared namespace %d\n", 4111 info->nsid); 4112 goto out_put_ns_head; 4113 } 4114 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 4115 dev_err(ctrl->device, 4116 "IDs don't match for shared namespace %d\n", 4117 info->nsid); 4118 goto out_put_ns_head; 4119 } 4120 4121 if (!multipath && !list_empty(&head->list)) { 4122 dev_warn(ctrl->device, 4123 "Found shared namespace %d, but multipathing not supported.\n", 4124 info->nsid); 4125 dev_warn_once(ctrl->device, 4126 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 4127 } 4128 } 4129 4130 list_add_tail_rcu(&ns->siblings, &head->list); 4131 ns->head = head; 4132 mutex_unlock(&ctrl->subsys->lock); 4133 return 0; 4134 4135 out_put_ns_head: 4136 nvme_put_ns_head(head); 4137 out_unlock: 4138 mutex_unlock(&ctrl->subsys->lock); 4139 return ret; 4140 } 4141 4142 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4143 { 4144 struct nvme_ns *ns, *ret = NULL; 4145 4146 down_read(&ctrl->namespaces_rwsem); 4147 list_for_each_entry(ns, &ctrl->namespaces, list) { 4148 if (ns->head->ns_id == nsid) { 4149 if (!nvme_get_ns(ns)) 4150 continue; 4151 ret = ns; 4152 break; 4153 } 4154 if (ns->head->ns_id > nsid) 4155 break; 4156 } 4157 up_read(&ctrl->namespaces_rwsem); 4158 return ret; 4159 } 4160 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 4161 4162 /* 4163 * Add the namespace to the controller list while keeping the list ordered. 4164 */ 4165 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 4166 { 4167 struct nvme_ns *tmp; 4168 4169 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 4170 if (tmp->head->ns_id < ns->head->ns_id) { 4171 list_add(&ns->list, &tmp->list); 4172 return; 4173 } 4174 } 4175 list_add(&ns->list, &ns->ctrl->namespaces); 4176 } 4177 4178 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 4179 { 4180 struct nvme_ns *ns; 4181 struct gendisk *disk; 4182 int node = ctrl->numa_node; 4183 4184 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 4185 if (!ns) 4186 return; 4187 4188 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 4189 if (IS_ERR(disk)) 4190 goto out_free_ns; 4191 disk->fops = &nvme_bdev_ops; 4192 disk->private_data = ns; 4193 4194 ns->disk = disk; 4195 ns->queue = disk->queue; 4196 4197 if (ctrl->opts && ctrl->opts->data_digest) 4198 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 4199 4200 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 4201 if (ctrl->ops->supports_pci_p2pdma && 4202 ctrl->ops->supports_pci_p2pdma(ctrl)) 4203 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 4204 4205 ns->ctrl = ctrl; 4206 kref_init(&ns->kref); 4207 4208 if (nvme_init_ns_head(ns, info)) 4209 goto out_cleanup_disk; 4210 4211 /* 4212 * If multipathing is enabled, the device name for all disks and not 4213 * just those that represent shared namespaces needs to be based on the 4214 * subsystem instance. Using the controller instance for private 4215 * namespaces could lead to naming collisions between shared and private 4216 * namespaces if they don't use a common numbering scheme. 4217 * 4218 * If multipathing is not enabled, disk names must use the controller 4219 * instance as shared namespaces will show up as multiple block 4220 * devices. 4221 */ 4222 if (ns->head->disk) { 4223 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 4224 ctrl->instance, ns->head->instance); 4225 disk->flags |= GENHD_FL_HIDDEN; 4226 } else if (multipath) { 4227 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4228 ns->head->instance); 4229 } else { 4230 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4231 ns->head->instance); 4232 } 4233 4234 if (nvme_update_ns_info(ns, info)) 4235 goto out_unlink_ns; 4236 4237 down_write(&ctrl->namespaces_rwsem); 4238 nvme_ns_add_to_ctrl_list(ns); 4239 up_write(&ctrl->namespaces_rwsem); 4240 nvme_get_ctrl(ctrl); 4241 4242 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 4243 goto out_cleanup_ns_from_list; 4244 4245 if (!nvme_ns_head_multipath(ns->head)) 4246 nvme_add_ns_cdev(ns); 4247 4248 nvme_mpath_add_disk(ns, info->anagrpid); 4249 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4250 4251 return; 4252 4253 out_cleanup_ns_from_list: 4254 nvme_put_ctrl(ctrl); 4255 down_write(&ctrl->namespaces_rwsem); 4256 list_del_init(&ns->list); 4257 up_write(&ctrl->namespaces_rwsem); 4258 out_unlink_ns: 4259 mutex_lock(&ctrl->subsys->lock); 4260 list_del_rcu(&ns->siblings); 4261 if (list_empty(&ns->head->list)) 4262 list_del_init(&ns->head->entry); 4263 mutex_unlock(&ctrl->subsys->lock); 4264 nvme_put_ns_head(ns->head); 4265 out_cleanup_disk: 4266 put_disk(disk); 4267 out_free_ns: 4268 kfree(ns); 4269 } 4270 4271 static void nvme_ns_remove(struct nvme_ns *ns) 4272 { 4273 bool last_path = false; 4274 4275 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4276 return; 4277 4278 clear_bit(NVME_NS_READY, &ns->flags); 4279 set_capacity(ns->disk, 0); 4280 nvme_fault_inject_fini(&ns->fault_inject); 4281 4282 /* 4283 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4284 * this ns going back into current_path. 4285 */ 4286 synchronize_srcu(&ns->head->srcu); 4287 4288 /* wait for concurrent submissions */ 4289 if (nvme_mpath_clear_current_path(ns)) 4290 synchronize_srcu(&ns->head->srcu); 4291 4292 mutex_lock(&ns->ctrl->subsys->lock); 4293 list_del_rcu(&ns->siblings); 4294 if (list_empty(&ns->head->list)) { 4295 list_del_init(&ns->head->entry); 4296 last_path = true; 4297 } 4298 mutex_unlock(&ns->ctrl->subsys->lock); 4299 4300 /* guarantee not available in head->list */ 4301 synchronize_rcu(); 4302 4303 if (!nvme_ns_head_multipath(ns->head)) 4304 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4305 del_gendisk(ns->disk); 4306 4307 down_write(&ns->ctrl->namespaces_rwsem); 4308 list_del_init(&ns->list); 4309 up_write(&ns->ctrl->namespaces_rwsem); 4310 4311 if (last_path) 4312 nvme_mpath_shutdown_disk(ns->head); 4313 nvme_put_ns(ns); 4314 } 4315 4316 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4317 { 4318 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4319 4320 if (ns) { 4321 nvme_ns_remove(ns); 4322 nvme_put_ns(ns); 4323 } 4324 } 4325 4326 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4327 { 4328 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4329 4330 if (test_bit(NVME_NS_DEAD, &ns->flags)) 4331 goto out; 4332 4333 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4334 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4335 dev_err(ns->ctrl->device, 4336 "identifiers changed for nsid %d\n", ns->head->ns_id); 4337 goto out; 4338 } 4339 4340 ret = nvme_update_ns_info(ns, info); 4341 out: 4342 /* 4343 * Only remove the namespace if we got a fatal error back from the 4344 * device, otherwise ignore the error and just move on. 4345 * 4346 * TODO: we should probably schedule a delayed retry here. 4347 */ 4348 if (ret > 0 && (ret & NVME_SC_DNR)) 4349 nvme_ns_remove(ns); 4350 } 4351 4352 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4353 { 4354 struct nvme_ns_info info = { .nsid = nsid }; 4355 struct nvme_ns *ns; 4356 4357 if (nvme_identify_ns_descs(ctrl, &info)) 4358 return; 4359 4360 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4361 dev_warn(ctrl->device, 4362 "command set not reported for nsid: %d\n", nsid); 4363 return; 4364 } 4365 4366 /* 4367 * If available try to use the Command Set Idependent Identify Namespace 4368 * data structure to find all the generic information that is needed to 4369 * set up a namespace. If not fall back to the legacy version. 4370 */ 4371 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4372 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) { 4373 if (nvme_ns_info_from_id_cs_indep(ctrl, &info)) 4374 return; 4375 } else { 4376 if (nvme_ns_info_from_identify(ctrl, &info)) 4377 return; 4378 } 4379 4380 /* 4381 * Ignore the namespace if it is not ready. We will get an AEN once it 4382 * becomes ready and restart the scan. 4383 */ 4384 if (!info.is_ready) 4385 return; 4386 4387 ns = nvme_find_get_ns(ctrl, nsid); 4388 if (ns) { 4389 nvme_validate_ns(ns, &info); 4390 nvme_put_ns(ns); 4391 } else { 4392 nvme_alloc_ns(ctrl, &info); 4393 } 4394 } 4395 4396 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4397 unsigned nsid) 4398 { 4399 struct nvme_ns *ns, *next; 4400 LIST_HEAD(rm_list); 4401 4402 down_write(&ctrl->namespaces_rwsem); 4403 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4404 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4405 list_move_tail(&ns->list, &rm_list); 4406 } 4407 up_write(&ctrl->namespaces_rwsem); 4408 4409 list_for_each_entry_safe(ns, next, &rm_list, list) 4410 nvme_ns_remove(ns); 4411 4412 } 4413 4414 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4415 { 4416 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4417 __le32 *ns_list; 4418 u32 prev = 0; 4419 int ret = 0, i; 4420 4421 if (nvme_ctrl_limited_cns(ctrl)) 4422 return -EOPNOTSUPP; 4423 4424 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4425 if (!ns_list) 4426 return -ENOMEM; 4427 4428 for (;;) { 4429 struct nvme_command cmd = { 4430 .identify.opcode = nvme_admin_identify, 4431 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4432 .identify.nsid = cpu_to_le32(prev), 4433 }; 4434 4435 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4436 NVME_IDENTIFY_DATA_SIZE); 4437 if (ret) { 4438 dev_warn(ctrl->device, 4439 "Identify NS List failed (status=0x%x)\n", ret); 4440 goto free; 4441 } 4442 4443 for (i = 0; i < nr_entries; i++) { 4444 u32 nsid = le32_to_cpu(ns_list[i]); 4445 4446 if (!nsid) /* end of the list? */ 4447 goto out; 4448 nvme_scan_ns(ctrl, nsid); 4449 while (++prev < nsid) 4450 nvme_ns_remove_by_nsid(ctrl, prev); 4451 } 4452 } 4453 out: 4454 nvme_remove_invalid_namespaces(ctrl, prev); 4455 free: 4456 kfree(ns_list); 4457 return ret; 4458 } 4459 4460 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4461 { 4462 struct nvme_id_ctrl *id; 4463 u32 nn, i; 4464 4465 if (nvme_identify_ctrl(ctrl, &id)) 4466 return; 4467 nn = le32_to_cpu(id->nn); 4468 kfree(id); 4469 4470 for (i = 1; i <= nn; i++) 4471 nvme_scan_ns(ctrl, i); 4472 4473 nvme_remove_invalid_namespaces(ctrl, nn); 4474 } 4475 4476 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4477 { 4478 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4479 __le32 *log; 4480 int error; 4481 4482 log = kzalloc(log_size, GFP_KERNEL); 4483 if (!log) 4484 return; 4485 4486 /* 4487 * We need to read the log to clear the AEN, but we don't want to rely 4488 * on it for the changed namespace information as userspace could have 4489 * raced with us in reading the log page, which could cause us to miss 4490 * updates. 4491 */ 4492 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4493 NVME_CSI_NVM, log, log_size, 0); 4494 if (error) 4495 dev_warn(ctrl->device, 4496 "reading changed ns log failed: %d\n", error); 4497 4498 kfree(log); 4499 } 4500 4501 static void nvme_scan_work(struct work_struct *work) 4502 { 4503 struct nvme_ctrl *ctrl = 4504 container_of(work, struct nvme_ctrl, scan_work); 4505 int ret; 4506 4507 /* No tagset on a live ctrl means IO queues could not created */ 4508 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4509 return; 4510 4511 /* 4512 * Identify controller limits can change at controller reset due to 4513 * new firmware download, even though it is not common we cannot ignore 4514 * such scenario. Controller's non-mdts limits are reported in the unit 4515 * of logical blocks that is dependent on the format of attached 4516 * namespace. Hence re-read the limits at the time of ns allocation. 4517 */ 4518 ret = nvme_init_non_mdts_limits(ctrl); 4519 if (ret < 0) { 4520 dev_warn(ctrl->device, 4521 "reading non-mdts-limits failed: %d\n", ret); 4522 return; 4523 } 4524 4525 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4526 dev_info(ctrl->device, "rescanning namespaces.\n"); 4527 nvme_clear_changed_ns_log(ctrl); 4528 } 4529 4530 mutex_lock(&ctrl->scan_lock); 4531 if (nvme_scan_ns_list(ctrl) != 0) 4532 nvme_scan_ns_sequential(ctrl); 4533 mutex_unlock(&ctrl->scan_lock); 4534 } 4535 4536 /* 4537 * This function iterates the namespace list unlocked to allow recovery from 4538 * controller failure. It is up to the caller to ensure the namespace list is 4539 * not modified by scan work while this function is executing. 4540 */ 4541 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4542 { 4543 struct nvme_ns *ns, *next; 4544 LIST_HEAD(ns_list); 4545 4546 /* 4547 * make sure to requeue I/O to all namespaces as these 4548 * might result from the scan itself and must complete 4549 * for the scan_work to make progress 4550 */ 4551 nvme_mpath_clear_ctrl_paths(ctrl); 4552 4553 /* prevent racing with ns scanning */ 4554 flush_work(&ctrl->scan_work); 4555 4556 /* 4557 * The dead states indicates the controller was not gracefully 4558 * disconnected. In that case, we won't be able to flush any data while 4559 * removing the namespaces' disks; fail all the queues now to avoid 4560 * potentially having to clean up the failed sync later. 4561 */ 4562 if (ctrl->state == NVME_CTRL_DEAD) 4563 nvme_kill_queues(ctrl); 4564 4565 /* this is a no-op when called from the controller reset handler */ 4566 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4567 4568 down_write(&ctrl->namespaces_rwsem); 4569 list_splice_init(&ctrl->namespaces, &ns_list); 4570 up_write(&ctrl->namespaces_rwsem); 4571 4572 list_for_each_entry_safe(ns, next, &ns_list, list) 4573 nvme_ns_remove(ns); 4574 } 4575 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4576 4577 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4578 { 4579 struct nvme_ctrl *ctrl = 4580 container_of(dev, struct nvme_ctrl, ctrl_device); 4581 struct nvmf_ctrl_options *opts = ctrl->opts; 4582 int ret; 4583 4584 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4585 if (ret) 4586 return ret; 4587 4588 if (opts) { 4589 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4590 if (ret) 4591 return ret; 4592 4593 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4594 opts->trsvcid ?: "none"); 4595 if (ret) 4596 return ret; 4597 4598 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4599 opts->host_traddr ?: "none"); 4600 if (ret) 4601 return ret; 4602 4603 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4604 opts->host_iface ?: "none"); 4605 } 4606 return ret; 4607 } 4608 4609 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4610 { 4611 char *envp[2] = { envdata, NULL }; 4612 4613 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4614 } 4615 4616 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4617 { 4618 char *envp[2] = { NULL, NULL }; 4619 u32 aen_result = ctrl->aen_result; 4620 4621 ctrl->aen_result = 0; 4622 if (!aen_result) 4623 return; 4624 4625 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4626 if (!envp[0]) 4627 return; 4628 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4629 kfree(envp[0]); 4630 } 4631 4632 static void nvme_async_event_work(struct work_struct *work) 4633 { 4634 struct nvme_ctrl *ctrl = 4635 container_of(work, struct nvme_ctrl, async_event_work); 4636 4637 nvme_aen_uevent(ctrl); 4638 4639 /* 4640 * The transport drivers must guarantee AER submission here is safe by 4641 * flushing ctrl async_event_work after changing the controller state 4642 * from LIVE and before freeing the admin queue. 4643 */ 4644 if (ctrl->state == NVME_CTRL_LIVE) 4645 ctrl->ops->submit_async_event(ctrl); 4646 } 4647 4648 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4649 { 4650 4651 u32 csts; 4652 4653 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4654 return false; 4655 4656 if (csts == ~0) 4657 return false; 4658 4659 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4660 } 4661 4662 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4663 { 4664 struct nvme_fw_slot_info_log *log; 4665 4666 log = kmalloc(sizeof(*log), GFP_KERNEL); 4667 if (!log) 4668 return; 4669 4670 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4671 log, sizeof(*log), 0)) 4672 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4673 kfree(log); 4674 } 4675 4676 static void nvme_fw_act_work(struct work_struct *work) 4677 { 4678 struct nvme_ctrl *ctrl = container_of(work, 4679 struct nvme_ctrl, fw_act_work); 4680 unsigned long fw_act_timeout; 4681 4682 if (ctrl->mtfa) 4683 fw_act_timeout = jiffies + 4684 msecs_to_jiffies(ctrl->mtfa * 100); 4685 else 4686 fw_act_timeout = jiffies + 4687 msecs_to_jiffies(admin_timeout * 1000); 4688 4689 nvme_stop_queues(ctrl); 4690 while (nvme_ctrl_pp_status(ctrl)) { 4691 if (time_after(jiffies, fw_act_timeout)) { 4692 dev_warn(ctrl->device, 4693 "Fw activation timeout, reset controller\n"); 4694 nvme_try_sched_reset(ctrl); 4695 return; 4696 } 4697 msleep(100); 4698 } 4699 4700 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4701 return; 4702 4703 nvme_start_queues(ctrl); 4704 /* read FW slot information to clear the AER */ 4705 nvme_get_fw_slot_info(ctrl); 4706 4707 queue_work(nvme_wq, &ctrl->async_event_work); 4708 } 4709 4710 static u32 nvme_aer_type(u32 result) 4711 { 4712 return result & 0x7; 4713 } 4714 4715 static u32 nvme_aer_subtype(u32 result) 4716 { 4717 return (result & 0xff00) >> 8; 4718 } 4719 4720 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4721 { 4722 u32 aer_notice_type = nvme_aer_subtype(result); 4723 bool requeue = true; 4724 4725 trace_nvme_async_event(ctrl, aer_notice_type); 4726 4727 switch (aer_notice_type) { 4728 case NVME_AER_NOTICE_NS_CHANGED: 4729 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4730 nvme_queue_scan(ctrl); 4731 break; 4732 case NVME_AER_NOTICE_FW_ACT_STARTING: 4733 /* 4734 * We are (ab)using the RESETTING state to prevent subsequent 4735 * recovery actions from interfering with the controller's 4736 * firmware activation. 4737 */ 4738 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4739 nvme_auth_stop(ctrl); 4740 requeue = false; 4741 queue_work(nvme_wq, &ctrl->fw_act_work); 4742 } 4743 break; 4744 #ifdef CONFIG_NVME_MULTIPATH 4745 case NVME_AER_NOTICE_ANA: 4746 if (!ctrl->ana_log_buf) 4747 break; 4748 queue_work(nvme_wq, &ctrl->ana_work); 4749 break; 4750 #endif 4751 case NVME_AER_NOTICE_DISC_CHANGED: 4752 ctrl->aen_result = result; 4753 break; 4754 default: 4755 dev_warn(ctrl->device, "async event result %08x\n", result); 4756 } 4757 return requeue; 4758 } 4759 4760 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4761 { 4762 trace_nvme_async_event(ctrl, NVME_AER_ERROR); 4763 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4764 nvme_reset_ctrl(ctrl); 4765 } 4766 4767 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4768 volatile union nvme_result *res) 4769 { 4770 u32 result = le32_to_cpu(res->u32); 4771 u32 aer_type = nvme_aer_type(result); 4772 u32 aer_subtype = nvme_aer_subtype(result); 4773 bool requeue = true; 4774 4775 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4776 return; 4777 4778 switch (aer_type) { 4779 case NVME_AER_NOTICE: 4780 requeue = nvme_handle_aen_notice(ctrl, result); 4781 break; 4782 case NVME_AER_ERROR: 4783 /* 4784 * For a persistent internal error, don't run async_event_work 4785 * to submit a new AER. The controller reset will do it. 4786 */ 4787 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4788 nvme_handle_aer_persistent_error(ctrl); 4789 return; 4790 } 4791 fallthrough; 4792 case NVME_AER_SMART: 4793 case NVME_AER_CSS: 4794 case NVME_AER_VS: 4795 trace_nvme_async_event(ctrl, aer_type); 4796 ctrl->aen_result = result; 4797 break; 4798 default: 4799 break; 4800 } 4801 4802 if (requeue) 4803 queue_work(nvme_wq, &ctrl->async_event_work); 4804 } 4805 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4806 4807 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4808 { 4809 nvme_mpath_stop(ctrl); 4810 nvme_auth_stop(ctrl); 4811 nvme_stop_keep_alive(ctrl); 4812 nvme_stop_failfast_work(ctrl); 4813 flush_work(&ctrl->async_event_work); 4814 cancel_work_sync(&ctrl->fw_act_work); 4815 if (ctrl->ops->stop_ctrl) 4816 ctrl->ops->stop_ctrl(ctrl); 4817 } 4818 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4819 4820 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4821 { 4822 nvme_start_keep_alive(ctrl); 4823 4824 nvme_enable_aen(ctrl); 4825 4826 if (ctrl->queue_count > 1) { 4827 nvme_queue_scan(ctrl); 4828 nvme_start_queues(ctrl); 4829 nvme_mpath_update(ctrl); 4830 } 4831 4832 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4833 } 4834 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4835 4836 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4837 { 4838 nvme_hwmon_exit(ctrl); 4839 nvme_fault_inject_fini(&ctrl->fault_inject); 4840 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4841 cdev_device_del(&ctrl->cdev, ctrl->device); 4842 nvme_put_ctrl(ctrl); 4843 } 4844 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4845 4846 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4847 { 4848 struct nvme_effects_log *cel; 4849 unsigned long i; 4850 4851 xa_for_each(&ctrl->cels, i, cel) { 4852 xa_erase(&ctrl->cels, i); 4853 kfree(cel); 4854 } 4855 4856 xa_destroy(&ctrl->cels); 4857 } 4858 4859 static void nvme_free_ctrl(struct device *dev) 4860 { 4861 struct nvme_ctrl *ctrl = 4862 container_of(dev, struct nvme_ctrl, ctrl_device); 4863 struct nvme_subsystem *subsys = ctrl->subsys; 4864 4865 if (!subsys || ctrl->instance != subsys->instance) 4866 ida_free(&nvme_instance_ida, ctrl->instance); 4867 4868 nvme_free_cels(ctrl); 4869 nvme_mpath_uninit(ctrl); 4870 nvme_auth_stop(ctrl); 4871 nvme_auth_free(ctrl); 4872 __free_page(ctrl->discard_page); 4873 4874 if (subsys) { 4875 mutex_lock(&nvme_subsystems_lock); 4876 list_del(&ctrl->subsys_entry); 4877 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4878 mutex_unlock(&nvme_subsystems_lock); 4879 } 4880 4881 ctrl->ops->free_ctrl(ctrl); 4882 4883 if (subsys) 4884 nvme_put_subsystem(subsys); 4885 } 4886 4887 /* 4888 * Initialize a NVMe controller structures. This needs to be called during 4889 * earliest initialization so that we have the initialized structured around 4890 * during probing. 4891 */ 4892 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4893 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4894 { 4895 int ret; 4896 4897 ctrl->state = NVME_CTRL_NEW; 4898 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4899 spin_lock_init(&ctrl->lock); 4900 mutex_init(&ctrl->scan_lock); 4901 INIT_LIST_HEAD(&ctrl->namespaces); 4902 xa_init(&ctrl->cels); 4903 init_rwsem(&ctrl->namespaces_rwsem); 4904 ctrl->dev = dev; 4905 ctrl->ops = ops; 4906 ctrl->quirks = quirks; 4907 ctrl->numa_node = NUMA_NO_NODE; 4908 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4909 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4910 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4911 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4912 init_waitqueue_head(&ctrl->state_wq); 4913 4914 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4915 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4916 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4917 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4918 4919 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4920 PAGE_SIZE); 4921 ctrl->discard_page = alloc_page(GFP_KERNEL); 4922 if (!ctrl->discard_page) { 4923 ret = -ENOMEM; 4924 goto out; 4925 } 4926 4927 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4928 if (ret < 0) 4929 goto out; 4930 ctrl->instance = ret; 4931 4932 device_initialize(&ctrl->ctrl_device); 4933 ctrl->device = &ctrl->ctrl_device; 4934 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4935 ctrl->instance); 4936 ctrl->device->class = nvme_class; 4937 ctrl->device->parent = ctrl->dev; 4938 ctrl->device->groups = nvme_dev_attr_groups; 4939 ctrl->device->release = nvme_free_ctrl; 4940 dev_set_drvdata(ctrl->device, ctrl); 4941 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4942 if (ret) 4943 goto out_release_instance; 4944 4945 nvme_get_ctrl(ctrl); 4946 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4947 ctrl->cdev.owner = ops->module; 4948 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4949 if (ret) 4950 goto out_free_name; 4951 4952 /* 4953 * Initialize latency tolerance controls. The sysfs files won't 4954 * be visible to userspace unless the device actually supports APST. 4955 */ 4956 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4957 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4958 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4959 4960 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4961 nvme_mpath_init_ctrl(ctrl); 4962 nvme_auth_init_ctrl(ctrl); 4963 4964 return 0; 4965 out_free_name: 4966 nvme_put_ctrl(ctrl); 4967 kfree_const(ctrl->device->kobj.name); 4968 out_release_instance: 4969 ida_free(&nvme_instance_ida, ctrl->instance); 4970 out: 4971 if (ctrl->discard_page) 4972 __free_page(ctrl->discard_page); 4973 return ret; 4974 } 4975 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4976 4977 static void nvme_start_ns_queue(struct nvme_ns *ns) 4978 { 4979 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4980 blk_mq_unquiesce_queue(ns->queue); 4981 } 4982 4983 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4984 { 4985 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4986 blk_mq_quiesce_queue(ns->queue); 4987 else 4988 blk_mq_wait_quiesce_done(ns->queue); 4989 } 4990 4991 /* 4992 * Prepare a queue for teardown. 4993 * 4994 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4995 * the capacity to 0 after that to avoid blocking dispatchers that may be 4996 * holding bd_butex. This will end buffered writers dirtying pages that can't 4997 * be synced. 4998 */ 4999 static void nvme_set_queue_dying(struct nvme_ns *ns) 5000 { 5001 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 5002 return; 5003 5004 blk_mark_disk_dead(ns->disk); 5005 nvme_start_ns_queue(ns); 5006 5007 set_capacity_and_notify(ns->disk, 0); 5008 } 5009 5010 /** 5011 * nvme_kill_queues(): Ends all namespace queues 5012 * @ctrl: the dead controller that needs to end 5013 * 5014 * Call this function when the driver determines it is unable to get the 5015 * controller in a state capable of servicing IO. 5016 */ 5017 void nvme_kill_queues(struct nvme_ctrl *ctrl) 5018 { 5019 struct nvme_ns *ns; 5020 5021 down_read(&ctrl->namespaces_rwsem); 5022 5023 /* Forcibly unquiesce queues to avoid blocking dispatch */ 5024 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 5025 nvme_start_admin_queue(ctrl); 5026 5027 list_for_each_entry(ns, &ctrl->namespaces, list) 5028 nvme_set_queue_dying(ns); 5029 5030 up_read(&ctrl->namespaces_rwsem); 5031 } 5032 EXPORT_SYMBOL_GPL(nvme_kill_queues); 5033 5034 void nvme_unfreeze(struct nvme_ctrl *ctrl) 5035 { 5036 struct nvme_ns *ns; 5037 5038 down_read(&ctrl->namespaces_rwsem); 5039 list_for_each_entry(ns, &ctrl->namespaces, list) 5040 blk_mq_unfreeze_queue(ns->queue); 5041 up_read(&ctrl->namespaces_rwsem); 5042 } 5043 EXPORT_SYMBOL_GPL(nvme_unfreeze); 5044 5045 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 5046 { 5047 struct nvme_ns *ns; 5048 5049 down_read(&ctrl->namespaces_rwsem); 5050 list_for_each_entry(ns, &ctrl->namespaces, list) { 5051 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 5052 if (timeout <= 0) 5053 break; 5054 } 5055 up_read(&ctrl->namespaces_rwsem); 5056 return timeout; 5057 } 5058 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 5059 5060 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 5061 { 5062 struct nvme_ns *ns; 5063 5064 down_read(&ctrl->namespaces_rwsem); 5065 list_for_each_entry(ns, &ctrl->namespaces, list) 5066 blk_mq_freeze_queue_wait(ns->queue); 5067 up_read(&ctrl->namespaces_rwsem); 5068 } 5069 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 5070 5071 void nvme_start_freeze(struct nvme_ctrl *ctrl) 5072 { 5073 struct nvme_ns *ns; 5074 5075 down_read(&ctrl->namespaces_rwsem); 5076 list_for_each_entry(ns, &ctrl->namespaces, list) 5077 blk_freeze_queue_start(ns->queue); 5078 up_read(&ctrl->namespaces_rwsem); 5079 } 5080 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5081 5082 void nvme_stop_queues(struct nvme_ctrl *ctrl) 5083 { 5084 struct nvme_ns *ns; 5085 5086 down_read(&ctrl->namespaces_rwsem); 5087 list_for_each_entry(ns, &ctrl->namespaces, list) 5088 nvme_stop_ns_queue(ns); 5089 up_read(&ctrl->namespaces_rwsem); 5090 } 5091 EXPORT_SYMBOL_GPL(nvme_stop_queues); 5092 5093 void nvme_start_queues(struct nvme_ctrl *ctrl) 5094 { 5095 struct nvme_ns *ns; 5096 5097 down_read(&ctrl->namespaces_rwsem); 5098 list_for_each_entry(ns, &ctrl->namespaces, list) 5099 nvme_start_ns_queue(ns); 5100 up_read(&ctrl->namespaces_rwsem); 5101 } 5102 EXPORT_SYMBOL_GPL(nvme_start_queues); 5103 5104 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 5105 { 5106 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5107 blk_mq_quiesce_queue(ctrl->admin_q); 5108 else 5109 blk_mq_wait_quiesce_done(ctrl->admin_q); 5110 } 5111 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 5112 5113 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 5114 { 5115 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5116 blk_mq_unquiesce_queue(ctrl->admin_q); 5117 } 5118 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 5119 5120 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5121 { 5122 struct nvme_ns *ns; 5123 5124 down_read(&ctrl->namespaces_rwsem); 5125 list_for_each_entry(ns, &ctrl->namespaces, list) 5126 blk_sync_queue(ns->queue); 5127 up_read(&ctrl->namespaces_rwsem); 5128 } 5129 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5130 5131 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5132 { 5133 nvme_sync_io_queues(ctrl); 5134 if (ctrl->admin_q) 5135 blk_sync_queue(ctrl->admin_q); 5136 } 5137 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5138 5139 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5140 { 5141 if (file->f_op != &nvme_dev_fops) 5142 return NULL; 5143 return file->private_data; 5144 } 5145 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 5146 5147 /* 5148 * Check we didn't inadvertently grow the command structure sizes: 5149 */ 5150 static inline void _nvme_check_size(void) 5151 { 5152 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5153 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5154 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5155 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5156 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5157 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5158 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5159 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5160 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5161 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5162 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5163 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5164 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5165 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5166 NVME_IDENTIFY_DATA_SIZE); 5167 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5168 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5173 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5174 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5175 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5176 } 5177 5178 5179 static int __init nvme_core_init(void) 5180 { 5181 int result = -ENOMEM; 5182 5183 _nvme_check_size(); 5184 5185 nvme_wq = alloc_workqueue("nvme-wq", 5186 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5187 if (!nvme_wq) 5188 goto out; 5189 5190 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 5191 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5192 if (!nvme_reset_wq) 5193 goto destroy_wq; 5194 5195 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5196 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5197 if (!nvme_delete_wq) 5198 goto destroy_reset_wq; 5199 5200 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5201 NVME_MINORS, "nvme"); 5202 if (result < 0) 5203 goto destroy_delete_wq; 5204 5205 nvme_class = class_create(THIS_MODULE, "nvme"); 5206 if (IS_ERR(nvme_class)) { 5207 result = PTR_ERR(nvme_class); 5208 goto unregister_chrdev; 5209 } 5210 nvme_class->dev_uevent = nvme_class_uevent; 5211 5212 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 5213 if (IS_ERR(nvme_subsys_class)) { 5214 result = PTR_ERR(nvme_subsys_class); 5215 goto destroy_class; 5216 } 5217 5218 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5219 "nvme-generic"); 5220 if (result < 0) 5221 goto destroy_subsys_class; 5222 5223 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 5224 if (IS_ERR(nvme_ns_chr_class)) { 5225 result = PTR_ERR(nvme_ns_chr_class); 5226 goto unregister_generic_ns; 5227 } 5228 5229 return 0; 5230 5231 unregister_generic_ns: 5232 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5233 destroy_subsys_class: 5234 class_destroy(nvme_subsys_class); 5235 destroy_class: 5236 class_destroy(nvme_class); 5237 unregister_chrdev: 5238 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5239 destroy_delete_wq: 5240 destroy_workqueue(nvme_delete_wq); 5241 destroy_reset_wq: 5242 destroy_workqueue(nvme_reset_wq); 5243 destroy_wq: 5244 destroy_workqueue(nvme_wq); 5245 out: 5246 return result; 5247 } 5248 5249 static void __exit nvme_core_exit(void) 5250 { 5251 class_destroy(nvme_ns_chr_class); 5252 class_destroy(nvme_subsys_class); 5253 class_destroy(nvme_class); 5254 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5255 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5256 destroy_workqueue(nvme_delete_wq); 5257 destroy_workqueue(nvme_reset_wq); 5258 destroy_workqueue(nvme_wq); 5259 ida_destroy(&nvme_ns_chr_minor_ida); 5260 ida_destroy(&nvme_instance_ida); 5261 } 5262 5263 MODULE_LICENSE("GPL"); 5264 MODULE_VERSION("1.0"); 5265 module_init(nvme_core_init); 5266 module_exit(nvme_core_exit); 5267