xref: /openbmc/linux/drivers/nvme/host/core.c (revision 0c874100)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 					   unsigned nsid);
105 
106 static void nvme_set_queue_dying(struct nvme_ns *ns)
107 {
108 	/*
109 	 * Revalidating a dead namespace sets capacity to 0. This will end
110 	 * buffered writers dirtying pages that can't be synced.
111 	 */
112 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 		return;
114 	revalidate_disk(ns->disk);
115 	blk_set_queue_dying(ns->queue);
116 	/* Forcibly unquiesce queues to avoid blocking dispatch */
117 	blk_mq_unquiesce_queue(ns->queue);
118 }
119 
120 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121 {
122 	/*
123 	 * Only new queue scan work when admin and IO queues are both alive
124 	 */
125 	if (ctrl->state == NVME_CTRL_LIVE)
126 		queue_work(nvme_wq, &ctrl->scan_work);
127 }
128 
129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130 {
131 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138 
139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140 {
141 	int ret;
142 
143 	ret = nvme_reset_ctrl(ctrl);
144 	if (!ret) {
145 		flush_work(&ctrl->reset_work);
146 		if (ctrl->state != NVME_CTRL_LIVE &&
147 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 			ret = -ENETRESET;
149 	}
150 
151 	return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154 
155 static void nvme_delete_ctrl_work(struct work_struct *work)
156 {
157 	struct nvme_ctrl *ctrl =
158 		container_of(work, struct nvme_ctrl, delete_work);
159 
160 	dev_info(ctrl->device,
161 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162 
163 	flush_work(&ctrl->reset_work);
164 	nvme_stop_ctrl(ctrl);
165 	nvme_remove_namespaces(ctrl);
166 	ctrl->ops->delete_ctrl(ctrl);
167 	nvme_uninit_ctrl(ctrl);
168 	nvme_put_ctrl(ctrl);
169 }
170 
171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172 {
173 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 		return -EBUSY;
175 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 		return -EBUSY;
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180 
181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182 {
183 	int ret = 0;
184 
185 	/*
186 	 * Keep a reference until the work is flushed since ->delete_ctrl
187 	 * can free the controller.
188 	 */
189 	nvme_get_ctrl(ctrl);
190 	ret = nvme_delete_ctrl(ctrl);
191 	if (!ret)
192 		flush_work(&ctrl->delete_work);
193 	nvme_put_ctrl(ctrl);
194 	return ret;
195 }
196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197 
198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199 {
200 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201 }
202 
203 static blk_status_t nvme_error_status(struct request *req)
204 {
205 	switch (nvme_req(req)->status & 0x7ff) {
206 	case NVME_SC_SUCCESS:
207 		return BLK_STS_OK;
208 	case NVME_SC_CAP_EXCEEDED:
209 		return BLK_STS_NOSPC;
210 	case NVME_SC_LBA_RANGE:
211 		return BLK_STS_TARGET;
212 	case NVME_SC_BAD_ATTRIBUTES:
213 	case NVME_SC_ONCS_NOT_SUPPORTED:
214 	case NVME_SC_INVALID_OPCODE:
215 	case NVME_SC_INVALID_FIELD:
216 	case NVME_SC_INVALID_NS:
217 		return BLK_STS_NOTSUPP;
218 	case NVME_SC_WRITE_FAULT:
219 	case NVME_SC_READ_ERROR:
220 	case NVME_SC_UNWRITTEN_BLOCK:
221 	case NVME_SC_ACCESS_DENIED:
222 	case NVME_SC_READ_ONLY:
223 	case NVME_SC_COMPARE_FAILED:
224 		return BLK_STS_MEDIUM;
225 	case NVME_SC_GUARD_CHECK:
226 	case NVME_SC_APPTAG_CHECK:
227 	case NVME_SC_REFTAG_CHECK:
228 	case NVME_SC_INVALID_PI:
229 		return BLK_STS_PROTECTION;
230 	case NVME_SC_RESERVATION_CONFLICT:
231 		return BLK_STS_NEXUS;
232 	default:
233 		return BLK_STS_IOERR;
234 	}
235 }
236 
237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239 	if (blk_noretry_request(req))
240 		return false;
241 	if (nvme_req(req)->status & NVME_SC_DNR)
242 		return false;
243 	if (nvme_req(req)->retries >= nvme_max_retries)
244 		return false;
245 	return true;
246 }
247 
248 void nvme_complete_rq(struct request *req)
249 {
250 	blk_status_t status = nvme_error_status(req);
251 
252 	trace_nvme_complete_rq(req);
253 
254 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
256 		    blk_path_error(status)) {
257 			nvme_failover_req(req);
258 			return;
259 		}
260 
261 		if (!blk_queue_dying(req->q)) {
262 			nvme_req(req)->retries++;
263 			blk_mq_requeue_request(req, true);
264 			return;
265 		}
266 	}
267 	blk_mq_end_request(req, status);
268 }
269 EXPORT_SYMBOL_GPL(nvme_complete_rq);
270 
271 void nvme_cancel_request(struct request *req, void *data, bool reserved)
272 {
273 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
274 				"Cancelling I/O %d", req->tag);
275 
276 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
277 	blk_mq_complete_request(req);
278 
279 }
280 EXPORT_SYMBOL_GPL(nvme_cancel_request);
281 
282 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
283 		enum nvme_ctrl_state new_state)
284 {
285 	enum nvme_ctrl_state old_state;
286 	unsigned long flags;
287 	bool changed = false;
288 
289 	spin_lock_irqsave(&ctrl->lock, flags);
290 
291 	old_state = ctrl->state;
292 	switch (new_state) {
293 	case NVME_CTRL_ADMIN_ONLY:
294 		switch (old_state) {
295 		case NVME_CTRL_CONNECTING:
296 			changed = true;
297 			/* FALLTHRU */
298 		default:
299 			break;
300 		}
301 		break;
302 	case NVME_CTRL_LIVE:
303 		switch (old_state) {
304 		case NVME_CTRL_NEW:
305 		case NVME_CTRL_RESETTING:
306 		case NVME_CTRL_CONNECTING:
307 			changed = true;
308 			/* FALLTHRU */
309 		default:
310 			break;
311 		}
312 		break;
313 	case NVME_CTRL_RESETTING:
314 		switch (old_state) {
315 		case NVME_CTRL_NEW:
316 		case NVME_CTRL_LIVE:
317 		case NVME_CTRL_ADMIN_ONLY:
318 			changed = true;
319 			/* FALLTHRU */
320 		default:
321 			break;
322 		}
323 		break;
324 	case NVME_CTRL_CONNECTING:
325 		switch (old_state) {
326 		case NVME_CTRL_NEW:
327 		case NVME_CTRL_RESETTING:
328 			changed = true;
329 			/* FALLTHRU */
330 		default:
331 			break;
332 		}
333 		break;
334 	case NVME_CTRL_DELETING:
335 		switch (old_state) {
336 		case NVME_CTRL_LIVE:
337 		case NVME_CTRL_ADMIN_ONLY:
338 		case NVME_CTRL_RESETTING:
339 		case NVME_CTRL_CONNECTING:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_DEAD:
347 		switch (old_state) {
348 		case NVME_CTRL_DELETING:
349 			changed = true;
350 			/* FALLTHRU */
351 		default:
352 			break;
353 		}
354 		break;
355 	default:
356 		break;
357 	}
358 
359 	if (changed)
360 		ctrl->state = new_state;
361 
362 	spin_unlock_irqrestore(&ctrl->lock, flags);
363 	if (changed && ctrl->state == NVME_CTRL_LIVE)
364 		nvme_kick_requeue_lists(ctrl);
365 	return changed;
366 }
367 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
368 
369 static void nvme_free_ns_head(struct kref *ref)
370 {
371 	struct nvme_ns_head *head =
372 		container_of(ref, struct nvme_ns_head, ref);
373 
374 	nvme_mpath_remove_disk(head);
375 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
376 	list_del_init(&head->entry);
377 	cleanup_srcu_struct_quiesced(&head->srcu);
378 	nvme_put_subsystem(head->subsys);
379 	kfree(head);
380 }
381 
382 static void nvme_put_ns_head(struct nvme_ns_head *head)
383 {
384 	kref_put(&head->ref, nvme_free_ns_head);
385 }
386 
387 static void nvme_free_ns(struct kref *kref)
388 {
389 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
390 
391 	if (ns->ndev)
392 		nvme_nvm_unregister(ns);
393 
394 	put_disk(ns->disk);
395 	nvme_put_ns_head(ns->head);
396 	nvme_put_ctrl(ns->ctrl);
397 	kfree(ns);
398 }
399 
400 static void nvme_put_ns(struct nvme_ns *ns)
401 {
402 	kref_put(&ns->kref, nvme_free_ns);
403 }
404 
405 static inline void nvme_clear_nvme_request(struct request *req)
406 {
407 	if (!(req->rq_flags & RQF_DONTPREP)) {
408 		nvme_req(req)->retries = 0;
409 		nvme_req(req)->flags = 0;
410 		req->rq_flags |= RQF_DONTPREP;
411 	}
412 }
413 
414 struct request *nvme_alloc_request(struct request_queue *q,
415 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
416 {
417 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
418 	struct request *req;
419 
420 	if (qid == NVME_QID_ANY) {
421 		req = blk_mq_alloc_request(q, op, flags);
422 	} else {
423 		req = blk_mq_alloc_request_hctx(q, op, flags,
424 				qid ? qid - 1 : 0);
425 	}
426 	if (IS_ERR(req))
427 		return req;
428 
429 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
430 	nvme_clear_nvme_request(req);
431 	nvme_req(req)->cmd = cmd;
432 
433 	return req;
434 }
435 EXPORT_SYMBOL_GPL(nvme_alloc_request);
436 
437 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
438 {
439 	struct nvme_command c;
440 
441 	memset(&c, 0, sizeof(c));
442 
443 	c.directive.opcode = nvme_admin_directive_send;
444 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
445 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
446 	c.directive.dtype = NVME_DIR_IDENTIFY;
447 	c.directive.tdtype = NVME_DIR_STREAMS;
448 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
449 
450 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
451 }
452 
453 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
454 {
455 	return nvme_toggle_streams(ctrl, false);
456 }
457 
458 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
459 {
460 	return nvme_toggle_streams(ctrl, true);
461 }
462 
463 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
464 				  struct streams_directive_params *s, u32 nsid)
465 {
466 	struct nvme_command c;
467 
468 	memset(&c, 0, sizeof(c));
469 	memset(s, 0, sizeof(*s));
470 
471 	c.directive.opcode = nvme_admin_directive_recv;
472 	c.directive.nsid = cpu_to_le32(nsid);
473 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
474 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
475 	c.directive.dtype = NVME_DIR_STREAMS;
476 
477 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
478 }
479 
480 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
481 {
482 	struct streams_directive_params s;
483 	int ret;
484 
485 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
486 		return 0;
487 	if (!streams)
488 		return 0;
489 
490 	ret = nvme_enable_streams(ctrl);
491 	if (ret)
492 		return ret;
493 
494 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
495 	if (ret)
496 		return ret;
497 
498 	ctrl->nssa = le16_to_cpu(s.nssa);
499 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
500 		dev_info(ctrl->device, "too few streams (%u) available\n",
501 					ctrl->nssa);
502 		nvme_disable_streams(ctrl);
503 		return 0;
504 	}
505 
506 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
507 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
508 	return 0;
509 }
510 
511 /*
512  * Check if 'req' has a write hint associated with it. If it does, assign
513  * a valid namespace stream to the write.
514  */
515 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
516 				     struct request *req, u16 *control,
517 				     u32 *dsmgmt)
518 {
519 	enum rw_hint streamid = req->write_hint;
520 
521 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
522 		streamid = 0;
523 	else {
524 		streamid--;
525 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
526 			return;
527 
528 		*control |= NVME_RW_DTYPE_STREAMS;
529 		*dsmgmt |= streamid << 16;
530 	}
531 
532 	if (streamid < ARRAY_SIZE(req->q->write_hints))
533 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
534 }
535 
536 static inline void nvme_setup_flush(struct nvme_ns *ns,
537 		struct nvme_command *cmnd)
538 {
539 	memset(cmnd, 0, sizeof(*cmnd));
540 	cmnd->common.opcode = nvme_cmd_flush;
541 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
542 }
543 
544 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
545 		struct nvme_command *cmnd)
546 {
547 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
548 	struct nvme_dsm_range *range;
549 	struct bio *bio;
550 
551 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
552 	if (!range)
553 		return BLK_STS_RESOURCE;
554 
555 	__rq_for_each_bio(bio, req) {
556 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
557 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
558 
559 		if (n < segments) {
560 			range[n].cattr = cpu_to_le32(0);
561 			range[n].nlb = cpu_to_le32(nlb);
562 			range[n].slba = cpu_to_le64(slba);
563 		}
564 		n++;
565 	}
566 
567 	if (WARN_ON_ONCE(n != segments)) {
568 		kfree(range);
569 		return BLK_STS_IOERR;
570 	}
571 
572 	memset(cmnd, 0, sizeof(*cmnd));
573 	cmnd->dsm.opcode = nvme_cmd_dsm;
574 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
575 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
576 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
577 
578 	req->special_vec.bv_page = virt_to_page(range);
579 	req->special_vec.bv_offset = offset_in_page(range);
580 	req->special_vec.bv_len = sizeof(*range) * segments;
581 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
582 
583 	return BLK_STS_OK;
584 }
585 
586 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
587 		struct request *req, struct nvme_command *cmnd)
588 {
589 	struct nvme_ctrl *ctrl = ns->ctrl;
590 	u16 control = 0;
591 	u32 dsmgmt = 0;
592 
593 	if (req->cmd_flags & REQ_FUA)
594 		control |= NVME_RW_FUA;
595 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
596 		control |= NVME_RW_LR;
597 
598 	if (req->cmd_flags & REQ_RAHEAD)
599 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
600 
601 	memset(cmnd, 0, sizeof(*cmnd));
602 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
603 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
604 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606 
607 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
608 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
609 
610 	if (ns->ms) {
611 		/*
612 		 * If formated with metadata, the block layer always provides a
613 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
614 		 * we enable the PRACT bit for protection information or set the
615 		 * namespace capacity to zero to prevent any I/O.
616 		 */
617 		if (!blk_integrity_rq(req)) {
618 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
619 				return BLK_STS_NOTSUPP;
620 			control |= NVME_RW_PRINFO_PRACT;
621 		} else if (req_op(req) == REQ_OP_WRITE) {
622 			t10_pi_prepare(req, ns->pi_type);
623 		}
624 
625 		switch (ns->pi_type) {
626 		case NVME_NS_DPS_PI_TYPE3:
627 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
628 			break;
629 		case NVME_NS_DPS_PI_TYPE1:
630 		case NVME_NS_DPS_PI_TYPE2:
631 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
632 					NVME_RW_PRINFO_PRCHK_REF;
633 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
634 			break;
635 		}
636 	}
637 
638 	cmnd->rw.control = cpu_to_le16(control);
639 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
640 	return 0;
641 }
642 
643 void nvme_cleanup_cmd(struct request *req)
644 {
645 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
646 	    nvme_req(req)->status == 0) {
647 		struct nvme_ns *ns = req->rq_disk->private_data;
648 
649 		t10_pi_complete(req, ns->pi_type,
650 				blk_rq_bytes(req) >> ns->lba_shift);
651 	}
652 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
653 		kfree(page_address(req->special_vec.bv_page) +
654 		      req->special_vec.bv_offset);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
658 
659 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
660 		struct nvme_command *cmd)
661 {
662 	blk_status_t ret = BLK_STS_OK;
663 
664 	nvme_clear_nvme_request(req);
665 
666 	switch (req_op(req)) {
667 	case REQ_OP_DRV_IN:
668 	case REQ_OP_DRV_OUT:
669 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
670 		break;
671 	case REQ_OP_FLUSH:
672 		nvme_setup_flush(ns, cmd);
673 		break;
674 	case REQ_OP_WRITE_ZEROES:
675 		/* currently only aliased to deallocate for a few ctrls: */
676 	case REQ_OP_DISCARD:
677 		ret = nvme_setup_discard(ns, req, cmd);
678 		break;
679 	case REQ_OP_READ:
680 	case REQ_OP_WRITE:
681 		ret = nvme_setup_rw(ns, req, cmd);
682 		break;
683 	default:
684 		WARN_ON_ONCE(1);
685 		return BLK_STS_IOERR;
686 	}
687 
688 	cmd->common.command_id = req->tag;
689 	trace_nvme_setup_cmd(req, cmd);
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
693 
694 /*
695  * Returns 0 on success.  If the result is negative, it's a Linux error code;
696  * if the result is positive, it's an NVM Express status code
697  */
698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 		union nvme_result *result, void *buffer, unsigned bufflen,
700 		unsigned timeout, int qid, int at_head,
701 		blk_mq_req_flags_t flags)
702 {
703 	struct request *req;
704 	int ret;
705 
706 	req = nvme_alloc_request(q, cmd, flags, qid);
707 	if (IS_ERR(req))
708 		return PTR_ERR(req);
709 
710 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
711 
712 	if (buffer && bufflen) {
713 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	blk_execute_rq(req->q, NULL, req, at_head);
719 	if (result)
720 		*result = nvme_req(req)->result;
721 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
722 		ret = -EINTR;
723 	else
724 		ret = nvme_req(req)->status;
725  out:
726 	blk_mq_free_request(req);
727 	return ret;
728 }
729 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
730 
731 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
732 		void *buffer, unsigned bufflen)
733 {
734 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
735 			NVME_QID_ANY, 0, 0);
736 }
737 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
738 
739 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
740 		unsigned len, u32 seed, bool write)
741 {
742 	struct bio_integrity_payload *bip;
743 	int ret = -ENOMEM;
744 	void *buf;
745 
746 	buf = kmalloc(len, GFP_KERNEL);
747 	if (!buf)
748 		goto out;
749 
750 	ret = -EFAULT;
751 	if (write && copy_from_user(buf, ubuf, len))
752 		goto out_free_meta;
753 
754 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
755 	if (IS_ERR(bip)) {
756 		ret = PTR_ERR(bip);
757 		goto out_free_meta;
758 	}
759 
760 	bip->bip_iter.bi_size = len;
761 	bip->bip_iter.bi_sector = seed;
762 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
763 			offset_in_page(buf));
764 	if (ret == len)
765 		return buf;
766 	ret = -ENOMEM;
767 out_free_meta:
768 	kfree(buf);
769 out:
770 	return ERR_PTR(ret);
771 }
772 
773 static int nvme_submit_user_cmd(struct request_queue *q,
774 		struct nvme_command *cmd, void __user *ubuffer,
775 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
776 		u32 meta_seed, u32 *result, unsigned timeout)
777 {
778 	bool write = nvme_is_write(cmd);
779 	struct nvme_ns *ns = q->queuedata;
780 	struct gendisk *disk = ns ? ns->disk : NULL;
781 	struct request *req;
782 	struct bio *bio = NULL;
783 	void *meta = NULL;
784 	int ret;
785 
786 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
787 	if (IS_ERR(req))
788 		return PTR_ERR(req);
789 
790 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
792 
793 	if (ubuffer && bufflen) {
794 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
795 				GFP_KERNEL);
796 		if (ret)
797 			goto out;
798 		bio = req->bio;
799 		bio->bi_disk = disk;
800 		if (disk && meta_buffer && meta_len) {
801 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
802 					meta_seed, write);
803 			if (IS_ERR(meta)) {
804 				ret = PTR_ERR(meta);
805 				goto out_unmap;
806 			}
807 			req->cmd_flags |= REQ_INTEGRITY;
808 		}
809 	}
810 
811 	blk_execute_rq(req->q, disk, req, 0);
812 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
813 		ret = -EINTR;
814 	else
815 		ret = nvme_req(req)->status;
816 	if (result)
817 		*result = le32_to_cpu(nvme_req(req)->result.u32);
818 	if (meta && !ret && !write) {
819 		if (copy_to_user(meta_buffer, meta, meta_len))
820 			ret = -EFAULT;
821 	}
822 	kfree(meta);
823  out_unmap:
824 	if (bio)
825 		blk_rq_unmap_user(bio);
826  out:
827 	blk_mq_free_request(req);
828 	return ret;
829 }
830 
831 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
832 {
833 	struct nvme_ctrl *ctrl = rq->end_io_data;
834 
835 	blk_mq_free_request(rq);
836 
837 	if (status) {
838 		dev_err(ctrl->device,
839 			"failed nvme_keep_alive_end_io error=%d\n",
840 				status);
841 		return;
842 	}
843 
844 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
845 }
846 
847 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
848 {
849 	struct request *rq;
850 
851 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
852 			NVME_QID_ANY);
853 	if (IS_ERR(rq))
854 		return PTR_ERR(rq);
855 
856 	rq->timeout = ctrl->kato * HZ;
857 	rq->end_io_data = ctrl;
858 
859 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
860 
861 	return 0;
862 }
863 
864 static void nvme_keep_alive_work(struct work_struct *work)
865 {
866 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
867 			struct nvme_ctrl, ka_work);
868 
869 	if (nvme_keep_alive(ctrl)) {
870 		/* allocation failure, reset the controller */
871 		dev_err(ctrl->device, "keep-alive failed\n");
872 		nvme_reset_ctrl(ctrl);
873 		return;
874 	}
875 }
876 
877 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
878 {
879 	if (unlikely(ctrl->kato == 0))
880 		return;
881 
882 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
883 }
884 
885 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
886 {
887 	if (unlikely(ctrl->kato == 0))
888 		return;
889 
890 	cancel_delayed_work_sync(&ctrl->ka_work);
891 }
892 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
893 
894 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
895 {
896 	struct nvme_command c = { };
897 	int error;
898 
899 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
900 	c.identify.opcode = nvme_admin_identify;
901 	c.identify.cns = NVME_ID_CNS_CTRL;
902 
903 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
904 	if (!*id)
905 		return -ENOMEM;
906 
907 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
908 			sizeof(struct nvme_id_ctrl));
909 	if (error)
910 		kfree(*id);
911 	return error;
912 }
913 
914 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
915 		struct nvme_ns_ids *ids)
916 {
917 	struct nvme_command c = { };
918 	int status;
919 	void *data;
920 	int pos;
921 	int len;
922 
923 	c.identify.opcode = nvme_admin_identify;
924 	c.identify.nsid = cpu_to_le32(nsid);
925 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
926 
927 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
928 	if (!data)
929 		return -ENOMEM;
930 
931 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
932 				      NVME_IDENTIFY_DATA_SIZE);
933 	if (status)
934 		goto free_data;
935 
936 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
937 		struct nvme_ns_id_desc *cur = data + pos;
938 
939 		if (cur->nidl == 0)
940 			break;
941 
942 		switch (cur->nidt) {
943 		case NVME_NIDT_EUI64:
944 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
945 				dev_warn(ctrl->device,
946 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
947 					 cur->nidl);
948 				goto free_data;
949 			}
950 			len = NVME_NIDT_EUI64_LEN;
951 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
952 			break;
953 		case NVME_NIDT_NGUID:
954 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
955 				dev_warn(ctrl->device,
956 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
957 					 cur->nidl);
958 				goto free_data;
959 			}
960 			len = NVME_NIDT_NGUID_LEN;
961 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
962 			break;
963 		case NVME_NIDT_UUID:
964 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
965 				dev_warn(ctrl->device,
966 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
967 					 cur->nidl);
968 				goto free_data;
969 			}
970 			len = NVME_NIDT_UUID_LEN;
971 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
972 			break;
973 		default:
974 			/* Skip unknown types */
975 			len = cur->nidl;
976 			break;
977 		}
978 
979 		len += sizeof(*cur);
980 	}
981 free_data:
982 	kfree(data);
983 	return status;
984 }
985 
986 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
987 {
988 	struct nvme_command c = { };
989 
990 	c.identify.opcode = nvme_admin_identify;
991 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
992 	c.identify.nsid = cpu_to_le32(nsid);
993 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
994 				    NVME_IDENTIFY_DATA_SIZE);
995 }
996 
997 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
998 		unsigned nsid)
999 {
1000 	struct nvme_id_ns *id;
1001 	struct nvme_command c = { };
1002 	int error;
1003 
1004 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1005 	c.identify.opcode = nvme_admin_identify;
1006 	c.identify.nsid = cpu_to_le32(nsid);
1007 	c.identify.cns = NVME_ID_CNS_NS;
1008 
1009 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1010 	if (!id)
1011 		return NULL;
1012 
1013 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1014 	if (error) {
1015 		dev_warn(ctrl->device, "Identify namespace failed\n");
1016 		kfree(id);
1017 		return NULL;
1018 	}
1019 
1020 	return id;
1021 }
1022 
1023 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1024 		      void *buffer, size_t buflen, u32 *result)
1025 {
1026 	struct nvme_command c;
1027 	union nvme_result res;
1028 	int ret;
1029 
1030 	memset(&c, 0, sizeof(c));
1031 	c.features.opcode = nvme_admin_set_features;
1032 	c.features.fid = cpu_to_le32(fid);
1033 	c.features.dword11 = cpu_to_le32(dword11);
1034 
1035 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1036 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1037 	if (ret >= 0 && result)
1038 		*result = le32_to_cpu(res.u32);
1039 	return ret;
1040 }
1041 
1042 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1043 {
1044 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1045 	u32 result;
1046 	int status, nr_io_queues;
1047 
1048 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1049 			&result);
1050 	if (status < 0)
1051 		return status;
1052 
1053 	/*
1054 	 * Degraded controllers might return an error when setting the queue
1055 	 * count.  We still want to be able to bring them online and offer
1056 	 * access to the admin queue, as that might be only way to fix them up.
1057 	 */
1058 	if (status > 0) {
1059 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1060 		*count = 0;
1061 	} else {
1062 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1063 		*count = min(*count, nr_io_queues);
1064 	}
1065 
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1069 
1070 #define NVME_AEN_SUPPORTED \
1071 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1072 
1073 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1074 {
1075 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1076 	int status;
1077 
1078 	if (!supported_aens)
1079 		return;
1080 
1081 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1082 			NULL, 0, &result);
1083 	if (status)
1084 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1085 			 supported_aens);
1086 }
1087 
1088 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1089 {
1090 	struct nvme_user_io io;
1091 	struct nvme_command c;
1092 	unsigned length, meta_len;
1093 	void __user *metadata;
1094 
1095 	if (copy_from_user(&io, uio, sizeof(io)))
1096 		return -EFAULT;
1097 	if (io.flags)
1098 		return -EINVAL;
1099 
1100 	switch (io.opcode) {
1101 	case nvme_cmd_write:
1102 	case nvme_cmd_read:
1103 	case nvme_cmd_compare:
1104 		break;
1105 	default:
1106 		return -EINVAL;
1107 	}
1108 
1109 	length = (io.nblocks + 1) << ns->lba_shift;
1110 	meta_len = (io.nblocks + 1) * ns->ms;
1111 	metadata = (void __user *)(uintptr_t)io.metadata;
1112 
1113 	if (ns->ext) {
1114 		length += meta_len;
1115 		meta_len = 0;
1116 	} else if (meta_len) {
1117 		if ((io.metadata & 3) || !io.metadata)
1118 			return -EINVAL;
1119 	}
1120 
1121 	memset(&c, 0, sizeof(c));
1122 	c.rw.opcode = io.opcode;
1123 	c.rw.flags = io.flags;
1124 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1125 	c.rw.slba = cpu_to_le64(io.slba);
1126 	c.rw.length = cpu_to_le16(io.nblocks);
1127 	c.rw.control = cpu_to_le16(io.control);
1128 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1129 	c.rw.reftag = cpu_to_le32(io.reftag);
1130 	c.rw.apptag = cpu_to_le16(io.apptag);
1131 	c.rw.appmask = cpu_to_le16(io.appmask);
1132 
1133 	return nvme_submit_user_cmd(ns->queue, &c,
1134 			(void __user *)(uintptr_t)io.addr, length,
1135 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1136 }
1137 
1138 static u32 nvme_known_admin_effects(u8 opcode)
1139 {
1140 	switch (opcode) {
1141 	case nvme_admin_format_nvm:
1142 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1143 					NVME_CMD_EFFECTS_CSE_MASK;
1144 	case nvme_admin_sanitize_nvm:
1145 		return NVME_CMD_EFFECTS_CSE_MASK;
1146 	default:
1147 		break;
1148 	}
1149 	return 0;
1150 }
1151 
1152 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1153 								u8 opcode)
1154 {
1155 	u32 effects = 0;
1156 
1157 	if (ns) {
1158 		if (ctrl->effects)
1159 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1160 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1161 			dev_warn(ctrl->device,
1162 				 "IO command:%02x has unhandled effects:%08x\n",
1163 				 opcode, effects);
1164 		return 0;
1165 	}
1166 
1167 	if (ctrl->effects)
1168 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1169 	else
1170 		effects = nvme_known_admin_effects(opcode);
1171 
1172 	/*
1173 	 * For simplicity, IO to all namespaces is quiesced even if the command
1174 	 * effects say only one namespace is affected.
1175 	 */
1176 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1177 		nvme_start_freeze(ctrl);
1178 		nvme_wait_freeze(ctrl);
1179 	}
1180 	return effects;
1181 }
1182 
1183 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1184 {
1185 	struct nvme_ns *ns;
1186 
1187 	down_read(&ctrl->namespaces_rwsem);
1188 	list_for_each_entry(ns, &ctrl->namespaces, list)
1189 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1190 			nvme_set_queue_dying(ns);
1191 	up_read(&ctrl->namespaces_rwsem);
1192 
1193 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1194 }
1195 
1196 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1197 {
1198 	/*
1199 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1200 	 * prevent memory corruption if a logical block size was changed by
1201 	 * this command.
1202 	 */
1203 	if (effects & NVME_CMD_EFFECTS_LBCC)
1204 		nvme_update_formats(ctrl);
1205 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1206 		nvme_unfreeze(ctrl);
1207 	if (effects & NVME_CMD_EFFECTS_CCC)
1208 		nvme_init_identify(ctrl);
1209 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1210 		nvme_queue_scan(ctrl);
1211 }
1212 
1213 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1214 			struct nvme_passthru_cmd __user *ucmd)
1215 {
1216 	struct nvme_passthru_cmd cmd;
1217 	struct nvme_command c;
1218 	unsigned timeout = 0;
1219 	u32 effects;
1220 	int status;
1221 
1222 	if (!capable(CAP_SYS_ADMIN))
1223 		return -EACCES;
1224 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1225 		return -EFAULT;
1226 	if (cmd.flags)
1227 		return -EINVAL;
1228 
1229 	memset(&c, 0, sizeof(c));
1230 	c.common.opcode = cmd.opcode;
1231 	c.common.flags = cmd.flags;
1232 	c.common.nsid = cpu_to_le32(cmd.nsid);
1233 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1234 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1235 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1236 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1237 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1238 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1239 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1240 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1241 
1242 	if (cmd.timeout_ms)
1243 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1244 
1245 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1246 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1247 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1248 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1249 			0, &cmd.result, timeout);
1250 	nvme_passthru_end(ctrl, effects);
1251 
1252 	if (status >= 0) {
1253 		if (put_user(cmd.result, &ucmd->result))
1254 			return -EFAULT;
1255 	}
1256 
1257 	return status;
1258 }
1259 
1260 /*
1261  * Issue ioctl requests on the first available path.  Note that unlike normal
1262  * block layer requests we will not retry failed request on another controller.
1263  */
1264 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1265 		struct nvme_ns_head **head, int *srcu_idx)
1266 {
1267 #ifdef CONFIG_NVME_MULTIPATH
1268 	if (disk->fops == &nvme_ns_head_ops) {
1269 		*head = disk->private_data;
1270 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1271 		return nvme_find_path(*head);
1272 	}
1273 #endif
1274 	*head = NULL;
1275 	*srcu_idx = -1;
1276 	return disk->private_data;
1277 }
1278 
1279 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1280 {
1281 	if (head)
1282 		srcu_read_unlock(&head->srcu, idx);
1283 }
1284 
1285 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1286 {
1287 	switch (cmd) {
1288 	case NVME_IOCTL_ID:
1289 		force_successful_syscall_return();
1290 		return ns->head->ns_id;
1291 	case NVME_IOCTL_ADMIN_CMD:
1292 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1293 	case NVME_IOCTL_IO_CMD:
1294 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1295 	case NVME_IOCTL_SUBMIT_IO:
1296 		return nvme_submit_io(ns, (void __user *)arg);
1297 	default:
1298 #ifdef CONFIG_NVM
1299 		if (ns->ndev)
1300 			return nvme_nvm_ioctl(ns, cmd, arg);
1301 #endif
1302 		if (is_sed_ioctl(cmd))
1303 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1304 					 (void __user *) arg);
1305 		return -ENOTTY;
1306 	}
1307 }
1308 
1309 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1310 		unsigned int cmd, unsigned long arg)
1311 {
1312 	struct nvme_ns_head *head = NULL;
1313 	struct nvme_ns *ns;
1314 	int srcu_idx, ret;
1315 
1316 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1317 	if (unlikely(!ns))
1318 		ret = -EWOULDBLOCK;
1319 	else
1320 		ret = nvme_ns_ioctl(ns, cmd, arg);
1321 	nvme_put_ns_from_disk(head, srcu_idx);
1322 	return ret;
1323 }
1324 
1325 static int nvme_open(struct block_device *bdev, fmode_t mode)
1326 {
1327 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1328 
1329 #ifdef CONFIG_NVME_MULTIPATH
1330 	/* should never be called due to GENHD_FL_HIDDEN */
1331 	if (WARN_ON_ONCE(ns->head->disk))
1332 		goto fail;
1333 #endif
1334 	if (!kref_get_unless_zero(&ns->kref))
1335 		goto fail;
1336 	if (!try_module_get(ns->ctrl->ops->module))
1337 		goto fail_put_ns;
1338 
1339 	return 0;
1340 
1341 fail_put_ns:
1342 	nvme_put_ns(ns);
1343 fail:
1344 	return -ENXIO;
1345 }
1346 
1347 static void nvme_release(struct gendisk *disk, fmode_t mode)
1348 {
1349 	struct nvme_ns *ns = disk->private_data;
1350 
1351 	module_put(ns->ctrl->ops->module);
1352 	nvme_put_ns(ns);
1353 }
1354 
1355 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1356 {
1357 	/* some standard values */
1358 	geo->heads = 1 << 6;
1359 	geo->sectors = 1 << 5;
1360 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1361 	return 0;
1362 }
1363 
1364 #ifdef CONFIG_BLK_DEV_INTEGRITY
1365 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1366 {
1367 	struct blk_integrity integrity;
1368 
1369 	memset(&integrity, 0, sizeof(integrity));
1370 	switch (pi_type) {
1371 	case NVME_NS_DPS_PI_TYPE3:
1372 		integrity.profile = &t10_pi_type3_crc;
1373 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1374 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1375 		break;
1376 	case NVME_NS_DPS_PI_TYPE1:
1377 	case NVME_NS_DPS_PI_TYPE2:
1378 		integrity.profile = &t10_pi_type1_crc;
1379 		integrity.tag_size = sizeof(u16);
1380 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1381 		break;
1382 	default:
1383 		integrity.profile = NULL;
1384 		break;
1385 	}
1386 	integrity.tuple_size = ms;
1387 	blk_integrity_register(disk, &integrity);
1388 	blk_queue_max_integrity_segments(disk->queue, 1);
1389 }
1390 #else
1391 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1392 {
1393 }
1394 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1395 
1396 static void nvme_set_chunk_size(struct nvme_ns *ns)
1397 {
1398 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1399 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1400 }
1401 
1402 static void nvme_config_discard(struct nvme_ns *ns)
1403 {
1404 	struct nvme_ctrl *ctrl = ns->ctrl;
1405 	struct request_queue *queue = ns->queue;
1406 	u32 size = queue_logical_block_size(queue);
1407 
1408 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1409 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1410 		return;
1411 	}
1412 
1413 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1414 		size *= ns->sws * ns->sgs;
1415 
1416 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1417 			NVME_DSM_MAX_RANGES);
1418 
1419 	queue->limits.discard_alignment = 0;
1420 	queue->limits.discard_granularity = size;
1421 
1422 	/* If discard is already enabled, don't reset queue limits */
1423 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1424 		return;
1425 
1426 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1427 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1428 
1429 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1430 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1431 }
1432 
1433 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1434 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1435 {
1436 	memset(ids, 0, sizeof(*ids));
1437 
1438 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1439 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1440 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1441 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1442 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1443 		 /* Don't treat error as fatal we potentially
1444 		  * already have a NGUID or EUI-64
1445 		  */
1446 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1447 			dev_warn(ctrl->device,
1448 				 "%s: Identify Descriptors failed\n", __func__);
1449 	}
1450 }
1451 
1452 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1453 {
1454 	return !uuid_is_null(&ids->uuid) ||
1455 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1456 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1457 }
1458 
1459 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1460 {
1461 	return uuid_equal(&a->uuid, &b->uuid) &&
1462 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1463 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1464 }
1465 
1466 static void nvme_update_disk_info(struct gendisk *disk,
1467 		struct nvme_ns *ns, struct nvme_id_ns *id)
1468 {
1469 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1470 	unsigned short bs = 1 << ns->lba_shift;
1471 
1472 	blk_mq_freeze_queue(disk->queue);
1473 	blk_integrity_unregister(disk);
1474 
1475 	blk_queue_logical_block_size(disk->queue, bs);
1476 	blk_queue_physical_block_size(disk->queue, bs);
1477 	blk_queue_io_min(disk->queue, bs);
1478 
1479 	if (ns->ms && !ns->ext &&
1480 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1481 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1482 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1483 		capacity = 0;
1484 
1485 	set_capacity(disk, capacity);
1486 	nvme_config_discard(ns);
1487 
1488 	if (id->nsattr & (1 << 0))
1489 		set_disk_ro(disk, true);
1490 	else
1491 		set_disk_ro(disk, false);
1492 
1493 	blk_mq_unfreeze_queue(disk->queue);
1494 }
1495 
1496 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1497 {
1498 	struct nvme_ns *ns = disk->private_data;
1499 
1500 	/*
1501 	 * If identify namespace failed, use default 512 byte block size so
1502 	 * block layer can use before failing read/write for 0 capacity.
1503 	 */
1504 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1505 	if (ns->lba_shift == 0)
1506 		ns->lba_shift = 9;
1507 	ns->noiob = le16_to_cpu(id->noiob);
1508 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1509 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1510 	/* the PI implementation requires metadata equal t10 pi tuple size */
1511 	if (ns->ms == sizeof(struct t10_pi_tuple))
1512 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1513 	else
1514 		ns->pi_type = 0;
1515 
1516 	if (ns->noiob)
1517 		nvme_set_chunk_size(ns);
1518 	nvme_update_disk_info(disk, ns, id);
1519 	if (ns->ndev)
1520 		nvme_nvm_update_nvm_info(ns);
1521 #ifdef CONFIG_NVME_MULTIPATH
1522 	if (ns->head->disk) {
1523 		nvme_update_disk_info(ns->head->disk, ns, id);
1524 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1525 	}
1526 #endif
1527 }
1528 
1529 static int nvme_revalidate_disk(struct gendisk *disk)
1530 {
1531 	struct nvme_ns *ns = disk->private_data;
1532 	struct nvme_ctrl *ctrl = ns->ctrl;
1533 	struct nvme_id_ns *id;
1534 	struct nvme_ns_ids ids;
1535 	int ret = 0;
1536 
1537 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1538 		set_capacity(disk, 0);
1539 		return -ENODEV;
1540 	}
1541 
1542 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1543 	if (!id)
1544 		return -ENODEV;
1545 
1546 	if (id->ncap == 0) {
1547 		ret = -ENODEV;
1548 		goto out;
1549 	}
1550 
1551 	__nvme_revalidate_disk(disk, id);
1552 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1553 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1554 		dev_err(ctrl->device,
1555 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1556 		ret = -ENODEV;
1557 	}
1558 
1559 out:
1560 	kfree(id);
1561 	return ret;
1562 }
1563 
1564 static char nvme_pr_type(enum pr_type type)
1565 {
1566 	switch (type) {
1567 	case PR_WRITE_EXCLUSIVE:
1568 		return 1;
1569 	case PR_EXCLUSIVE_ACCESS:
1570 		return 2;
1571 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1572 		return 3;
1573 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1574 		return 4;
1575 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1576 		return 5;
1577 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1578 		return 6;
1579 	default:
1580 		return 0;
1581 	}
1582 };
1583 
1584 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1585 				u64 key, u64 sa_key, u8 op)
1586 {
1587 	struct nvme_ns_head *head = NULL;
1588 	struct nvme_ns *ns;
1589 	struct nvme_command c;
1590 	int srcu_idx, ret;
1591 	u8 data[16] = { 0, };
1592 
1593 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1594 	if (unlikely(!ns))
1595 		return -EWOULDBLOCK;
1596 
1597 	put_unaligned_le64(key, &data[0]);
1598 	put_unaligned_le64(sa_key, &data[8]);
1599 
1600 	memset(&c, 0, sizeof(c));
1601 	c.common.opcode = op;
1602 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1603 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1604 
1605 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1606 	nvme_put_ns_from_disk(head, srcu_idx);
1607 	return ret;
1608 }
1609 
1610 static int nvme_pr_register(struct block_device *bdev, u64 old,
1611 		u64 new, unsigned flags)
1612 {
1613 	u32 cdw10;
1614 
1615 	if (flags & ~PR_FL_IGNORE_KEY)
1616 		return -EOPNOTSUPP;
1617 
1618 	cdw10 = old ? 2 : 0;
1619 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1620 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1621 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1622 }
1623 
1624 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1625 		enum pr_type type, unsigned flags)
1626 {
1627 	u32 cdw10;
1628 
1629 	if (flags & ~PR_FL_IGNORE_KEY)
1630 		return -EOPNOTSUPP;
1631 
1632 	cdw10 = nvme_pr_type(type) << 8;
1633 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1634 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1635 }
1636 
1637 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1638 		enum pr_type type, bool abort)
1639 {
1640 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1641 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1642 }
1643 
1644 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1645 {
1646 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1647 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1648 }
1649 
1650 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1651 {
1652 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1653 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1654 }
1655 
1656 static const struct pr_ops nvme_pr_ops = {
1657 	.pr_register	= nvme_pr_register,
1658 	.pr_reserve	= nvme_pr_reserve,
1659 	.pr_release	= nvme_pr_release,
1660 	.pr_preempt	= nvme_pr_preempt,
1661 	.pr_clear	= nvme_pr_clear,
1662 };
1663 
1664 #ifdef CONFIG_BLK_SED_OPAL
1665 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1666 		bool send)
1667 {
1668 	struct nvme_ctrl *ctrl = data;
1669 	struct nvme_command cmd;
1670 
1671 	memset(&cmd, 0, sizeof(cmd));
1672 	if (send)
1673 		cmd.common.opcode = nvme_admin_security_send;
1674 	else
1675 		cmd.common.opcode = nvme_admin_security_recv;
1676 	cmd.common.nsid = 0;
1677 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1678 	cmd.common.cdw10[1] = cpu_to_le32(len);
1679 
1680 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1681 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1682 }
1683 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1684 #endif /* CONFIG_BLK_SED_OPAL */
1685 
1686 static const struct block_device_operations nvme_fops = {
1687 	.owner		= THIS_MODULE,
1688 	.ioctl		= nvme_ioctl,
1689 	.compat_ioctl	= nvme_ioctl,
1690 	.open		= nvme_open,
1691 	.release	= nvme_release,
1692 	.getgeo		= nvme_getgeo,
1693 	.revalidate_disk= nvme_revalidate_disk,
1694 	.pr_ops		= &nvme_pr_ops,
1695 };
1696 
1697 #ifdef CONFIG_NVME_MULTIPATH
1698 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1699 {
1700 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1701 
1702 	if (!kref_get_unless_zero(&head->ref))
1703 		return -ENXIO;
1704 	return 0;
1705 }
1706 
1707 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1708 {
1709 	nvme_put_ns_head(disk->private_data);
1710 }
1711 
1712 const struct block_device_operations nvme_ns_head_ops = {
1713 	.owner		= THIS_MODULE,
1714 	.open		= nvme_ns_head_open,
1715 	.release	= nvme_ns_head_release,
1716 	.ioctl		= nvme_ioctl,
1717 	.compat_ioctl	= nvme_ioctl,
1718 	.getgeo		= nvme_getgeo,
1719 	.pr_ops		= &nvme_pr_ops,
1720 };
1721 #endif /* CONFIG_NVME_MULTIPATH */
1722 
1723 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1724 {
1725 	unsigned long timeout =
1726 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1727 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1728 	int ret;
1729 
1730 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1731 		if (csts == ~0)
1732 			return -ENODEV;
1733 		if ((csts & NVME_CSTS_RDY) == bit)
1734 			break;
1735 
1736 		msleep(100);
1737 		if (fatal_signal_pending(current))
1738 			return -EINTR;
1739 		if (time_after(jiffies, timeout)) {
1740 			dev_err(ctrl->device,
1741 				"Device not ready; aborting %s\n", enabled ?
1742 						"initialisation" : "reset");
1743 			return -ENODEV;
1744 		}
1745 	}
1746 
1747 	return ret;
1748 }
1749 
1750 /*
1751  * If the device has been passed off to us in an enabled state, just clear
1752  * the enabled bit.  The spec says we should set the 'shutdown notification
1753  * bits', but doing so may cause the device to complete commands to the
1754  * admin queue ... and we don't know what memory that might be pointing at!
1755  */
1756 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1757 {
1758 	int ret;
1759 
1760 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1761 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1762 
1763 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1764 	if (ret)
1765 		return ret;
1766 
1767 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1768 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1769 
1770 	return nvme_wait_ready(ctrl, cap, false);
1771 }
1772 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1773 
1774 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1775 {
1776 	/*
1777 	 * Default to a 4K page size, with the intention to update this
1778 	 * path in the future to accomodate architectures with differing
1779 	 * kernel and IO page sizes.
1780 	 */
1781 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1782 	int ret;
1783 
1784 	if (page_shift < dev_page_min) {
1785 		dev_err(ctrl->device,
1786 			"Minimum device page size %u too large for host (%u)\n",
1787 			1 << dev_page_min, 1 << page_shift);
1788 		return -ENODEV;
1789 	}
1790 
1791 	ctrl->page_size = 1 << page_shift;
1792 
1793 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1794 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1795 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1796 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1797 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1798 
1799 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1800 	if (ret)
1801 		return ret;
1802 	return nvme_wait_ready(ctrl, cap, true);
1803 }
1804 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1805 
1806 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1807 {
1808 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1809 	u32 csts;
1810 	int ret;
1811 
1812 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1813 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1814 
1815 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1816 	if (ret)
1817 		return ret;
1818 
1819 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1820 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1821 			break;
1822 
1823 		msleep(100);
1824 		if (fatal_signal_pending(current))
1825 			return -EINTR;
1826 		if (time_after(jiffies, timeout)) {
1827 			dev_err(ctrl->device,
1828 				"Device shutdown incomplete; abort shutdown\n");
1829 			return -ENODEV;
1830 		}
1831 	}
1832 
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1836 
1837 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1838 		struct request_queue *q)
1839 {
1840 	bool vwc = false;
1841 
1842 	if (ctrl->max_hw_sectors) {
1843 		u32 max_segments =
1844 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1845 
1846 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1847 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1848 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1849 	}
1850 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1851 	    is_power_of_2(ctrl->max_hw_sectors))
1852 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1853 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1854 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1855 		vwc = true;
1856 	blk_queue_write_cache(q, vwc, vwc);
1857 }
1858 
1859 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1860 {
1861 	__le64 ts;
1862 	int ret;
1863 
1864 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1865 		return 0;
1866 
1867 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1868 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1869 			NULL);
1870 	if (ret)
1871 		dev_warn_once(ctrl->device,
1872 			"could not set timestamp (%d)\n", ret);
1873 	return ret;
1874 }
1875 
1876 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1877 {
1878 	/*
1879 	 * APST (Autonomous Power State Transition) lets us program a
1880 	 * table of power state transitions that the controller will
1881 	 * perform automatically.  We configure it with a simple
1882 	 * heuristic: we are willing to spend at most 2% of the time
1883 	 * transitioning between power states.  Therefore, when running
1884 	 * in any given state, we will enter the next lower-power
1885 	 * non-operational state after waiting 50 * (enlat + exlat)
1886 	 * microseconds, as long as that state's exit latency is under
1887 	 * the requested maximum latency.
1888 	 *
1889 	 * We will not autonomously enter any non-operational state for
1890 	 * which the total latency exceeds ps_max_latency_us.  Users
1891 	 * can set ps_max_latency_us to zero to turn off APST.
1892 	 */
1893 
1894 	unsigned apste;
1895 	struct nvme_feat_auto_pst *table;
1896 	u64 max_lat_us = 0;
1897 	int max_ps = -1;
1898 	int ret;
1899 
1900 	/*
1901 	 * If APST isn't supported or if we haven't been initialized yet,
1902 	 * then don't do anything.
1903 	 */
1904 	if (!ctrl->apsta)
1905 		return 0;
1906 
1907 	if (ctrl->npss > 31) {
1908 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1909 		return 0;
1910 	}
1911 
1912 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1913 	if (!table)
1914 		return 0;
1915 
1916 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1917 		/* Turn off APST. */
1918 		apste = 0;
1919 		dev_dbg(ctrl->device, "APST disabled\n");
1920 	} else {
1921 		__le64 target = cpu_to_le64(0);
1922 		int state;
1923 
1924 		/*
1925 		 * Walk through all states from lowest- to highest-power.
1926 		 * According to the spec, lower-numbered states use more
1927 		 * power.  NPSS, despite the name, is the index of the
1928 		 * lowest-power state, not the number of states.
1929 		 */
1930 		for (state = (int)ctrl->npss; state >= 0; state--) {
1931 			u64 total_latency_us, exit_latency_us, transition_ms;
1932 
1933 			if (target)
1934 				table->entries[state] = target;
1935 
1936 			/*
1937 			 * Don't allow transitions to the deepest state
1938 			 * if it's quirked off.
1939 			 */
1940 			if (state == ctrl->npss &&
1941 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1942 				continue;
1943 
1944 			/*
1945 			 * Is this state a useful non-operational state for
1946 			 * higher-power states to autonomously transition to?
1947 			 */
1948 			if (!(ctrl->psd[state].flags &
1949 			      NVME_PS_FLAGS_NON_OP_STATE))
1950 				continue;
1951 
1952 			exit_latency_us =
1953 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1954 			if (exit_latency_us > ctrl->ps_max_latency_us)
1955 				continue;
1956 
1957 			total_latency_us =
1958 				exit_latency_us +
1959 				le32_to_cpu(ctrl->psd[state].entry_lat);
1960 
1961 			/*
1962 			 * This state is good.  Use it as the APST idle
1963 			 * target for higher power states.
1964 			 */
1965 			transition_ms = total_latency_us + 19;
1966 			do_div(transition_ms, 20);
1967 			if (transition_ms > (1 << 24) - 1)
1968 				transition_ms = (1 << 24) - 1;
1969 
1970 			target = cpu_to_le64((state << 3) |
1971 					     (transition_ms << 8));
1972 
1973 			if (max_ps == -1)
1974 				max_ps = state;
1975 
1976 			if (total_latency_us > max_lat_us)
1977 				max_lat_us = total_latency_us;
1978 		}
1979 
1980 		apste = 1;
1981 
1982 		if (max_ps == -1) {
1983 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1984 		} else {
1985 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1986 				max_ps, max_lat_us, (int)sizeof(*table), table);
1987 		}
1988 	}
1989 
1990 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1991 				table, sizeof(*table), NULL);
1992 	if (ret)
1993 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1994 
1995 	kfree(table);
1996 	return ret;
1997 }
1998 
1999 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2000 {
2001 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2002 	u64 latency;
2003 
2004 	switch (val) {
2005 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2006 	case PM_QOS_LATENCY_ANY:
2007 		latency = U64_MAX;
2008 		break;
2009 
2010 	default:
2011 		latency = val;
2012 	}
2013 
2014 	if (ctrl->ps_max_latency_us != latency) {
2015 		ctrl->ps_max_latency_us = latency;
2016 		nvme_configure_apst(ctrl);
2017 	}
2018 }
2019 
2020 struct nvme_core_quirk_entry {
2021 	/*
2022 	 * NVMe model and firmware strings are padded with spaces.  For
2023 	 * simplicity, strings in the quirk table are padded with NULLs
2024 	 * instead.
2025 	 */
2026 	u16 vid;
2027 	const char *mn;
2028 	const char *fr;
2029 	unsigned long quirks;
2030 };
2031 
2032 static const struct nvme_core_quirk_entry core_quirks[] = {
2033 	{
2034 		/*
2035 		 * This Toshiba device seems to die using any APST states.  See:
2036 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2037 		 */
2038 		.vid = 0x1179,
2039 		.mn = "THNSF5256GPUK TOSHIBA",
2040 		.quirks = NVME_QUIRK_NO_APST,
2041 	}
2042 };
2043 
2044 /* match is null-terminated but idstr is space-padded. */
2045 static bool string_matches(const char *idstr, const char *match, size_t len)
2046 {
2047 	size_t matchlen;
2048 
2049 	if (!match)
2050 		return true;
2051 
2052 	matchlen = strlen(match);
2053 	WARN_ON_ONCE(matchlen > len);
2054 
2055 	if (memcmp(idstr, match, matchlen))
2056 		return false;
2057 
2058 	for (; matchlen < len; matchlen++)
2059 		if (idstr[matchlen] != ' ')
2060 			return false;
2061 
2062 	return true;
2063 }
2064 
2065 static bool quirk_matches(const struct nvme_id_ctrl *id,
2066 			  const struct nvme_core_quirk_entry *q)
2067 {
2068 	return q->vid == le16_to_cpu(id->vid) &&
2069 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2070 		string_matches(id->fr, q->fr, sizeof(id->fr));
2071 }
2072 
2073 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2074 		struct nvme_id_ctrl *id)
2075 {
2076 	size_t nqnlen;
2077 	int off;
2078 
2079 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2080 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2081 		strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2082 		return;
2083 	}
2084 
2085 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2086 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2087 
2088 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2089 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2090 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2091 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2092 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2093 	off += sizeof(id->sn);
2094 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2095 	off += sizeof(id->mn);
2096 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2097 }
2098 
2099 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2100 {
2101 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2102 	kfree(subsys);
2103 }
2104 
2105 static void nvme_release_subsystem(struct device *dev)
2106 {
2107 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2108 }
2109 
2110 static void nvme_destroy_subsystem(struct kref *ref)
2111 {
2112 	struct nvme_subsystem *subsys =
2113 			container_of(ref, struct nvme_subsystem, ref);
2114 
2115 	mutex_lock(&nvme_subsystems_lock);
2116 	list_del(&subsys->entry);
2117 	mutex_unlock(&nvme_subsystems_lock);
2118 
2119 	ida_destroy(&subsys->ns_ida);
2120 	device_del(&subsys->dev);
2121 	put_device(&subsys->dev);
2122 }
2123 
2124 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2125 {
2126 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2127 }
2128 
2129 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2130 {
2131 	struct nvme_subsystem *subsys;
2132 
2133 	lockdep_assert_held(&nvme_subsystems_lock);
2134 
2135 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2136 		if (strcmp(subsys->subnqn, subsysnqn))
2137 			continue;
2138 		if (!kref_get_unless_zero(&subsys->ref))
2139 			continue;
2140 		return subsys;
2141 	}
2142 
2143 	return NULL;
2144 }
2145 
2146 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2147 	struct device_attribute subsys_attr_##_name = \
2148 		__ATTR(_name, _mode, _show, NULL)
2149 
2150 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2151 				    struct device_attribute *attr,
2152 				    char *buf)
2153 {
2154 	struct nvme_subsystem *subsys =
2155 		container_of(dev, struct nvme_subsystem, dev);
2156 
2157 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2158 }
2159 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2160 
2161 #define nvme_subsys_show_str_function(field)				\
2162 static ssize_t subsys_##field##_show(struct device *dev,		\
2163 			    struct device_attribute *attr, char *buf)	\
2164 {									\
2165 	struct nvme_subsystem *subsys =					\
2166 		container_of(dev, struct nvme_subsystem, dev);		\
2167 	return sprintf(buf, "%.*s\n",					\
2168 		       (int)sizeof(subsys->field), subsys->field);	\
2169 }									\
2170 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2171 
2172 nvme_subsys_show_str_function(model);
2173 nvme_subsys_show_str_function(serial);
2174 nvme_subsys_show_str_function(firmware_rev);
2175 
2176 static struct attribute *nvme_subsys_attrs[] = {
2177 	&subsys_attr_model.attr,
2178 	&subsys_attr_serial.attr,
2179 	&subsys_attr_firmware_rev.attr,
2180 	&subsys_attr_subsysnqn.attr,
2181 	NULL,
2182 };
2183 
2184 static struct attribute_group nvme_subsys_attrs_group = {
2185 	.attrs = nvme_subsys_attrs,
2186 };
2187 
2188 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2189 	&nvme_subsys_attrs_group,
2190 	NULL,
2191 };
2192 
2193 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2194 {
2195 	int count = 0;
2196 	struct nvme_ctrl *ctrl;
2197 
2198 	mutex_lock(&subsys->lock);
2199 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2200 		if (ctrl->state != NVME_CTRL_DELETING &&
2201 		    ctrl->state != NVME_CTRL_DEAD)
2202 			count++;
2203 	}
2204 	mutex_unlock(&subsys->lock);
2205 
2206 	return count;
2207 }
2208 
2209 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2210 {
2211 	struct nvme_subsystem *subsys, *found;
2212 	int ret;
2213 
2214 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2215 	if (!subsys)
2216 		return -ENOMEM;
2217 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2218 	if (ret < 0) {
2219 		kfree(subsys);
2220 		return ret;
2221 	}
2222 	subsys->instance = ret;
2223 	mutex_init(&subsys->lock);
2224 	kref_init(&subsys->ref);
2225 	INIT_LIST_HEAD(&subsys->ctrls);
2226 	INIT_LIST_HEAD(&subsys->nsheads);
2227 	nvme_init_subnqn(subsys, ctrl, id);
2228 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2229 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2230 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2231 	subsys->vendor_id = le16_to_cpu(id->vid);
2232 	subsys->cmic = id->cmic;
2233 
2234 	subsys->dev.class = nvme_subsys_class;
2235 	subsys->dev.release = nvme_release_subsystem;
2236 	subsys->dev.groups = nvme_subsys_attrs_groups;
2237 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2238 	device_initialize(&subsys->dev);
2239 
2240 	mutex_lock(&nvme_subsystems_lock);
2241 	found = __nvme_find_get_subsystem(subsys->subnqn);
2242 	if (found) {
2243 		/*
2244 		 * Verify that the subsystem actually supports multiple
2245 		 * controllers, else bail out.
2246 		 */
2247 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2248 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2249 			dev_err(ctrl->device,
2250 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2251 				found->subnqn);
2252 			nvme_put_subsystem(found);
2253 			ret = -EINVAL;
2254 			goto out_unlock;
2255 		}
2256 
2257 		__nvme_release_subsystem(subsys);
2258 		subsys = found;
2259 	} else {
2260 		ret = device_add(&subsys->dev);
2261 		if (ret) {
2262 			dev_err(ctrl->device,
2263 				"failed to register subsystem device.\n");
2264 			goto out_unlock;
2265 		}
2266 		ida_init(&subsys->ns_ida);
2267 		list_add_tail(&subsys->entry, &nvme_subsystems);
2268 	}
2269 
2270 	ctrl->subsys = subsys;
2271 	mutex_unlock(&nvme_subsystems_lock);
2272 
2273 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2274 			dev_name(ctrl->device))) {
2275 		dev_err(ctrl->device,
2276 			"failed to create sysfs link from subsystem.\n");
2277 		/* the transport driver will eventually put the subsystem */
2278 		return -EINVAL;
2279 	}
2280 
2281 	mutex_lock(&subsys->lock);
2282 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2283 	mutex_unlock(&subsys->lock);
2284 
2285 	return 0;
2286 
2287 out_unlock:
2288 	mutex_unlock(&nvme_subsystems_lock);
2289 	put_device(&subsys->dev);
2290 	return ret;
2291 }
2292 
2293 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2294 		void *log, size_t size, u64 offset)
2295 {
2296 	struct nvme_command c = { };
2297 	unsigned long dwlen = size / 4 - 1;
2298 
2299 	c.get_log_page.opcode = nvme_admin_get_log_page;
2300 	c.get_log_page.nsid = cpu_to_le32(nsid);
2301 	c.get_log_page.lid = log_page;
2302 	c.get_log_page.lsp = lsp;
2303 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2304 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2305 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2306 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2307 
2308 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2309 }
2310 
2311 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2312 {
2313 	int ret;
2314 
2315 	if (!ctrl->effects)
2316 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2317 
2318 	if (!ctrl->effects)
2319 		return 0;
2320 
2321 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2322 			ctrl->effects, sizeof(*ctrl->effects), 0);
2323 	if (ret) {
2324 		kfree(ctrl->effects);
2325 		ctrl->effects = NULL;
2326 	}
2327 	return ret;
2328 }
2329 
2330 /*
2331  * Initialize the cached copies of the Identify data and various controller
2332  * register in our nvme_ctrl structure.  This should be called as soon as
2333  * the admin queue is fully up and running.
2334  */
2335 int nvme_init_identify(struct nvme_ctrl *ctrl)
2336 {
2337 	struct nvme_id_ctrl *id;
2338 	u64 cap;
2339 	int ret, page_shift;
2340 	u32 max_hw_sectors;
2341 	bool prev_apst_enabled;
2342 
2343 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2344 	if (ret) {
2345 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2346 		return ret;
2347 	}
2348 
2349 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2350 	if (ret) {
2351 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2352 		return ret;
2353 	}
2354 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2355 
2356 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2357 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2358 
2359 	ret = nvme_identify_ctrl(ctrl, &id);
2360 	if (ret) {
2361 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2362 		return -EIO;
2363 	}
2364 
2365 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2366 		ret = nvme_get_effects_log(ctrl);
2367 		if (ret < 0)
2368 			goto out_free;
2369 	}
2370 
2371 	if (!ctrl->identified) {
2372 		int i;
2373 
2374 		ret = nvme_init_subsystem(ctrl, id);
2375 		if (ret)
2376 			goto out_free;
2377 
2378 		/*
2379 		 * Check for quirks.  Quirk can depend on firmware version,
2380 		 * so, in principle, the set of quirks present can change
2381 		 * across a reset.  As a possible future enhancement, we
2382 		 * could re-scan for quirks every time we reinitialize
2383 		 * the device, but we'd have to make sure that the driver
2384 		 * behaves intelligently if the quirks change.
2385 		 */
2386 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2387 			if (quirk_matches(id, &core_quirks[i]))
2388 				ctrl->quirks |= core_quirks[i].quirks;
2389 		}
2390 	}
2391 
2392 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2393 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2394 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2395 	}
2396 
2397 	ctrl->oacs = le16_to_cpu(id->oacs);
2398 	ctrl->oncs = le16_to_cpup(&id->oncs);
2399 	ctrl->oaes = le32_to_cpu(id->oaes);
2400 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2401 	ctrl->vwc = id->vwc;
2402 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2403 	if (id->mdts)
2404 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2405 	else
2406 		max_hw_sectors = UINT_MAX;
2407 	ctrl->max_hw_sectors =
2408 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2409 
2410 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2411 	ctrl->sgls = le32_to_cpu(id->sgls);
2412 	ctrl->kas = le16_to_cpu(id->kas);
2413 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2414 
2415 	if (id->rtd3e) {
2416 		/* us -> s */
2417 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2418 
2419 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2420 						 shutdown_timeout, 60);
2421 
2422 		if (ctrl->shutdown_timeout != shutdown_timeout)
2423 			dev_info(ctrl->device,
2424 				 "Shutdown timeout set to %u seconds\n",
2425 				 ctrl->shutdown_timeout);
2426 	} else
2427 		ctrl->shutdown_timeout = shutdown_timeout;
2428 
2429 	ctrl->npss = id->npss;
2430 	ctrl->apsta = id->apsta;
2431 	prev_apst_enabled = ctrl->apst_enabled;
2432 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2433 		if (force_apst && id->apsta) {
2434 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2435 			ctrl->apst_enabled = true;
2436 		} else {
2437 			ctrl->apst_enabled = false;
2438 		}
2439 	} else {
2440 		ctrl->apst_enabled = id->apsta;
2441 	}
2442 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2443 
2444 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2445 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2446 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2447 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2448 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2449 
2450 		/*
2451 		 * In fabrics we need to verify the cntlid matches the
2452 		 * admin connect
2453 		 */
2454 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2455 			ret = -EINVAL;
2456 			goto out_free;
2457 		}
2458 
2459 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2460 			dev_err(ctrl->device,
2461 				"keep-alive support is mandatory for fabrics\n");
2462 			ret = -EINVAL;
2463 			goto out_free;
2464 		}
2465 	} else {
2466 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2467 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2468 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2469 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2470 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2471 	}
2472 
2473 	ret = nvme_mpath_init(ctrl, id);
2474 	kfree(id);
2475 
2476 	if (ret < 0)
2477 		return ret;
2478 
2479 	if (ctrl->apst_enabled && !prev_apst_enabled)
2480 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2481 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2482 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2483 
2484 	ret = nvme_configure_apst(ctrl);
2485 	if (ret < 0)
2486 		return ret;
2487 
2488 	ret = nvme_configure_timestamp(ctrl);
2489 	if (ret < 0)
2490 		return ret;
2491 
2492 	ret = nvme_configure_directives(ctrl);
2493 	if (ret < 0)
2494 		return ret;
2495 
2496 	ctrl->identified = true;
2497 
2498 	return 0;
2499 
2500 out_free:
2501 	kfree(id);
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(nvme_init_identify);
2505 
2506 static int nvme_dev_open(struct inode *inode, struct file *file)
2507 {
2508 	struct nvme_ctrl *ctrl =
2509 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2510 
2511 	switch (ctrl->state) {
2512 	case NVME_CTRL_LIVE:
2513 	case NVME_CTRL_ADMIN_ONLY:
2514 		break;
2515 	default:
2516 		return -EWOULDBLOCK;
2517 	}
2518 
2519 	file->private_data = ctrl;
2520 	return 0;
2521 }
2522 
2523 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2524 {
2525 	struct nvme_ns *ns;
2526 	int ret;
2527 
2528 	down_read(&ctrl->namespaces_rwsem);
2529 	if (list_empty(&ctrl->namespaces)) {
2530 		ret = -ENOTTY;
2531 		goto out_unlock;
2532 	}
2533 
2534 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2535 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2536 		dev_warn(ctrl->device,
2537 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2538 		ret = -EINVAL;
2539 		goto out_unlock;
2540 	}
2541 
2542 	dev_warn(ctrl->device,
2543 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2544 	kref_get(&ns->kref);
2545 	up_read(&ctrl->namespaces_rwsem);
2546 
2547 	ret = nvme_user_cmd(ctrl, ns, argp);
2548 	nvme_put_ns(ns);
2549 	return ret;
2550 
2551 out_unlock:
2552 	up_read(&ctrl->namespaces_rwsem);
2553 	return ret;
2554 }
2555 
2556 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2557 		unsigned long arg)
2558 {
2559 	struct nvme_ctrl *ctrl = file->private_data;
2560 	void __user *argp = (void __user *)arg;
2561 
2562 	switch (cmd) {
2563 	case NVME_IOCTL_ADMIN_CMD:
2564 		return nvme_user_cmd(ctrl, NULL, argp);
2565 	case NVME_IOCTL_IO_CMD:
2566 		return nvme_dev_user_cmd(ctrl, argp);
2567 	case NVME_IOCTL_RESET:
2568 		dev_warn(ctrl->device, "resetting controller\n");
2569 		return nvme_reset_ctrl_sync(ctrl);
2570 	case NVME_IOCTL_SUBSYS_RESET:
2571 		return nvme_reset_subsystem(ctrl);
2572 	case NVME_IOCTL_RESCAN:
2573 		nvme_queue_scan(ctrl);
2574 		return 0;
2575 	default:
2576 		return -ENOTTY;
2577 	}
2578 }
2579 
2580 static const struct file_operations nvme_dev_fops = {
2581 	.owner		= THIS_MODULE,
2582 	.open		= nvme_dev_open,
2583 	.unlocked_ioctl	= nvme_dev_ioctl,
2584 	.compat_ioctl	= nvme_dev_ioctl,
2585 };
2586 
2587 static ssize_t nvme_sysfs_reset(struct device *dev,
2588 				struct device_attribute *attr, const char *buf,
2589 				size_t count)
2590 {
2591 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2592 	int ret;
2593 
2594 	ret = nvme_reset_ctrl_sync(ctrl);
2595 	if (ret < 0)
2596 		return ret;
2597 	return count;
2598 }
2599 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2600 
2601 static ssize_t nvme_sysfs_rescan(struct device *dev,
2602 				struct device_attribute *attr, const char *buf,
2603 				size_t count)
2604 {
2605 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2606 
2607 	nvme_queue_scan(ctrl);
2608 	return count;
2609 }
2610 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2611 
2612 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2613 {
2614 	struct gendisk *disk = dev_to_disk(dev);
2615 
2616 	if (disk->fops == &nvme_fops)
2617 		return nvme_get_ns_from_dev(dev)->head;
2618 	else
2619 		return disk->private_data;
2620 }
2621 
2622 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2623 		char *buf)
2624 {
2625 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2626 	struct nvme_ns_ids *ids = &head->ids;
2627 	struct nvme_subsystem *subsys = head->subsys;
2628 	int serial_len = sizeof(subsys->serial);
2629 	int model_len = sizeof(subsys->model);
2630 
2631 	if (!uuid_is_null(&ids->uuid))
2632 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2633 
2634 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2635 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2636 
2637 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2638 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2639 
2640 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2641 				  subsys->serial[serial_len - 1] == '\0'))
2642 		serial_len--;
2643 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2644 				 subsys->model[model_len - 1] == '\0'))
2645 		model_len--;
2646 
2647 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2648 		serial_len, subsys->serial, model_len, subsys->model,
2649 		head->ns_id);
2650 }
2651 static DEVICE_ATTR_RO(wwid);
2652 
2653 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2654 		char *buf)
2655 {
2656 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2657 }
2658 static DEVICE_ATTR_RO(nguid);
2659 
2660 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2661 		char *buf)
2662 {
2663 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2664 
2665 	/* For backward compatibility expose the NGUID to userspace if
2666 	 * we have no UUID set
2667 	 */
2668 	if (uuid_is_null(&ids->uuid)) {
2669 		printk_ratelimited(KERN_WARNING
2670 				   "No UUID available providing old NGUID\n");
2671 		return sprintf(buf, "%pU\n", ids->nguid);
2672 	}
2673 	return sprintf(buf, "%pU\n", &ids->uuid);
2674 }
2675 static DEVICE_ATTR_RO(uuid);
2676 
2677 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2678 		char *buf)
2679 {
2680 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2681 }
2682 static DEVICE_ATTR_RO(eui);
2683 
2684 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2685 		char *buf)
2686 {
2687 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2688 }
2689 static DEVICE_ATTR_RO(nsid);
2690 
2691 static struct attribute *nvme_ns_id_attrs[] = {
2692 	&dev_attr_wwid.attr,
2693 	&dev_attr_uuid.attr,
2694 	&dev_attr_nguid.attr,
2695 	&dev_attr_eui.attr,
2696 	&dev_attr_nsid.attr,
2697 #ifdef CONFIG_NVME_MULTIPATH
2698 	&dev_attr_ana_grpid.attr,
2699 	&dev_attr_ana_state.attr,
2700 #endif
2701 	NULL,
2702 };
2703 
2704 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2705 		struct attribute *a, int n)
2706 {
2707 	struct device *dev = container_of(kobj, struct device, kobj);
2708 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2709 
2710 	if (a == &dev_attr_uuid.attr) {
2711 		if (uuid_is_null(&ids->uuid) &&
2712 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2713 			return 0;
2714 	}
2715 	if (a == &dev_attr_nguid.attr) {
2716 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2717 			return 0;
2718 	}
2719 	if (a == &dev_attr_eui.attr) {
2720 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2721 			return 0;
2722 	}
2723 #ifdef CONFIG_NVME_MULTIPATH
2724 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2725 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2726 			return 0;
2727 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2728 			return 0;
2729 	}
2730 #endif
2731 	return a->mode;
2732 }
2733 
2734 static const struct attribute_group nvme_ns_id_attr_group = {
2735 	.attrs		= nvme_ns_id_attrs,
2736 	.is_visible	= nvme_ns_id_attrs_are_visible,
2737 };
2738 
2739 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2740 	&nvme_ns_id_attr_group,
2741 #ifdef CONFIG_NVM
2742 	&nvme_nvm_attr_group,
2743 #endif
2744 	NULL,
2745 };
2746 
2747 #define nvme_show_str_function(field)						\
2748 static ssize_t  field##_show(struct device *dev,				\
2749 			    struct device_attribute *attr, char *buf)		\
2750 {										\
2751         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2752         return sprintf(buf, "%.*s\n",						\
2753 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2754 }										\
2755 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2756 
2757 nvme_show_str_function(model);
2758 nvme_show_str_function(serial);
2759 nvme_show_str_function(firmware_rev);
2760 
2761 #define nvme_show_int_function(field)						\
2762 static ssize_t  field##_show(struct device *dev,				\
2763 			    struct device_attribute *attr, char *buf)		\
2764 {										\
2765         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2766         return sprintf(buf, "%d\n", ctrl->field);	\
2767 }										\
2768 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2769 
2770 nvme_show_int_function(cntlid);
2771 
2772 static ssize_t nvme_sysfs_delete(struct device *dev,
2773 				struct device_attribute *attr, const char *buf,
2774 				size_t count)
2775 {
2776 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2777 
2778 	if (device_remove_file_self(dev, attr))
2779 		nvme_delete_ctrl_sync(ctrl);
2780 	return count;
2781 }
2782 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2783 
2784 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2785 					 struct device_attribute *attr,
2786 					 char *buf)
2787 {
2788 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2789 
2790 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2791 }
2792 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2793 
2794 static ssize_t nvme_sysfs_show_state(struct device *dev,
2795 				     struct device_attribute *attr,
2796 				     char *buf)
2797 {
2798 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2799 	static const char *const state_name[] = {
2800 		[NVME_CTRL_NEW]		= "new",
2801 		[NVME_CTRL_LIVE]	= "live",
2802 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2803 		[NVME_CTRL_RESETTING]	= "resetting",
2804 		[NVME_CTRL_CONNECTING]	= "connecting",
2805 		[NVME_CTRL_DELETING]	= "deleting",
2806 		[NVME_CTRL_DEAD]	= "dead",
2807 	};
2808 
2809 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2810 	    state_name[ctrl->state])
2811 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2812 
2813 	return sprintf(buf, "unknown state\n");
2814 }
2815 
2816 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2817 
2818 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2819 					 struct device_attribute *attr,
2820 					 char *buf)
2821 {
2822 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2823 
2824 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2825 }
2826 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2827 
2828 static ssize_t nvme_sysfs_show_address(struct device *dev,
2829 					 struct device_attribute *attr,
2830 					 char *buf)
2831 {
2832 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2833 
2834 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2835 }
2836 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2837 
2838 static struct attribute *nvme_dev_attrs[] = {
2839 	&dev_attr_reset_controller.attr,
2840 	&dev_attr_rescan_controller.attr,
2841 	&dev_attr_model.attr,
2842 	&dev_attr_serial.attr,
2843 	&dev_attr_firmware_rev.attr,
2844 	&dev_attr_cntlid.attr,
2845 	&dev_attr_delete_controller.attr,
2846 	&dev_attr_transport.attr,
2847 	&dev_attr_subsysnqn.attr,
2848 	&dev_attr_address.attr,
2849 	&dev_attr_state.attr,
2850 	NULL
2851 };
2852 
2853 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2854 		struct attribute *a, int n)
2855 {
2856 	struct device *dev = container_of(kobj, struct device, kobj);
2857 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2858 
2859 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2860 		return 0;
2861 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2862 		return 0;
2863 
2864 	return a->mode;
2865 }
2866 
2867 static struct attribute_group nvme_dev_attrs_group = {
2868 	.attrs		= nvme_dev_attrs,
2869 	.is_visible	= nvme_dev_attrs_are_visible,
2870 };
2871 
2872 static const struct attribute_group *nvme_dev_attr_groups[] = {
2873 	&nvme_dev_attrs_group,
2874 	NULL,
2875 };
2876 
2877 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2878 		unsigned nsid)
2879 {
2880 	struct nvme_ns_head *h;
2881 
2882 	lockdep_assert_held(&subsys->lock);
2883 
2884 	list_for_each_entry(h, &subsys->nsheads, entry) {
2885 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2886 			return h;
2887 	}
2888 
2889 	return NULL;
2890 }
2891 
2892 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2893 		struct nvme_ns_head *new)
2894 {
2895 	struct nvme_ns_head *h;
2896 
2897 	lockdep_assert_held(&subsys->lock);
2898 
2899 	list_for_each_entry(h, &subsys->nsheads, entry) {
2900 		if (nvme_ns_ids_valid(&new->ids) &&
2901 		    !list_empty(&h->list) &&
2902 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2903 			return -EINVAL;
2904 	}
2905 
2906 	return 0;
2907 }
2908 
2909 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2910 		unsigned nsid, struct nvme_id_ns *id)
2911 {
2912 	struct nvme_ns_head *head;
2913 	size_t size = sizeof(*head);
2914 	int ret = -ENOMEM;
2915 
2916 #ifdef CONFIG_NVME_MULTIPATH
2917 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
2918 #endif
2919 
2920 	head = kzalloc(size, GFP_KERNEL);
2921 	if (!head)
2922 		goto out;
2923 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2924 	if (ret < 0)
2925 		goto out_free_head;
2926 	head->instance = ret;
2927 	INIT_LIST_HEAD(&head->list);
2928 	ret = init_srcu_struct(&head->srcu);
2929 	if (ret)
2930 		goto out_ida_remove;
2931 	head->subsys = ctrl->subsys;
2932 	head->ns_id = nsid;
2933 	kref_init(&head->ref);
2934 
2935 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2936 
2937 	ret = __nvme_check_ids(ctrl->subsys, head);
2938 	if (ret) {
2939 		dev_err(ctrl->device,
2940 			"duplicate IDs for nsid %d\n", nsid);
2941 		goto out_cleanup_srcu;
2942 	}
2943 
2944 	ret = nvme_mpath_alloc_disk(ctrl, head);
2945 	if (ret)
2946 		goto out_cleanup_srcu;
2947 
2948 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2949 
2950 	kref_get(&ctrl->subsys->ref);
2951 
2952 	return head;
2953 out_cleanup_srcu:
2954 	cleanup_srcu_struct(&head->srcu);
2955 out_ida_remove:
2956 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2957 out_free_head:
2958 	kfree(head);
2959 out:
2960 	return ERR_PTR(ret);
2961 }
2962 
2963 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2964 		struct nvme_id_ns *id)
2965 {
2966 	struct nvme_ctrl *ctrl = ns->ctrl;
2967 	bool is_shared = id->nmic & (1 << 0);
2968 	struct nvme_ns_head *head = NULL;
2969 	int ret = 0;
2970 
2971 	mutex_lock(&ctrl->subsys->lock);
2972 	if (is_shared)
2973 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2974 	if (!head) {
2975 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2976 		if (IS_ERR(head)) {
2977 			ret = PTR_ERR(head);
2978 			goto out_unlock;
2979 		}
2980 	} else {
2981 		struct nvme_ns_ids ids;
2982 
2983 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2984 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2985 			dev_err(ctrl->device,
2986 				"IDs don't match for shared namespace %d\n",
2987 					nsid);
2988 			ret = -EINVAL;
2989 			goto out_unlock;
2990 		}
2991 	}
2992 
2993 	list_add_tail(&ns->siblings, &head->list);
2994 	ns->head = head;
2995 
2996 out_unlock:
2997 	mutex_unlock(&ctrl->subsys->lock);
2998 	return ret;
2999 }
3000 
3001 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3002 {
3003 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3004 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3005 
3006 	return nsa->head->ns_id - nsb->head->ns_id;
3007 }
3008 
3009 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3010 {
3011 	struct nvme_ns *ns, *ret = NULL;
3012 
3013 	down_read(&ctrl->namespaces_rwsem);
3014 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3015 		if (ns->head->ns_id == nsid) {
3016 			if (!kref_get_unless_zero(&ns->kref))
3017 				continue;
3018 			ret = ns;
3019 			break;
3020 		}
3021 		if (ns->head->ns_id > nsid)
3022 			break;
3023 	}
3024 	up_read(&ctrl->namespaces_rwsem);
3025 	return ret;
3026 }
3027 
3028 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3029 {
3030 	struct streams_directive_params s;
3031 	int ret;
3032 
3033 	if (!ctrl->nr_streams)
3034 		return 0;
3035 
3036 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3037 	if (ret)
3038 		return ret;
3039 
3040 	ns->sws = le32_to_cpu(s.sws);
3041 	ns->sgs = le16_to_cpu(s.sgs);
3042 
3043 	if (ns->sws) {
3044 		unsigned int bs = 1 << ns->lba_shift;
3045 
3046 		blk_queue_io_min(ns->queue, bs * ns->sws);
3047 		if (ns->sgs)
3048 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3055 {
3056 	struct nvme_ns *ns;
3057 	struct gendisk *disk;
3058 	struct nvme_id_ns *id;
3059 	char disk_name[DISK_NAME_LEN];
3060 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3061 
3062 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3063 	if (!ns)
3064 		return;
3065 
3066 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3067 	if (IS_ERR(ns->queue))
3068 		goto out_free_ns;
3069 
3070 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3071 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3072 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3073 
3074 	ns->queue->queuedata = ns;
3075 	ns->ctrl = ctrl;
3076 
3077 	kref_init(&ns->kref);
3078 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3079 
3080 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3081 	nvme_set_queue_limits(ctrl, ns->queue);
3082 
3083 	id = nvme_identify_ns(ctrl, nsid);
3084 	if (!id)
3085 		goto out_free_queue;
3086 
3087 	if (id->ncap == 0)
3088 		goto out_free_id;
3089 
3090 	if (nvme_init_ns_head(ns, nsid, id))
3091 		goto out_free_id;
3092 	nvme_setup_streams_ns(ctrl, ns);
3093 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3094 
3095 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3096 		if (nvme_nvm_register(ns, disk_name, node)) {
3097 			dev_warn(ctrl->device, "LightNVM init failure\n");
3098 			goto out_unlink_ns;
3099 		}
3100 	}
3101 
3102 	disk = alloc_disk_node(0, node);
3103 	if (!disk)
3104 		goto out_unlink_ns;
3105 
3106 	disk->fops = &nvme_fops;
3107 	disk->private_data = ns;
3108 	disk->queue = ns->queue;
3109 	disk->flags = flags;
3110 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3111 	ns->disk = disk;
3112 
3113 	__nvme_revalidate_disk(disk, id);
3114 
3115 	down_write(&ctrl->namespaces_rwsem);
3116 	list_add_tail(&ns->list, &ctrl->namespaces);
3117 	up_write(&ctrl->namespaces_rwsem);
3118 
3119 	nvme_get_ctrl(ctrl);
3120 
3121 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3122 
3123 	nvme_mpath_add_disk(ns, id);
3124 	nvme_fault_inject_init(ns);
3125 	kfree(id);
3126 
3127 	return;
3128  out_unlink_ns:
3129 	mutex_lock(&ctrl->subsys->lock);
3130 	list_del_rcu(&ns->siblings);
3131 	mutex_unlock(&ctrl->subsys->lock);
3132  out_free_id:
3133 	kfree(id);
3134  out_free_queue:
3135 	blk_cleanup_queue(ns->queue);
3136  out_free_ns:
3137 	kfree(ns);
3138 }
3139 
3140 static void nvme_ns_remove(struct nvme_ns *ns)
3141 {
3142 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3143 		return;
3144 
3145 	nvme_fault_inject_fini(ns);
3146 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3147 		del_gendisk(ns->disk);
3148 		blk_cleanup_queue(ns->queue);
3149 		if (blk_get_integrity(ns->disk))
3150 			blk_integrity_unregister(ns->disk);
3151 	}
3152 
3153 	mutex_lock(&ns->ctrl->subsys->lock);
3154 	list_del_rcu(&ns->siblings);
3155 	nvme_mpath_clear_current_path(ns);
3156 	mutex_unlock(&ns->ctrl->subsys->lock);
3157 
3158 	down_write(&ns->ctrl->namespaces_rwsem);
3159 	list_del_init(&ns->list);
3160 	up_write(&ns->ctrl->namespaces_rwsem);
3161 
3162 	synchronize_srcu(&ns->head->srcu);
3163 	nvme_mpath_check_last_path(ns);
3164 	nvme_put_ns(ns);
3165 }
3166 
3167 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3168 {
3169 	struct nvme_ns *ns;
3170 
3171 	ns = nvme_find_get_ns(ctrl, nsid);
3172 	if (ns) {
3173 		if (ns->disk && revalidate_disk(ns->disk))
3174 			nvme_ns_remove(ns);
3175 		nvme_put_ns(ns);
3176 	} else
3177 		nvme_alloc_ns(ctrl, nsid);
3178 }
3179 
3180 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3181 					unsigned nsid)
3182 {
3183 	struct nvme_ns *ns, *next;
3184 	LIST_HEAD(rm_list);
3185 
3186 	down_write(&ctrl->namespaces_rwsem);
3187 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3188 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3189 			list_move_tail(&ns->list, &rm_list);
3190 	}
3191 	up_write(&ctrl->namespaces_rwsem);
3192 
3193 	list_for_each_entry_safe(ns, next, &rm_list, list)
3194 		nvme_ns_remove(ns);
3195 
3196 }
3197 
3198 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3199 {
3200 	struct nvme_ns *ns;
3201 	__le32 *ns_list;
3202 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3203 	int ret = 0;
3204 
3205 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3206 	if (!ns_list)
3207 		return -ENOMEM;
3208 
3209 	for (i = 0; i < num_lists; i++) {
3210 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3211 		if (ret)
3212 			goto free;
3213 
3214 		for (j = 0; j < min(nn, 1024U); j++) {
3215 			nsid = le32_to_cpu(ns_list[j]);
3216 			if (!nsid)
3217 				goto out;
3218 
3219 			nvme_validate_ns(ctrl, nsid);
3220 
3221 			while (++prev < nsid) {
3222 				ns = nvme_find_get_ns(ctrl, prev);
3223 				if (ns) {
3224 					nvme_ns_remove(ns);
3225 					nvme_put_ns(ns);
3226 				}
3227 			}
3228 		}
3229 		nn -= j;
3230 	}
3231  out:
3232 	nvme_remove_invalid_namespaces(ctrl, prev);
3233  free:
3234 	kfree(ns_list);
3235 	return ret;
3236 }
3237 
3238 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3239 {
3240 	unsigned i;
3241 
3242 	for (i = 1; i <= nn; i++)
3243 		nvme_validate_ns(ctrl, i);
3244 
3245 	nvme_remove_invalid_namespaces(ctrl, nn);
3246 }
3247 
3248 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3249 {
3250 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3251 	__le32 *log;
3252 	int error;
3253 
3254 	log = kzalloc(log_size, GFP_KERNEL);
3255 	if (!log)
3256 		return;
3257 
3258 	/*
3259 	 * We need to read the log to clear the AEN, but we don't want to rely
3260 	 * on it for the changed namespace information as userspace could have
3261 	 * raced with us in reading the log page, which could cause us to miss
3262 	 * updates.
3263 	 */
3264 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3265 			log_size, 0);
3266 	if (error)
3267 		dev_warn(ctrl->device,
3268 			"reading changed ns log failed: %d\n", error);
3269 
3270 	kfree(log);
3271 }
3272 
3273 static void nvme_scan_work(struct work_struct *work)
3274 {
3275 	struct nvme_ctrl *ctrl =
3276 		container_of(work, struct nvme_ctrl, scan_work);
3277 	struct nvme_id_ctrl *id;
3278 	unsigned nn;
3279 
3280 	if (ctrl->state != NVME_CTRL_LIVE)
3281 		return;
3282 
3283 	WARN_ON_ONCE(!ctrl->tagset);
3284 
3285 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3286 		dev_info(ctrl->device, "rescanning namespaces.\n");
3287 		nvme_clear_changed_ns_log(ctrl);
3288 	}
3289 
3290 	if (nvme_identify_ctrl(ctrl, &id))
3291 		return;
3292 
3293 	nn = le32_to_cpu(id->nn);
3294 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3295 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3296 		if (!nvme_scan_ns_list(ctrl, nn))
3297 			goto out_free_id;
3298 	}
3299 	nvme_scan_ns_sequential(ctrl, nn);
3300 out_free_id:
3301 	kfree(id);
3302 	down_write(&ctrl->namespaces_rwsem);
3303 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3304 	up_write(&ctrl->namespaces_rwsem);
3305 }
3306 
3307 /*
3308  * This function iterates the namespace list unlocked to allow recovery from
3309  * controller failure. It is up to the caller to ensure the namespace list is
3310  * not modified by scan work while this function is executing.
3311  */
3312 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3313 {
3314 	struct nvme_ns *ns, *next;
3315 	LIST_HEAD(ns_list);
3316 
3317 	/*
3318 	 * The dead states indicates the controller was not gracefully
3319 	 * disconnected. In that case, we won't be able to flush any data while
3320 	 * removing the namespaces' disks; fail all the queues now to avoid
3321 	 * potentially having to clean up the failed sync later.
3322 	 */
3323 	if (ctrl->state == NVME_CTRL_DEAD)
3324 		nvme_kill_queues(ctrl);
3325 
3326 	down_write(&ctrl->namespaces_rwsem);
3327 	list_splice_init(&ctrl->namespaces, &ns_list);
3328 	up_write(&ctrl->namespaces_rwsem);
3329 
3330 	list_for_each_entry_safe(ns, next, &ns_list, list)
3331 		nvme_ns_remove(ns);
3332 }
3333 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3334 
3335 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3336 {
3337 	char *envp[2] = { NULL, NULL };
3338 	u32 aen_result = ctrl->aen_result;
3339 
3340 	ctrl->aen_result = 0;
3341 	if (!aen_result)
3342 		return;
3343 
3344 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3345 	if (!envp[0])
3346 		return;
3347 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3348 	kfree(envp[0]);
3349 }
3350 
3351 static void nvme_async_event_work(struct work_struct *work)
3352 {
3353 	struct nvme_ctrl *ctrl =
3354 		container_of(work, struct nvme_ctrl, async_event_work);
3355 
3356 	nvme_aen_uevent(ctrl);
3357 	ctrl->ops->submit_async_event(ctrl);
3358 }
3359 
3360 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3361 {
3362 
3363 	u32 csts;
3364 
3365 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3366 		return false;
3367 
3368 	if (csts == ~0)
3369 		return false;
3370 
3371 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3372 }
3373 
3374 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3375 {
3376 	struct nvme_fw_slot_info_log *log;
3377 
3378 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3379 	if (!log)
3380 		return;
3381 
3382 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3383 			sizeof(*log), 0))
3384 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3385 	kfree(log);
3386 }
3387 
3388 static void nvme_fw_act_work(struct work_struct *work)
3389 {
3390 	struct nvme_ctrl *ctrl = container_of(work,
3391 				struct nvme_ctrl, fw_act_work);
3392 	unsigned long fw_act_timeout;
3393 
3394 	if (ctrl->mtfa)
3395 		fw_act_timeout = jiffies +
3396 				msecs_to_jiffies(ctrl->mtfa * 100);
3397 	else
3398 		fw_act_timeout = jiffies +
3399 				msecs_to_jiffies(admin_timeout * 1000);
3400 
3401 	nvme_stop_queues(ctrl);
3402 	while (nvme_ctrl_pp_status(ctrl)) {
3403 		if (time_after(jiffies, fw_act_timeout)) {
3404 			dev_warn(ctrl->device,
3405 				"Fw activation timeout, reset controller\n");
3406 			nvme_reset_ctrl(ctrl);
3407 			break;
3408 		}
3409 		msleep(100);
3410 	}
3411 
3412 	if (ctrl->state != NVME_CTRL_LIVE)
3413 		return;
3414 
3415 	nvme_start_queues(ctrl);
3416 	/* read FW slot information to clear the AER */
3417 	nvme_get_fw_slot_info(ctrl);
3418 }
3419 
3420 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3421 {
3422 	u32 aer_notice_type = (result & 0xff00) >> 8;
3423 
3424 	switch (aer_notice_type) {
3425 	case NVME_AER_NOTICE_NS_CHANGED:
3426 		trace_nvme_async_event(ctrl, aer_notice_type);
3427 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3428 		nvme_queue_scan(ctrl);
3429 		break;
3430 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3431 		trace_nvme_async_event(ctrl, aer_notice_type);
3432 		queue_work(nvme_wq, &ctrl->fw_act_work);
3433 		break;
3434 #ifdef CONFIG_NVME_MULTIPATH
3435 	case NVME_AER_NOTICE_ANA:
3436 		trace_nvme_async_event(ctrl, aer_notice_type);
3437 		if (!ctrl->ana_log_buf)
3438 			break;
3439 		queue_work(nvme_wq, &ctrl->ana_work);
3440 		break;
3441 #endif
3442 	default:
3443 		dev_warn(ctrl->device, "async event result %08x\n", result);
3444 	}
3445 }
3446 
3447 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3448 		volatile union nvme_result *res)
3449 {
3450 	u32 result = le32_to_cpu(res->u32);
3451 	u32 aer_type = result & 0x07;
3452 
3453 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3454 		return;
3455 
3456 	switch (aer_type) {
3457 	case NVME_AER_NOTICE:
3458 		nvme_handle_aen_notice(ctrl, result);
3459 		break;
3460 	case NVME_AER_ERROR:
3461 	case NVME_AER_SMART:
3462 	case NVME_AER_CSS:
3463 	case NVME_AER_VS:
3464 		trace_nvme_async_event(ctrl, aer_type);
3465 		ctrl->aen_result = result;
3466 		break;
3467 	default:
3468 		break;
3469 	}
3470 	queue_work(nvme_wq, &ctrl->async_event_work);
3471 }
3472 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3473 
3474 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3475 {
3476 	nvme_mpath_stop(ctrl);
3477 	nvme_stop_keep_alive(ctrl);
3478 	flush_work(&ctrl->async_event_work);
3479 	flush_work(&ctrl->scan_work);
3480 	cancel_work_sync(&ctrl->fw_act_work);
3481 	if (ctrl->ops->stop_ctrl)
3482 		ctrl->ops->stop_ctrl(ctrl);
3483 }
3484 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3485 
3486 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3487 {
3488 	if (ctrl->kato)
3489 		nvme_start_keep_alive(ctrl);
3490 
3491 	if (ctrl->queue_count > 1) {
3492 		nvme_queue_scan(ctrl);
3493 		nvme_enable_aen(ctrl);
3494 		queue_work(nvme_wq, &ctrl->async_event_work);
3495 		nvme_start_queues(ctrl);
3496 	}
3497 }
3498 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3499 
3500 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3501 {
3502 	cdev_device_del(&ctrl->cdev, ctrl->device);
3503 }
3504 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3505 
3506 static void nvme_free_ctrl(struct device *dev)
3507 {
3508 	struct nvme_ctrl *ctrl =
3509 		container_of(dev, struct nvme_ctrl, ctrl_device);
3510 	struct nvme_subsystem *subsys = ctrl->subsys;
3511 
3512 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3513 	kfree(ctrl->effects);
3514 	nvme_mpath_uninit(ctrl);
3515 
3516 	if (subsys) {
3517 		mutex_lock(&subsys->lock);
3518 		list_del(&ctrl->subsys_entry);
3519 		mutex_unlock(&subsys->lock);
3520 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3521 	}
3522 
3523 	ctrl->ops->free_ctrl(ctrl);
3524 
3525 	if (subsys)
3526 		nvme_put_subsystem(subsys);
3527 }
3528 
3529 /*
3530  * Initialize a NVMe controller structures.  This needs to be called during
3531  * earliest initialization so that we have the initialized structured around
3532  * during probing.
3533  */
3534 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3535 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3536 {
3537 	int ret;
3538 
3539 	ctrl->state = NVME_CTRL_NEW;
3540 	spin_lock_init(&ctrl->lock);
3541 	INIT_LIST_HEAD(&ctrl->namespaces);
3542 	init_rwsem(&ctrl->namespaces_rwsem);
3543 	ctrl->dev = dev;
3544 	ctrl->ops = ops;
3545 	ctrl->quirks = quirks;
3546 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3547 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3548 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3549 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3550 
3551 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3552 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3553 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3554 
3555 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3556 	if (ret < 0)
3557 		goto out;
3558 	ctrl->instance = ret;
3559 
3560 	device_initialize(&ctrl->ctrl_device);
3561 	ctrl->device = &ctrl->ctrl_device;
3562 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3563 	ctrl->device->class = nvme_class;
3564 	ctrl->device->parent = ctrl->dev;
3565 	ctrl->device->groups = nvme_dev_attr_groups;
3566 	ctrl->device->release = nvme_free_ctrl;
3567 	dev_set_drvdata(ctrl->device, ctrl);
3568 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3569 	if (ret)
3570 		goto out_release_instance;
3571 
3572 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3573 	ctrl->cdev.owner = ops->module;
3574 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3575 	if (ret)
3576 		goto out_free_name;
3577 
3578 	/*
3579 	 * Initialize latency tolerance controls.  The sysfs files won't
3580 	 * be visible to userspace unless the device actually supports APST.
3581 	 */
3582 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3583 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3584 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3585 
3586 	return 0;
3587 out_free_name:
3588 	kfree_const(dev->kobj.name);
3589 out_release_instance:
3590 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3595 
3596 /**
3597  * nvme_kill_queues(): Ends all namespace queues
3598  * @ctrl: the dead controller that needs to end
3599  *
3600  * Call this function when the driver determines it is unable to get the
3601  * controller in a state capable of servicing IO.
3602  */
3603 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3604 {
3605 	struct nvme_ns *ns;
3606 
3607 	down_read(&ctrl->namespaces_rwsem);
3608 
3609 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3610 	if (ctrl->admin_q)
3611 		blk_mq_unquiesce_queue(ctrl->admin_q);
3612 
3613 	list_for_each_entry(ns, &ctrl->namespaces, list)
3614 		nvme_set_queue_dying(ns);
3615 
3616 	up_read(&ctrl->namespaces_rwsem);
3617 }
3618 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3619 
3620 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3621 {
3622 	struct nvme_ns *ns;
3623 
3624 	down_read(&ctrl->namespaces_rwsem);
3625 	list_for_each_entry(ns, &ctrl->namespaces, list)
3626 		blk_mq_unfreeze_queue(ns->queue);
3627 	up_read(&ctrl->namespaces_rwsem);
3628 }
3629 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3630 
3631 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3632 {
3633 	struct nvme_ns *ns;
3634 
3635 	down_read(&ctrl->namespaces_rwsem);
3636 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3637 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3638 		if (timeout <= 0)
3639 			break;
3640 	}
3641 	up_read(&ctrl->namespaces_rwsem);
3642 }
3643 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3644 
3645 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3646 {
3647 	struct nvme_ns *ns;
3648 
3649 	down_read(&ctrl->namespaces_rwsem);
3650 	list_for_each_entry(ns, &ctrl->namespaces, list)
3651 		blk_mq_freeze_queue_wait(ns->queue);
3652 	up_read(&ctrl->namespaces_rwsem);
3653 }
3654 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3655 
3656 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3657 {
3658 	struct nvme_ns *ns;
3659 
3660 	down_read(&ctrl->namespaces_rwsem);
3661 	list_for_each_entry(ns, &ctrl->namespaces, list)
3662 		blk_freeze_queue_start(ns->queue);
3663 	up_read(&ctrl->namespaces_rwsem);
3664 }
3665 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3666 
3667 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3668 {
3669 	struct nvme_ns *ns;
3670 
3671 	down_read(&ctrl->namespaces_rwsem);
3672 	list_for_each_entry(ns, &ctrl->namespaces, list)
3673 		blk_mq_quiesce_queue(ns->queue);
3674 	up_read(&ctrl->namespaces_rwsem);
3675 }
3676 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3677 
3678 void nvme_start_queues(struct nvme_ctrl *ctrl)
3679 {
3680 	struct nvme_ns *ns;
3681 
3682 	down_read(&ctrl->namespaces_rwsem);
3683 	list_for_each_entry(ns, &ctrl->namespaces, list)
3684 		blk_mq_unquiesce_queue(ns->queue);
3685 	up_read(&ctrl->namespaces_rwsem);
3686 }
3687 EXPORT_SYMBOL_GPL(nvme_start_queues);
3688 
3689 int __init nvme_core_init(void)
3690 {
3691 	int result = -ENOMEM;
3692 
3693 	nvme_wq = alloc_workqueue("nvme-wq",
3694 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3695 	if (!nvme_wq)
3696 		goto out;
3697 
3698 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3699 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3700 	if (!nvme_reset_wq)
3701 		goto destroy_wq;
3702 
3703 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3704 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3705 	if (!nvme_delete_wq)
3706 		goto destroy_reset_wq;
3707 
3708 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3709 	if (result < 0)
3710 		goto destroy_delete_wq;
3711 
3712 	nvme_class = class_create(THIS_MODULE, "nvme");
3713 	if (IS_ERR(nvme_class)) {
3714 		result = PTR_ERR(nvme_class);
3715 		goto unregister_chrdev;
3716 	}
3717 
3718 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3719 	if (IS_ERR(nvme_subsys_class)) {
3720 		result = PTR_ERR(nvme_subsys_class);
3721 		goto destroy_class;
3722 	}
3723 	return 0;
3724 
3725 destroy_class:
3726 	class_destroy(nvme_class);
3727 unregister_chrdev:
3728 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3729 destroy_delete_wq:
3730 	destroy_workqueue(nvme_delete_wq);
3731 destroy_reset_wq:
3732 	destroy_workqueue(nvme_reset_wq);
3733 destroy_wq:
3734 	destroy_workqueue(nvme_wq);
3735 out:
3736 	return result;
3737 }
3738 
3739 void nvme_core_exit(void)
3740 {
3741 	ida_destroy(&nvme_subsystems_ida);
3742 	class_destroy(nvme_subsys_class);
3743 	class_destroy(nvme_class);
3744 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3745 	destroy_workqueue(nvme_delete_wq);
3746 	destroy_workqueue(nvme_reset_wq);
3747 	destroy_workqueue(nvme_wq);
3748 }
3749 
3750 MODULE_LICENSE("GPL");
3751 MODULE_VERSION("1.0");
3752 module_init(nvme_core_init);
3753 module_exit(nvme_core_exit);
3754