1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 104 unsigned nsid); 105 106 static void nvme_set_queue_dying(struct nvme_ns *ns) 107 { 108 /* 109 * Revalidating a dead namespace sets capacity to 0. This will end 110 * buffered writers dirtying pages that can't be synced. 111 */ 112 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 113 return; 114 revalidate_disk(ns->disk); 115 blk_set_queue_dying(ns->queue); 116 /* Forcibly unquiesce queues to avoid blocking dispatch */ 117 blk_mq_unquiesce_queue(ns->queue); 118 } 119 120 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 121 { 122 /* 123 * Only new queue scan work when admin and IO queues are both alive 124 */ 125 if (ctrl->state == NVME_CTRL_LIVE) 126 queue_work(nvme_wq, &ctrl->scan_work); 127 } 128 129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 130 { 131 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 138 139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 140 { 141 int ret; 142 143 ret = nvme_reset_ctrl(ctrl); 144 if (!ret) { 145 flush_work(&ctrl->reset_work); 146 if (ctrl->state != NVME_CTRL_LIVE && 147 ctrl->state != NVME_CTRL_ADMIN_ONLY) 148 ret = -ENETRESET; 149 } 150 151 return ret; 152 } 153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 154 155 static void nvme_delete_ctrl_work(struct work_struct *work) 156 { 157 struct nvme_ctrl *ctrl = 158 container_of(work, struct nvme_ctrl, delete_work); 159 160 dev_info(ctrl->device, 161 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 162 163 flush_work(&ctrl->reset_work); 164 nvme_stop_ctrl(ctrl); 165 nvme_remove_namespaces(ctrl); 166 ctrl->ops->delete_ctrl(ctrl); 167 nvme_uninit_ctrl(ctrl); 168 nvme_put_ctrl(ctrl); 169 } 170 171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 172 { 173 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 174 return -EBUSY; 175 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 176 return -EBUSY; 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 180 181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 182 { 183 int ret = 0; 184 185 /* 186 * Keep a reference until the work is flushed since ->delete_ctrl 187 * can free the controller. 188 */ 189 nvme_get_ctrl(ctrl); 190 ret = nvme_delete_ctrl(ctrl); 191 if (!ret) 192 flush_work(&ctrl->delete_work); 193 nvme_put_ctrl(ctrl); 194 return ret; 195 } 196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 197 198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 199 { 200 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 201 } 202 203 static blk_status_t nvme_error_status(struct request *req) 204 { 205 switch (nvme_req(req)->status & 0x7ff) { 206 case NVME_SC_SUCCESS: 207 return BLK_STS_OK; 208 case NVME_SC_CAP_EXCEEDED: 209 return BLK_STS_NOSPC; 210 case NVME_SC_LBA_RANGE: 211 return BLK_STS_TARGET; 212 case NVME_SC_BAD_ATTRIBUTES: 213 case NVME_SC_ONCS_NOT_SUPPORTED: 214 case NVME_SC_INVALID_OPCODE: 215 case NVME_SC_INVALID_FIELD: 216 case NVME_SC_INVALID_NS: 217 return BLK_STS_NOTSUPP; 218 case NVME_SC_WRITE_FAULT: 219 case NVME_SC_READ_ERROR: 220 case NVME_SC_UNWRITTEN_BLOCK: 221 case NVME_SC_ACCESS_DENIED: 222 case NVME_SC_READ_ONLY: 223 case NVME_SC_COMPARE_FAILED: 224 return BLK_STS_MEDIUM; 225 case NVME_SC_GUARD_CHECK: 226 case NVME_SC_APPTAG_CHECK: 227 case NVME_SC_REFTAG_CHECK: 228 case NVME_SC_INVALID_PI: 229 return BLK_STS_PROTECTION; 230 case NVME_SC_RESERVATION_CONFLICT: 231 return BLK_STS_NEXUS; 232 default: 233 return BLK_STS_IOERR; 234 } 235 } 236 237 static inline bool nvme_req_needs_retry(struct request *req) 238 { 239 if (blk_noretry_request(req)) 240 return false; 241 if (nvme_req(req)->status & NVME_SC_DNR) 242 return false; 243 if (nvme_req(req)->retries >= nvme_max_retries) 244 return false; 245 return true; 246 } 247 248 void nvme_complete_rq(struct request *req) 249 { 250 blk_status_t status = nvme_error_status(req); 251 252 trace_nvme_complete_rq(req); 253 254 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 255 if ((req->cmd_flags & REQ_NVME_MPATH) && 256 blk_path_error(status)) { 257 nvme_failover_req(req); 258 return; 259 } 260 261 if (!blk_queue_dying(req->q)) { 262 nvme_req(req)->retries++; 263 blk_mq_requeue_request(req, true); 264 return; 265 } 266 } 267 blk_mq_end_request(req, status); 268 } 269 EXPORT_SYMBOL_GPL(nvme_complete_rq); 270 271 void nvme_cancel_request(struct request *req, void *data, bool reserved) 272 { 273 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 274 "Cancelling I/O %d", req->tag); 275 276 nvme_req(req)->status = NVME_SC_ABORT_REQ; 277 blk_mq_complete_request(req); 278 279 } 280 EXPORT_SYMBOL_GPL(nvme_cancel_request); 281 282 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 283 enum nvme_ctrl_state new_state) 284 { 285 enum nvme_ctrl_state old_state; 286 unsigned long flags; 287 bool changed = false; 288 289 spin_lock_irqsave(&ctrl->lock, flags); 290 291 old_state = ctrl->state; 292 switch (new_state) { 293 case NVME_CTRL_ADMIN_ONLY: 294 switch (old_state) { 295 case NVME_CTRL_CONNECTING: 296 changed = true; 297 /* FALLTHRU */ 298 default: 299 break; 300 } 301 break; 302 case NVME_CTRL_LIVE: 303 switch (old_state) { 304 case NVME_CTRL_NEW: 305 case NVME_CTRL_RESETTING: 306 case NVME_CTRL_CONNECTING: 307 changed = true; 308 /* FALLTHRU */ 309 default: 310 break; 311 } 312 break; 313 case NVME_CTRL_RESETTING: 314 switch (old_state) { 315 case NVME_CTRL_NEW: 316 case NVME_CTRL_LIVE: 317 case NVME_CTRL_ADMIN_ONLY: 318 changed = true; 319 /* FALLTHRU */ 320 default: 321 break; 322 } 323 break; 324 case NVME_CTRL_CONNECTING: 325 switch (old_state) { 326 case NVME_CTRL_NEW: 327 case NVME_CTRL_RESETTING: 328 changed = true; 329 /* FALLTHRU */ 330 default: 331 break; 332 } 333 break; 334 case NVME_CTRL_DELETING: 335 switch (old_state) { 336 case NVME_CTRL_LIVE: 337 case NVME_CTRL_ADMIN_ONLY: 338 case NVME_CTRL_RESETTING: 339 case NVME_CTRL_CONNECTING: 340 changed = true; 341 /* FALLTHRU */ 342 default: 343 break; 344 } 345 break; 346 case NVME_CTRL_DEAD: 347 switch (old_state) { 348 case NVME_CTRL_DELETING: 349 changed = true; 350 /* FALLTHRU */ 351 default: 352 break; 353 } 354 break; 355 default: 356 break; 357 } 358 359 if (changed) 360 ctrl->state = new_state; 361 362 spin_unlock_irqrestore(&ctrl->lock, flags); 363 if (changed && ctrl->state == NVME_CTRL_LIVE) 364 nvme_kick_requeue_lists(ctrl); 365 return changed; 366 } 367 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 368 369 static void nvme_free_ns_head(struct kref *ref) 370 { 371 struct nvme_ns_head *head = 372 container_of(ref, struct nvme_ns_head, ref); 373 374 nvme_mpath_remove_disk(head); 375 ida_simple_remove(&head->subsys->ns_ida, head->instance); 376 list_del_init(&head->entry); 377 cleanup_srcu_struct_quiesced(&head->srcu); 378 nvme_put_subsystem(head->subsys); 379 kfree(head); 380 } 381 382 static void nvme_put_ns_head(struct nvme_ns_head *head) 383 { 384 kref_put(&head->ref, nvme_free_ns_head); 385 } 386 387 static void nvme_free_ns(struct kref *kref) 388 { 389 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 390 391 if (ns->ndev) 392 nvme_nvm_unregister(ns); 393 394 put_disk(ns->disk); 395 nvme_put_ns_head(ns->head); 396 nvme_put_ctrl(ns->ctrl); 397 kfree(ns); 398 } 399 400 static void nvme_put_ns(struct nvme_ns *ns) 401 { 402 kref_put(&ns->kref, nvme_free_ns); 403 } 404 405 static inline void nvme_clear_nvme_request(struct request *req) 406 { 407 if (!(req->rq_flags & RQF_DONTPREP)) { 408 nvme_req(req)->retries = 0; 409 nvme_req(req)->flags = 0; 410 req->rq_flags |= RQF_DONTPREP; 411 } 412 } 413 414 struct request *nvme_alloc_request(struct request_queue *q, 415 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 416 { 417 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 418 struct request *req; 419 420 if (qid == NVME_QID_ANY) { 421 req = blk_mq_alloc_request(q, op, flags); 422 } else { 423 req = blk_mq_alloc_request_hctx(q, op, flags, 424 qid ? qid - 1 : 0); 425 } 426 if (IS_ERR(req)) 427 return req; 428 429 req->cmd_flags |= REQ_FAILFAST_DRIVER; 430 nvme_clear_nvme_request(req); 431 nvme_req(req)->cmd = cmd; 432 433 return req; 434 } 435 EXPORT_SYMBOL_GPL(nvme_alloc_request); 436 437 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 438 { 439 struct nvme_command c; 440 441 memset(&c, 0, sizeof(c)); 442 443 c.directive.opcode = nvme_admin_directive_send; 444 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 445 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 446 c.directive.dtype = NVME_DIR_IDENTIFY; 447 c.directive.tdtype = NVME_DIR_STREAMS; 448 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 449 450 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 451 } 452 453 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 454 { 455 return nvme_toggle_streams(ctrl, false); 456 } 457 458 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 459 { 460 return nvme_toggle_streams(ctrl, true); 461 } 462 463 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 464 struct streams_directive_params *s, u32 nsid) 465 { 466 struct nvme_command c; 467 468 memset(&c, 0, sizeof(c)); 469 memset(s, 0, sizeof(*s)); 470 471 c.directive.opcode = nvme_admin_directive_recv; 472 c.directive.nsid = cpu_to_le32(nsid); 473 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 474 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 475 c.directive.dtype = NVME_DIR_STREAMS; 476 477 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 478 } 479 480 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 481 { 482 struct streams_directive_params s; 483 int ret; 484 485 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 486 return 0; 487 if (!streams) 488 return 0; 489 490 ret = nvme_enable_streams(ctrl); 491 if (ret) 492 return ret; 493 494 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 495 if (ret) 496 return ret; 497 498 ctrl->nssa = le16_to_cpu(s.nssa); 499 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 500 dev_info(ctrl->device, "too few streams (%u) available\n", 501 ctrl->nssa); 502 nvme_disable_streams(ctrl); 503 return 0; 504 } 505 506 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 507 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 508 return 0; 509 } 510 511 /* 512 * Check if 'req' has a write hint associated with it. If it does, assign 513 * a valid namespace stream to the write. 514 */ 515 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 516 struct request *req, u16 *control, 517 u32 *dsmgmt) 518 { 519 enum rw_hint streamid = req->write_hint; 520 521 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 522 streamid = 0; 523 else { 524 streamid--; 525 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 526 return; 527 528 *control |= NVME_RW_DTYPE_STREAMS; 529 *dsmgmt |= streamid << 16; 530 } 531 532 if (streamid < ARRAY_SIZE(req->q->write_hints)) 533 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 534 } 535 536 static inline void nvme_setup_flush(struct nvme_ns *ns, 537 struct nvme_command *cmnd) 538 { 539 memset(cmnd, 0, sizeof(*cmnd)); 540 cmnd->common.opcode = nvme_cmd_flush; 541 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 542 } 543 544 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 545 struct nvme_command *cmnd) 546 { 547 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 548 struct nvme_dsm_range *range; 549 struct bio *bio; 550 551 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 552 if (!range) 553 return BLK_STS_RESOURCE; 554 555 __rq_for_each_bio(bio, req) { 556 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 557 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 558 559 if (n < segments) { 560 range[n].cattr = cpu_to_le32(0); 561 range[n].nlb = cpu_to_le32(nlb); 562 range[n].slba = cpu_to_le64(slba); 563 } 564 n++; 565 } 566 567 if (WARN_ON_ONCE(n != segments)) { 568 kfree(range); 569 return BLK_STS_IOERR; 570 } 571 572 memset(cmnd, 0, sizeof(*cmnd)); 573 cmnd->dsm.opcode = nvme_cmd_dsm; 574 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 575 cmnd->dsm.nr = cpu_to_le32(segments - 1); 576 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 577 578 req->special_vec.bv_page = virt_to_page(range); 579 req->special_vec.bv_offset = offset_in_page(range); 580 req->special_vec.bv_len = sizeof(*range) * segments; 581 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 582 583 return BLK_STS_OK; 584 } 585 586 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 587 struct request *req, struct nvme_command *cmnd) 588 { 589 struct nvme_ctrl *ctrl = ns->ctrl; 590 u16 control = 0; 591 u32 dsmgmt = 0; 592 593 if (req->cmd_flags & REQ_FUA) 594 control |= NVME_RW_FUA; 595 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 596 control |= NVME_RW_LR; 597 598 if (req->cmd_flags & REQ_RAHEAD) 599 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 600 601 memset(cmnd, 0, sizeof(*cmnd)); 602 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 603 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 604 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 605 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 606 607 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 608 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 609 610 if (ns->ms) { 611 /* 612 * If formated with metadata, the block layer always provides a 613 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 614 * we enable the PRACT bit for protection information or set the 615 * namespace capacity to zero to prevent any I/O. 616 */ 617 if (!blk_integrity_rq(req)) { 618 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 619 return BLK_STS_NOTSUPP; 620 control |= NVME_RW_PRINFO_PRACT; 621 } else if (req_op(req) == REQ_OP_WRITE) { 622 t10_pi_prepare(req, ns->pi_type); 623 } 624 625 switch (ns->pi_type) { 626 case NVME_NS_DPS_PI_TYPE3: 627 control |= NVME_RW_PRINFO_PRCHK_GUARD; 628 break; 629 case NVME_NS_DPS_PI_TYPE1: 630 case NVME_NS_DPS_PI_TYPE2: 631 control |= NVME_RW_PRINFO_PRCHK_GUARD | 632 NVME_RW_PRINFO_PRCHK_REF; 633 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 634 break; 635 } 636 } 637 638 cmnd->rw.control = cpu_to_le16(control); 639 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 640 return 0; 641 } 642 643 void nvme_cleanup_cmd(struct request *req) 644 { 645 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 646 nvme_req(req)->status == 0) { 647 struct nvme_ns *ns = req->rq_disk->private_data; 648 649 t10_pi_complete(req, ns->pi_type, 650 blk_rq_bytes(req) >> ns->lba_shift); 651 } 652 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 653 kfree(page_address(req->special_vec.bv_page) + 654 req->special_vec.bv_offset); 655 } 656 } 657 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 658 659 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 660 struct nvme_command *cmd) 661 { 662 blk_status_t ret = BLK_STS_OK; 663 664 nvme_clear_nvme_request(req); 665 666 switch (req_op(req)) { 667 case REQ_OP_DRV_IN: 668 case REQ_OP_DRV_OUT: 669 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 670 break; 671 case REQ_OP_FLUSH: 672 nvme_setup_flush(ns, cmd); 673 break; 674 case REQ_OP_WRITE_ZEROES: 675 /* currently only aliased to deallocate for a few ctrls: */ 676 case REQ_OP_DISCARD: 677 ret = nvme_setup_discard(ns, req, cmd); 678 break; 679 case REQ_OP_READ: 680 case REQ_OP_WRITE: 681 ret = nvme_setup_rw(ns, req, cmd); 682 break; 683 default: 684 WARN_ON_ONCE(1); 685 return BLK_STS_IOERR; 686 } 687 688 cmd->common.command_id = req->tag; 689 trace_nvme_setup_cmd(req, cmd); 690 return ret; 691 } 692 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 693 694 /* 695 * Returns 0 on success. If the result is negative, it's a Linux error code; 696 * if the result is positive, it's an NVM Express status code 697 */ 698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 699 union nvme_result *result, void *buffer, unsigned bufflen, 700 unsigned timeout, int qid, int at_head, 701 blk_mq_req_flags_t flags) 702 { 703 struct request *req; 704 int ret; 705 706 req = nvme_alloc_request(q, cmd, flags, qid); 707 if (IS_ERR(req)) 708 return PTR_ERR(req); 709 710 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 711 712 if (buffer && bufflen) { 713 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 714 if (ret) 715 goto out; 716 } 717 718 blk_execute_rq(req->q, NULL, req, at_head); 719 if (result) 720 *result = nvme_req(req)->result; 721 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 722 ret = -EINTR; 723 else 724 ret = nvme_req(req)->status; 725 out: 726 blk_mq_free_request(req); 727 return ret; 728 } 729 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 730 731 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 732 void *buffer, unsigned bufflen) 733 { 734 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 735 NVME_QID_ANY, 0, 0); 736 } 737 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 738 739 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 740 unsigned len, u32 seed, bool write) 741 { 742 struct bio_integrity_payload *bip; 743 int ret = -ENOMEM; 744 void *buf; 745 746 buf = kmalloc(len, GFP_KERNEL); 747 if (!buf) 748 goto out; 749 750 ret = -EFAULT; 751 if (write && copy_from_user(buf, ubuf, len)) 752 goto out_free_meta; 753 754 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 755 if (IS_ERR(bip)) { 756 ret = PTR_ERR(bip); 757 goto out_free_meta; 758 } 759 760 bip->bip_iter.bi_size = len; 761 bip->bip_iter.bi_sector = seed; 762 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 763 offset_in_page(buf)); 764 if (ret == len) 765 return buf; 766 ret = -ENOMEM; 767 out_free_meta: 768 kfree(buf); 769 out: 770 return ERR_PTR(ret); 771 } 772 773 static int nvme_submit_user_cmd(struct request_queue *q, 774 struct nvme_command *cmd, void __user *ubuffer, 775 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 776 u32 meta_seed, u32 *result, unsigned timeout) 777 { 778 bool write = nvme_is_write(cmd); 779 struct nvme_ns *ns = q->queuedata; 780 struct gendisk *disk = ns ? ns->disk : NULL; 781 struct request *req; 782 struct bio *bio = NULL; 783 void *meta = NULL; 784 int ret; 785 786 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 787 if (IS_ERR(req)) 788 return PTR_ERR(req); 789 790 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 791 nvme_req(req)->flags |= NVME_REQ_USERCMD; 792 793 if (ubuffer && bufflen) { 794 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 795 GFP_KERNEL); 796 if (ret) 797 goto out; 798 bio = req->bio; 799 bio->bi_disk = disk; 800 if (disk && meta_buffer && meta_len) { 801 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 802 meta_seed, write); 803 if (IS_ERR(meta)) { 804 ret = PTR_ERR(meta); 805 goto out_unmap; 806 } 807 req->cmd_flags |= REQ_INTEGRITY; 808 } 809 } 810 811 blk_execute_rq(req->q, disk, req, 0); 812 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 813 ret = -EINTR; 814 else 815 ret = nvme_req(req)->status; 816 if (result) 817 *result = le32_to_cpu(nvme_req(req)->result.u32); 818 if (meta && !ret && !write) { 819 if (copy_to_user(meta_buffer, meta, meta_len)) 820 ret = -EFAULT; 821 } 822 kfree(meta); 823 out_unmap: 824 if (bio) 825 blk_rq_unmap_user(bio); 826 out: 827 blk_mq_free_request(req); 828 return ret; 829 } 830 831 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 832 { 833 struct nvme_ctrl *ctrl = rq->end_io_data; 834 unsigned long flags; 835 bool startka = false; 836 837 blk_mq_free_request(rq); 838 839 if (status) { 840 dev_err(ctrl->device, 841 "failed nvme_keep_alive_end_io error=%d\n", 842 status); 843 return; 844 } 845 846 spin_lock_irqsave(&ctrl->lock, flags); 847 if (ctrl->state == NVME_CTRL_LIVE || 848 ctrl->state == NVME_CTRL_CONNECTING) 849 startka = true; 850 spin_unlock_irqrestore(&ctrl->lock, flags); 851 if (startka) 852 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 853 } 854 855 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 856 { 857 struct request *rq; 858 859 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 860 NVME_QID_ANY); 861 if (IS_ERR(rq)) 862 return PTR_ERR(rq); 863 864 rq->timeout = ctrl->kato * HZ; 865 rq->end_io_data = ctrl; 866 867 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 868 869 return 0; 870 } 871 872 static void nvme_keep_alive_work(struct work_struct *work) 873 { 874 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 875 struct nvme_ctrl, ka_work); 876 877 if (nvme_keep_alive(ctrl)) { 878 /* allocation failure, reset the controller */ 879 dev_err(ctrl->device, "keep-alive failed\n"); 880 nvme_reset_ctrl(ctrl); 881 return; 882 } 883 } 884 885 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 886 { 887 if (unlikely(ctrl->kato == 0)) 888 return; 889 890 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 891 } 892 893 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 894 { 895 if (unlikely(ctrl->kato == 0)) 896 return; 897 898 cancel_delayed_work_sync(&ctrl->ka_work); 899 } 900 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 901 902 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 903 { 904 struct nvme_command c = { }; 905 int error; 906 907 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 908 c.identify.opcode = nvme_admin_identify; 909 c.identify.cns = NVME_ID_CNS_CTRL; 910 911 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 912 if (!*id) 913 return -ENOMEM; 914 915 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 916 sizeof(struct nvme_id_ctrl)); 917 if (error) 918 kfree(*id); 919 return error; 920 } 921 922 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 923 struct nvme_ns_ids *ids) 924 { 925 struct nvme_command c = { }; 926 int status; 927 void *data; 928 int pos; 929 int len; 930 931 c.identify.opcode = nvme_admin_identify; 932 c.identify.nsid = cpu_to_le32(nsid); 933 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 934 935 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 936 if (!data) 937 return -ENOMEM; 938 939 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 940 NVME_IDENTIFY_DATA_SIZE); 941 if (status) 942 goto free_data; 943 944 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 945 struct nvme_ns_id_desc *cur = data + pos; 946 947 if (cur->nidl == 0) 948 break; 949 950 switch (cur->nidt) { 951 case NVME_NIDT_EUI64: 952 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 953 dev_warn(ctrl->device, 954 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 955 cur->nidl); 956 goto free_data; 957 } 958 len = NVME_NIDT_EUI64_LEN; 959 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 960 break; 961 case NVME_NIDT_NGUID: 962 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 963 dev_warn(ctrl->device, 964 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 965 cur->nidl); 966 goto free_data; 967 } 968 len = NVME_NIDT_NGUID_LEN; 969 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 970 break; 971 case NVME_NIDT_UUID: 972 if (cur->nidl != NVME_NIDT_UUID_LEN) { 973 dev_warn(ctrl->device, 974 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 975 cur->nidl); 976 goto free_data; 977 } 978 len = NVME_NIDT_UUID_LEN; 979 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 980 break; 981 default: 982 /* Skip unknown types */ 983 len = cur->nidl; 984 break; 985 } 986 987 len += sizeof(*cur); 988 } 989 free_data: 990 kfree(data); 991 return status; 992 } 993 994 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 995 { 996 struct nvme_command c = { }; 997 998 c.identify.opcode = nvme_admin_identify; 999 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1000 c.identify.nsid = cpu_to_le32(nsid); 1001 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1002 NVME_IDENTIFY_DATA_SIZE); 1003 } 1004 1005 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1006 unsigned nsid) 1007 { 1008 struct nvme_id_ns *id; 1009 struct nvme_command c = { }; 1010 int error; 1011 1012 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1013 c.identify.opcode = nvme_admin_identify; 1014 c.identify.nsid = cpu_to_le32(nsid); 1015 c.identify.cns = NVME_ID_CNS_NS; 1016 1017 id = kmalloc(sizeof(*id), GFP_KERNEL); 1018 if (!id) 1019 return NULL; 1020 1021 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1022 if (error) { 1023 dev_warn(ctrl->device, "Identify namespace failed\n"); 1024 kfree(id); 1025 return NULL; 1026 } 1027 1028 return id; 1029 } 1030 1031 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 1032 void *buffer, size_t buflen, u32 *result) 1033 { 1034 struct nvme_command c; 1035 union nvme_result res; 1036 int ret; 1037 1038 memset(&c, 0, sizeof(c)); 1039 c.features.opcode = nvme_admin_set_features; 1040 c.features.fid = cpu_to_le32(fid); 1041 c.features.dword11 = cpu_to_le32(dword11); 1042 1043 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1044 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1045 if (ret >= 0 && result) 1046 *result = le32_to_cpu(res.u32); 1047 return ret; 1048 } 1049 1050 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1051 { 1052 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1053 u32 result; 1054 int status, nr_io_queues; 1055 1056 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1057 &result); 1058 if (status < 0) 1059 return status; 1060 1061 /* 1062 * Degraded controllers might return an error when setting the queue 1063 * count. We still want to be able to bring them online and offer 1064 * access to the admin queue, as that might be only way to fix them up. 1065 */ 1066 if (status > 0) { 1067 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1068 *count = 0; 1069 } else { 1070 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1071 *count = min(*count, nr_io_queues); 1072 } 1073 1074 return 0; 1075 } 1076 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1077 1078 #define NVME_AEN_SUPPORTED \ 1079 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1080 1081 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1082 { 1083 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1084 int status; 1085 1086 if (!supported_aens) 1087 return; 1088 1089 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1090 NULL, 0, &result); 1091 if (status) 1092 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1093 supported_aens); 1094 } 1095 1096 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1097 { 1098 struct nvme_user_io io; 1099 struct nvme_command c; 1100 unsigned length, meta_len; 1101 void __user *metadata; 1102 1103 if (copy_from_user(&io, uio, sizeof(io))) 1104 return -EFAULT; 1105 if (io.flags) 1106 return -EINVAL; 1107 1108 switch (io.opcode) { 1109 case nvme_cmd_write: 1110 case nvme_cmd_read: 1111 case nvme_cmd_compare: 1112 break; 1113 default: 1114 return -EINVAL; 1115 } 1116 1117 length = (io.nblocks + 1) << ns->lba_shift; 1118 meta_len = (io.nblocks + 1) * ns->ms; 1119 metadata = (void __user *)(uintptr_t)io.metadata; 1120 1121 if (ns->ext) { 1122 length += meta_len; 1123 meta_len = 0; 1124 } else if (meta_len) { 1125 if ((io.metadata & 3) || !io.metadata) 1126 return -EINVAL; 1127 } 1128 1129 memset(&c, 0, sizeof(c)); 1130 c.rw.opcode = io.opcode; 1131 c.rw.flags = io.flags; 1132 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1133 c.rw.slba = cpu_to_le64(io.slba); 1134 c.rw.length = cpu_to_le16(io.nblocks); 1135 c.rw.control = cpu_to_le16(io.control); 1136 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1137 c.rw.reftag = cpu_to_le32(io.reftag); 1138 c.rw.apptag = cpu_to_le16(io.apptag); 1139 c.rw.appmask = cpu_to_le16(io.appmask); 1140 1141 return nvme_submit_user_cmd(ns->queue, &c, 1142 (void __user *)(uintptr_t)io.addr, length, 1143 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1144 } 1145 1146 static u32 nvme_known_admin_effects(u8 opcode) 1147 { 1148 switch (opcode) { 1149 case nvme_admin_format_nvm: 1150 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1151 NVME_CMD_EFFECTS_CSE_MASK; 1152 case nvme_admin_sanitize_nvm: 1153 return NVME_CMD_EFFECTS_CSE_MASK; 1154 default: 1155 break; 1156 } 1157 return 0; 1158 } 1159 1160 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1161 u8 opcode) 1162 { 1163 u32 effects = 0; 1164 1165 if (ns) { 1166 if (ctrl->effects) 1167 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1168 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1169 dev_warn(ctrl->device, 1170 "IO command:%02x has unhandled effects:%08x\n", 1171 opcode, effects); 1172 return 0; 1173 } 1174 1175 if (ctrl->effects) 1176 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1177 else 1178 effects = nvme_known_admin_effects(opcode); 1179 1180 /* 1181 * For simplicity, IO to all namespaces is quiesced even if the command 1182 * effects say only one namespace is affected. 1183 */ 1184 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1185 nvme_start_freeze(ctrl); 1186 nvme_wait_freeze(ctrl); 1187 } 1188 return effects; 1189 } 1190 1191 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1192 { 1193 struct nvme_ns *ns; 1194 1195 down_read(&ctrl->namespaces_rwsem); 1196 list_for_each_entry(ns, &ctrl->namespaces, list) 1197 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1198 nvme_set_queue_dying(ns); 1199 up_read(&ctrl->namespaces_rwsem); 1200 1201 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1202 } 1203 1204 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1205 { 1206 /* 1207 * Revalidate LBA changes prior to unfreezing. This is necessary to 1208 * prevent memory corruption if a logical block size was changed by 1209 * this command. 1210 */ 1211 if (effects & NVME_CMD_EFFECTS_LBCC) 1212 nvme_update_formats(ctrl); 1213 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1214 nvme_unfreeze(ctrl); 1215 if (effects & NVME_CMD_EFFECTS_CCC) 1216 nvme_init_identify(ctrl); 1217 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1218 nvme_queue_scan(ctrl); 1219 } 1220 1221 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1222 struct nvme_passthru_cmd __user *ucmd) 1223 { 1224 struct nvme_passthru_cmd cmd; 1225 struct nvme_command c; 1226 unsigned timeout = 0; 1227 u32 effects; 1228 int status; 1229 1230 if (!capable(CAP_SYS_ADMIN)) 1231 return -EACCES; 1232 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1233 return -EFAULT; 1234 if (cmd.flags) 1235 return -EINVAL; 1236 1237 memset(&c, 0, sizeof(c)); 1238 c.common.opcode = cmd.opcode; 1239 c.common.flags = cmd.flags; 1240 c.common.nsid = cpu_to_le32(cmd.nsid); 1241 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1242 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1243 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1244 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1245 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1246 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1247 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1248 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1249 1250 if (cmd.timeout_ms) 1251 timeout = msecs_to_jiffies(cmd.timeout_ms); 1252 1253 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1254 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1255 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1256 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1257 0, &cmd.result, timeout); 1258 nvme_passthru_end(ctrl, effects); 1259 1260 if (status >= 0) { 1261 if (put_user(cmd.result, &ucmd->result)) 1262 return -EFAULT; 1263 } 1264 1265 return status; 1266 } 1267 1268 /* 1269 * Issue ioctl requests on the first available path. Note that unlike normal 1270 * block layer requests we will not retry failed request on another controller. 1271 */ 1272 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1273 struct nvme_ns_head **head, int *srcu_idx) 1274 { 1275 #ifdef CONFIG_NVME_MULTIPATH 1276 if (disk->fops == &nvme_ns_head_ops) { 1277 *head = disk->private_data; 1278 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1279 return nvme_find_path(*head); 1280 } 1281 #endif 1282 *head = NULL; 1283 *srcu_idx = -1; 1284 return disk->private_data; 1285 } 1286 1287 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1288 { 1289 if (head) 1290 srcu_read_unlock(&head->srcu, idx); 1291 } 1292 1293 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1294 { 1295 switch (cmd) { 1296 case NVME_IOCTL_ID: 1297 force_successful_syscall_return(); 1298 return ns->head->ns_id; 1299 case NVME_IOCTL_ADMIN_CMD: 1300 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1301 case NVME_IOCTL_IO_CMD: 1302 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1303 case NVME_IOCTL_SUBMIT_IO: 1304 return nvme_submit_io(ns, (void __user *)arg); 1305 default: 1306 #ifdef CONFIG_NVM 1307 if (ns->ndev) 1308 return nvme_nvm_ioctl(ns, cmd, arg); 1309 #endif 1310 if (is_sed_ioctl(cmd)) 1311 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1312 (void __user *) arg); 1313 return -ENOTTY; 1314 } 1315 } 1316 1317 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1318 unsigned int cmd, unsigned long arg) 1319 { 1320 struct nvme_ns_head *head = NULL; 1321 struct nvme_ns *ns; 1322 int srcu_idx, ret; 1323 1324 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1325 if (unlikely(!ns)) 1326 ret = -EWOULDBLOCK; 1327 else 1328 ret = nvme_ns_ioctl(ns, cmd, arg); 1329 nvme_put_ns_from_disk(head, srcu_idx); 1330 return ret; 1331 } 1332 1333 static int nvme_open(struct block_device *bdev, fmode_t mode) 1334 { 1335 struct nvme_ns *ns = bdev->bd_disk->private_data; 1336 1337 #ifdef CONFIG_NVME_MULTIPATH 1338 /* should never be called due to GENHD_FL_HIDDEN */ 1339 if (WARN_ON_ONCE(ns->head->disk)) 1340 goto fail; 1341 #endif 1342 if (!kref_get_unless_zero(&ns->kref)) 1343 goto fail; 1344 if (!try_module_get(ns->ctrl->ops->module)) 1345 goto fail_put_ns; 1346 1347 return 0; 1348 1349 fail_put_ns: 1350 nvme_put_ns(ns); 1351 fail: 1352 return -ENXIO; 1353 } 1354 1355 static void nvme_release(struct gendisk *disk, fmode_t mode) 1356 { 1357 struct nvme_ns *ns = disk->private_data; 1358 1359 module_put(ns->ctrl->ops->module); 1360 nvme_put_ns(ns); 1361 } 1362 1363 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1364 { 1365 /* some standard values */ 1366 geo->heads = 1 << 6; 1367 geo->sectors = 1 << 5; 1368 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1369 return 0; 1370 } 1371 1372 #ifdef CONFIG_BLK_DEV_INTEGRITY 1373 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1374 { 1375 struct blk_integrity integrity; 1376 1377 memset(&integrity, 0, sizeof(integrity)); 1378 switch (pi_type) { 1379 case NVME_NS_DPS_PI_TYPE3: 1380 integrity.profile = &t10_pi_type3_crc; 1381 integrity.tag_size = sizeof(u16) + sizeof(u32); 1382 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1383 break; 1384 case NVME_NS_DPS_PI_TYPE1: 1385 case NVME_NS_DPS_PI_TYPE2: 1386 integrity.profile = &t10_pi_type1_crc; 1387 integrity.tag_size = sizeof(u16); 1388 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1389 break; 1390 default: 1391 integrity.profile = NULL; 1392 break; 1393 } 1394 integrity.tuple_size = ms; 1395 blk_integrity_register(disk, &integrity); 1396 blk_queue_max_integrity_segments(disk->queue, 1); 1397 } 1398 #else 1399 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1400 { 1401 } 1402 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1403 1404 static void nvme_set_chunk_size(struct nvme_ns *ns) 1405 { 1406 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1407 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1408 } 1409 1410 static void nvme_config_discard(struct nvme_ns *ns) 1411 { 1412 struct nvme_ctrl *ctrl = ns->ctrl; 1413 struct request_queue *queue = ns->queue; 1414 u32 size = queue_logical_block_size(queue); 1415 1416 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1417 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1418 return; 1419 } 1420 1421 if (ctrl->nr_streams && ns->sws && ns->sgs) 1422 size *= ns->sws * ns->sgs; 1423 1424 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1425 NVME_DSM_MAX_RANGES); 1426 1427 queue->limits.discard_alignment = 0; 1428 queue->limits.discard_granularity = size; 1429 1430 /* If discard is already enabled, don't reset queue limits */ 1431 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1432 return; 1433 1434 blk_queue_max_discard_sectors(queue, UINT_MAX); 1435 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1436 1437 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1438 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1439 } 1440 1441 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1442 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1443 { 1444 memset(ids, 0, sizeof(*ids)); 1445 1446 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1447 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1448 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1449 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1450 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1451 /* Don't treat error as fatal we potentially 1452 * already have a NGUID or EUI-64 1453 */ 1454 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1455 dev_warn(ctrl->device, 1456 "%s: Identify Descriptors failed\n", __func__); 1457 } 1458 } 1459 1460 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1461 { 1462 return !uuid_is_null(&ids->uuid) || 1463 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1464 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1465 } 1466 1467 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1468 { 1469 return uuid_equal(&a->uuid, &b->uuid) && 1470 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1471 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1472 } 1473 1474 static void nvme_update_disk_info(struct gendisk *disk, 1475 struct nvme_ns *ns, struct nvme_id_ns *id) 1476 { 1477 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1478 unsigned short bs = 1 << ns->lba_shift; 1479 1480 blk_mq_freeze_queue(disk->queue); 1481 blk_integrity_unregister(disk); 1482 1483 blk_queue_logical_block_size(disk->queue, bs); 1484 blk_queue_physical_block_size(disk->queue, bs); 1485 blk_queue_io_min(disk->queue, bs); 1486 1487 if (ns->ms && !ns->ext && 1488 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1489 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1490 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1491 capacity = 0; 1492 1493 set_capacity(disk, capacity); 1494 nvme_config_discard(ns); 1495 1496 if (id->nsattr & (1 << 0)) 1497 set_disk_ro(disk, true); 1498 else 1499 set_disk_ro(disk, false); 1500 1501 blk_mq_unfreeze_queue(disk->queue); 1502 } 1503 1504 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1505 { 1506 struct nvme_ns *ns = disk->private_data; 1507 1508 /* 1509 * If identify namespace failed, use default 512 byte block size so 1510 * block layer can use before failing read/write for 0 capacity. 1511 */ 1512 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1513 if (ns->lba_shift == 0) 1514 ns->lba_shift = 9; 1515 ns->noiob = le16_to_cpu(id->noiob); 1516 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1517 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1518 /* the PI implementation requires metadata equal t10 pi tuple size */ 1519 if (ns->ms == sizeof(struct t10_pi_tuple)) 1520 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1521 else 1522 ns->pi_type = 0; 1523 1524 if (ns->noiob) 1525 nvme_set_chunk_size(ns); 1526 nvme_update_disk_info(disk, ns, id); 1527 if (ns->ndev) 1528 nvme_nvm_update_nvm_info(ns); 1529 #ifdef CONFIG_NVME_MULTIPATH 1530 if (ns->head->disk) { 1531 nvme_update_disk_info(ns->head->disk, ns, id); 1532 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1533 } 1534 #endif 1535 } 1536 1537 static int nvme_revalidate_disk(struct gendisk *disk) 1538 { 1539 struct nvme_ns *ns = disk->private_data; 1540 struct nvme_ctrl *ctrl = ns->ctrl; 1541 struct nvme_id_ns *id; 1542 struct nvme_ns_ids ids; 1543 int ret = 0; 1544 1545 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1546 set_capacity(disk, 0); 1547 return -ENODEV; 1548 } 1549 1550 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1551 if (!id) 1552 return -ENODEV; 1553 1554 if (id->ncap == 0) { 1555 ret = -ENODEV; 1556 goto out; 1557 } 1558 1559 __nvme_revalidate_disk(disk, id); 1560 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1561 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1562 dev_err(ctrl->device, 1563 "identifiers changed for nsid %d\n", ns->head->ns_id); 1564 ret = -ENODEV; 1565 } 1566 1567 out: 1568 kfree(id); 1569 return ret; 1570 } 1571 1572 static char nvme_pr_type(enum pr_type type) 1573 { 1574 switch (type) { 1575 case PR_WRITE_EXCLUSIVE: 1576 return 1; 1577 case PR_EXCLUSIVE_ACCESS: 1578 return 2; 1579 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1580 return 3; 1581 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1582 return 4; 1583 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1584 return 5; 1585 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1586 return 6; 1587 default: 1588 return 0; 1589 } 1590 }; 1591 1592 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1593 u64 key, u64 sa_key, u8 op) 1594 { 1595 struct nvme_ns_head *head = NULL; 1596 struct nvme_ns *ns; 1597 struct nvme_command c; 1598 int srcu_idx, ret; 1599 u8 data[16] = { 0, }; 1600 1601 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1602 if (unlikely(!ns)) 1603 return -EWOULDBLOCK; 1604 1605 put_unaligned_le64(key, &data[0]); 1606 put_unaligned_le64(sa_key, &data[8]); 1607 1608 memset(&c, 0, sizeof(c)); 1609 c.common.opcode = op; 1610 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1611 c.common.cdw10[0] = cpu_to_le32(cdw10); 1612 1613 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1614 nvme_put_ns_from_disk(head, srcu_idx); 1615 return ret; 1616 } 1617 1618 static int nvme_pr_register(struct block_device *bdev, u64 old, 1619 u64 new, unsigned flags) 1620 { 1621 u32 cdw10; 1622 1623 if (flags & ~PR_FL_IGNORE_KEY) 1624 return -EOPNOTSUPP; 1625 1626 cdw10 = old ? 2 : 0; 1627 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1628 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1629 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1630 } 1631 1632 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1633 enum pr_type type, unsigned flags) 1634 { 1635 u32 cdw10; 1636 1637 if (flags & ~PR_FL_IGNORE_KEY) 1638 return -EOPNOTSUPP; 1639 1640 cdw10 = nvme_pr_type(type) << 8; 1641 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1642 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1643 } 1644 1645 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1646 enum pr_type type, bool abort) 1647 { 1648 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1649 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1650 } 1651 1652 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1653 { 1654 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1655 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1656 } 1657 1658 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1659 { 1660 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1661 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1662 } 1663 1664 static const struct pr_ops nvme_pr_ops = { 1665 .pr_register = nvme_pr_register, 1666 .pr_reserve = nvme_pr_reserve, 1667 .pr_release = nvme_pr_release, 1668 .pr_preempt = nvme_pr_preempt, 1669 .pr_clear = nvme_pr_clear, 1670 }; 1671 1672 #ifdef CONFIG_BLK_SED_OPAL 1673 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1674 bool send) 1675 { 1676 struct nvme_ctrl *ctrl = data; 1677 struct nvme_command cmd; 1678 1679 memset(&cmd, 0, sizeof(cmd)); 1680 if (send) 1681 cmd.common.opcode = nvme_admin_security_send; 1682 else 1683 cmd.common.opcode = nvme_admin_security_recv; 1684 cmd.common.nsid = 0; 1685 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1686 cmd.common.cdw10[1] = cpu_to_le32(len); 1687 1688 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1689 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1690 } 1691 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1692 #endif /* CONFIG_BLK_SED_OPAL */ 1693 1694 static const struct block_device_operations nvme_fops = { 1695 .owner = THIS_MODULE, 1696 .ioctl = nvme_ioctl, 1697 .compat_ioctl = nvme_ioctl, 1698 .open = nvme_open, 1699 .release = nvme_release, 1700 .getgeo = nvme_getgeo, 1701 .revalidate_disk= nvme_revalidate_disk, 1702 .pr_ops = &nvme_pr_ops, 1703 }; 1704 1705 #ifdef CONFIG_NVME_MULTIPATH 1706 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1707 { 1708 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1709 1710 if (!kref_get_unless_zero(&head->ref)) 1711 return -ENXIO; 1712 return 0; 1713 } 1714 1715 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1716 { 1717 nvme_put_ns_head(disk->private_data); 1718 } 1719 1720 const struct block_device_operations nvme_ns_head_ops = { 1721 .owner = THIS_MODULE, 1722 .open = nvme_ns_head_open, 1723 .release = nvme_ns_head_release, 1724 .ioctl = nvme_ioctl, 1725 .compat_ioctl = nvme_ioctl, 1726 .getgeo = nvme_getgeo, 1727 .pr_ops = &nvme_pr_ops, 1728 }; 1729 #endif /* CONFIG_NVME_MULTIPATH */ 1730 1731 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1732 { 1733 unsigned long timeout = 1734 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1735 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1736 int ret; 1737 1738 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1739 if (csts == ~0) 1740 return -ENODEV; 1741 if ((csts & NVME_CSTS_RDY) == bit) 1742 break; 1743 1744 msleep(100); 1745 if (fatal_signal_pending(current)) 1746 return -EINTR; 1747 if (time_after(jiffies, timeout)) { 1748 dev_err(ctrl->device, 1749 "Device not ready; aborting %s\n", enabled ? 1750 "initialisation" : "reset"); 1751 return -ENODEV; 1752 } 1753 } 1754 1755 return ret; 1756 } 1757 1758 /* 1759 * If the device has been passed off to us in an enabled state, just clear 1760 * the enabled bit. The spec says we should set the 'shutdown notification 1761 * bits', but doing so may cause the device to complete commands to the 1762 * admin queue ... and we don't know what memory that might be pointing at! 1763 */ 1764 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1765 { 1766 int ret; 1767 1768 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1769 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1770 1771 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1772 if (ret) 1773 return ret; 1774 1775 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1776 msleep(NVME_QUIRK_DELAY_AMOUNT); 1777 1778 return nvme_wait_ready(ctrl, cap, false); 1779 } 1780 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1781 1782 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1783 { 1784 /* 1785 * Default to a 4K page size, with the intention to update this 1786 * path in the future to accomodate architectures with differing 1787 * kernel and IO page sizes. 1788 */ 1789 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1790 int ret; 1791 1792 if (page_shift < dev_page_min) { 1793 dev_err(ctrl->device, 1794 "Minimum device page size %u too large for host (%u)\n", 1795 1 << dev_page_min, 1 << page_shift); 1796 return -ENODEV; 1797 } 1798 1799 ctrl->page_size = 1 << page_shift; 1800 1801 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1802 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1803 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1804 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1805 ctrl->ctrl_config |= NVME_CC_ENABLE; 1806 1807 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1808 if (ret) 1809 return ret; 1810 return nvme_wait_ready(ctrl, cap, true); 1811 } 1812 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1813 1814 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1815 { 1816 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1817 u32 csts; 1818 int ret; 1819 1820 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1821 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1822 1823 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1824 if (ret) 1825 return ret; 1826 1827 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1828 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1829 break; 1830 1831 msleep(100); 1832 if (fatal_signal_pending(current)) 1833 return -EINTR; 1834 if (time_after(jiffies, timeout)) { 1835 dev_err(ctrl->device, 1836 "Device shutdown incomplete; abort shutdown\n"); 1837 return -ENODEV; 1838 } 1839 } 1840 1841 return ret; 1842 } 1843 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1844 1845 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1846 struct request_queue *q) 1847 { 1848 bool vwc = false; 1849 1850 if (ctrl->max_hw_sectors) { 1851 u32 max_segments = 1852 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1853 1854 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1855 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1856 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1857 } 1858 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1859 is_power_of_2(ctrl->max_hw_sectors)) 1860 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1861 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1862 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1863 vwc = true; 1864 blk_queue_write_cache(q, vwc, vwc); 1865 } 1866 1867 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1868 { 1869 __le64 ts; 1870 int ret; 1871 1872 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1873 return 0; 1874 1875 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1876 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1877 NULL); 1878 if (ret) 1879 dev_warn_once(ctrl->device, 1880 "could not set timestamp (%d)\n", ret); 1881 return ret; 1882 } 1883 1884 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1885 { 1886 /* 1887 * APST (Autonomous Power State Transition) lets us program a 1888 * table of power state transitions that the controller will 1889 * perform automatically. We configure it with a simple 1890 * heuristic: we are willing to spend at most 2% of the time 1891 * transitioning between power states. Therefore, when running 1892 * in any given state, we will enter the next lower-power 1893 * non-operational state after waiting 50 * (enlat + exlat) 1894 * microseconds, as long as that state's exit latency is under 1895 * the requested maximum latency. 1896 * 1897 * We will not autonomously enter any non-operational state for 1898 * which the total latency exceeds ps_max_latency_us. Users 1899 * can set ps_max_latency_us to zero to turn off APST. 1900 */ 1901 1902 unsigned apste; 1903 struct nvme_feat_auto_pst *table; 1904 u64 max_lat_us = 0; 1905 int max_ps = -1; 1906 int ret; 1907 1908 /* 1909 * If APST isn't supported or if we haven't been initialized yet, 1910 * then don't do anything. 1911 */ 1912 if (!ctrl->apsta) 1913 return 0; 1914 1915 if (ctrl->npss > 31) { 1916 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1917 return 0; 1918 } 1919 1920 table = kzalloc(sizeof(*table), GFP_KERNEL); 1921 if (!table) 1922 return 0; 1923 1924 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1925 /* Turn off APST. */ 1926 apste = 0; 1927 dev_dbg(ctrl->device, "APST disabled\n"); 1928 } else { 1929 __le64 target = cpu_to_le64(0); 1930 int state; 1931 1932 /* 1933 * Walk through all states from lowest- to highest-power. 1934 * According to the spec, lower-numbered states use more 1935 * power. NPSS, despite the name, is the index of the 1936 * lowest-power state, not the number of states. 1937 */ 1938 for (state = (int)ctrl->npss; state >= 0; state--) { 1939 u64 total_latency_us, exit_latency_us, transition_ms; 1940 1941 if (target) 1942 table->entries[state] = target; 1943 1944 /* 1945 * Don't allow transitions to the deepest state 1946 * if it's quirked off. 1947 */ 1948 if (state == ctrl->npss && 1949 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1950 continue; 1951 1952 /* 1953 * Is this state a useful non-operational state for 1954 * higher-power states to autonomously transition to? 1955 */ 1956 if (!(ctrl->psd[state].flags & 1957 NVME_PS_FLAGS_NON_OP_STATE)) 1958 continue; 1959 1960 exit_latency_us = 1961 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1962 if (exit_latency_us > ctrl->ps_max_latency_us) 1963 continue; 1964 1965 total_latency_us = 1966 exit_latency_us + 1967 le32_to_cpu(ctrl->psd[state].entry_lat); 1968 1969 /* 1970 * This state is good. Use it as the APST idle 1971 * target for higher power states. 1972 */ 1973 transition_ms = total_latency_us + 19; 1974 do_div(transition_ms, 20); 1975 if (transition_ms > (1 << 24) - 1) 1976 transition_ms = (1 << 24) - 1; 1977 1978 target = cpu_to_le64((state << 3) | 1979 (transition_ms << 8)); 1980 1981 if (max_ps == -1) 1982 max_ps = state; 1983 1984 if (total_latency_us > max_lat_us) 1985 max_lat_us = total_latency_us; 1986 } 1987 1988 apste = 1; 1989 1990 if (max_ps == -1) { 1991 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1992 } else { 1993 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1994 max_ps, max_lat_us, (int)sizeof(*table), table); 1995 } 1996 } 1997 1998 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1999 table, sizeof(*table), NULL); 2000 if (ret) 2001 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2002 2003 kfree(table); 2004 return ret; 2005 } 2006 2007 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2008 { 2009 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2010 u64 latency; 2011 2012 switch (val) { 2013 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2014 case PM_QOS_LATENCY_ANY: 2015 latency = U64_MAX; 2016 break; 2017 2018 default: 2019 latency = val; 2020 } 2021 2022 if (ctrl->ps_max_latency_us != latency) { 2023 ctrl->ps_max_latency_us = latency; 2024 nvme_configure_apst(ctrl); 2025 } 2026 } 2027 2028 struct nvme_core_quirk_entry { 2029 /* 2030 * NVMe model and firmware strings are padded with spaces. For 2031 * simplicity, strings in the quirk table are padded with NULLs 2032 * instead. 2033 */ 2034 u16 vid; 2035 const char *mn; 2036 const char *fr; 2037 unsigned long quirks; 2038 }; 2039 2040 static const struct nvme_core_quirk_entry core_quirks[] = { 2041 { 2042 /* 2043 * This Toshiba device seems to die using any APST states. See: 2044 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2045 */ 2046 .vid = 0x1179, 2047 .mn = "THNSF5256GPUK TOSHIBA", 2048 .quirks = NVME_QUIRK_NO_APST, 2049 } 2050 }; 2051 2052 /* match is null-terminated but idstr is space-padded. */ 2053 static bool string_matches(const char *idstr, const char *match, size_t len) 2054 { 2055 size_t matchlen; 2056 2057 if (!match) 2058 return true; 2059 2060 matchlen = strlen(match); 2061 WARN_ON_ONCE(matchlen > len); 2062 2063 if (memcmp(idstr, match, matchlen)) 2064 return false; 2065 2066 for (; matchlen < len; matchlen++) 2067 if (idstr[matchlen] != ' ') 2068 return false; 2069 2070 return true; 2071 } 2072 2073 static bool quirk_matches(const struct nvme_id_ctrl *id, 2074 const struct nvme_core_quirk_entry *q) 2075 { 2076 return q->vid == le16_to_cpu(id->vid) && 2077 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2078 string_matches(id->fr, q->fr, sizeof(id->fr)); 2079 } 2080 2081 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2082 struct nvme_id_ctrl *id) 2083 { 2084 size_t nqnlen; 2085 int off; 2086 2087 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2088 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2089 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2090 return; 2091 } 2092 2093 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2094 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2095 2096 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2097 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2098 "nqn.2014.08.org.nvmexpress:%4x%4x", 2099 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2100 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2101 off += sizeof(id->sn); 2102 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2103 off += sizeof(id->mn); 2104 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2105 } 2106 2107 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2108 { 2109 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2110 kfree(subsys); 2111 } 2112 2113 static void nvme_release_subsystem(struct device *dev) 2114 { 2115 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2116 } 2117 2118 static void nvme_destroy_subsystem(struct kref *ref) 2119 { 2120 struct nvme_subsystem *subsys = 2121 container_of(ref, struct nvme_subsystem, ref); 2122 2123 mutex_lock(&nvme_subsystems_lock); 2124 list_del(&subsys->entry); 2125 mutex_unlock(&nvme_subsystems_lock); 2126 2127 ida_destroy(&subsys->ns_ida); 2128 device_del(&subsys->dev); 2129 put_device(&subsys->dev); 2130 } 2131 2132 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2133 { 2134 kref_put(&subsys->ref, nvme_destroy_subsystem); 2135 } 2136 2137 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2138 { 2139 struct nvme_subsystem *subsys; 2140 2141 lockdep_assert_held(&nvme_subsystems_lock); 2142 2143 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2144 if (strcmp(subsys->subnqn, subsysnqn)) 2145 continue; 2146 if (!kref_get_unless_zero(&subsys->ref)) 2147 continue; 2148 return subsys; 2149 } 2150 2151 return NULL; 2152 } 2153 2154 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2155 struct device_attribute subsys_attr_##_name = \ 2156 __ATTR(_name, _mode, _show, NULL) 2157 2158 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2159 struct device_attribute *attr, 2160 char *buf) 2161 { 2162 struct nvme_subsystem *subsys = 2163 container_of(dev, struct nvme_subsystem, dev); 2164 2165 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2166 } 2167 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2168 2169 #define nvme_subsys_show_str_function(field) \ 2170 static ssize_t subsys_##field##_show(struct device *dev, \ 2171 struct device_attribute *attr, char *buf) \ 2172 { \ 2173 struct nvme_subsystem *subsys = \ 2174 container_of(dev, struct nvme_subsystem, dev); \ 2175 return sprintf(buf, "%.*s\n", \ 2176 (int)sizeof(subsys->field), subsys->field); \ 2177 } \ 2178 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2179 2180 nvme_subsys_show_str_function(model); 2181 nvme_subsys_show_str_function(serial); 2182 nvme_subsys_show_str_function(firmware_rev); 2183 2184 static struct attribute *nvme_subsys_attrs[] = { 2185 &subsys_attr_model.attr, 2186 &subsys_attr_serial.attr, 2187 &subsys_attr_firmware_rev.attr, 2188 &subsys_attr_subsysnqn.attr, 2189 NULL, 2190 }; 2191 2192 static struct attribute_group nvme_subsys_attrs_group = { 2193 .attrs = nvme_subsys_attrs, 2194 }; 2195 2196 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2197 &nvme_subsys_attrs_group, 2198 NULL, 2199 }; 2200 2201 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2202 { 2203 int count = 0; 2204 struct nvme_ctrl *ctrl; 2205 2206 mutex_lock(&subsys->lock); 2207 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2208 if (ctrl->state != NVME_CTRL_DELETING && 2209 ctrl->state != NVME_CTRL_DEAD) 2210 count++; 2211 } 2212 mutex_unlock(&subsys->lock); 2213 2214 return count; 2215 } 2216 2217 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2218 { 2219 struct nvme_subsystem *subsys, *found; 2220 int ret; 2221 2222 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2223 if (!subsys) 2224 return -ENOMEM; 2225 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2226 if (ret < 0) { 2227 kfree(subsys); 2228 return ret; 2229 } 2230 subsys->instance = ret; 2231 mutex_init(&subsys->lock); 2232 kref_init(&subsys->ref); 2233 INIT_LIST_HEAD(&subsys->ctrls); 2234 INIT_LIST_HEAD(&subsys->nsheads); 2235 nvme_init_subnqn(subsys, ctrl, id); 2236 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2237 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2238 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2239 subsys->vendor_id = le16_to_cpu(id->vid); 2240 subsys->cmic = id->cmic; 2241 2242 subsys->dev.class = nvme_subsys_class; 2243 subsys->dev.release = nvme_release_subsystem; 2244 subsys->dev.groups = nvme_subsys_attrs_groups; 2245 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2246 device_initialize(&subsys->dev); 2247 2248 mutex_lock(&nvme_subsystems_lock); 2249 found = __nvme_find_get_subsystem(subsys->subnqn); 2250 if (found) { 2251 /* 2252 * Verify that the subsystem actually supports multiple 2253 * controllers, else bail out. 2254 */ 2255 if (!(ctrl->opts && ctrl->opts->discovery_nqn) && 2256 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2257 dev_err(ctrl->device, 2258 "ignoring ctrl due to duplicate subnqn (%s).\n", 2259 found->subnqn); 2260 nvme_put_subsystem(found); 2261 ret = -EINVAL; 2262 goto out_unlock; 2263 } 2264 2265 __nvme_release_subsystem(subsys); 2266 subsys = found; 2267 } else { 2268 ret = device_add(&subsys->dev); 2269 if (ret) { 2270 dev_err(ctrl->device, 2271 "failed to register subsystem device.\n"); 2272 goto out_unlock; 2273 } 2274 ida_init(&subsys->ns_ida); 2275 list_add_tail(&subsys->entry, &nvme_subsystems); 2276 } 2277 2278 ctrl->subsys = subsys; 2279 mutex_unlock(&nvme_subsystems_lock); 2280 2281 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2282 dev_name(ctrl->device))) { 2283 dev_err(ctrl->device, 2284 "failed to create sysfs link from subsystem.\n"); 2285 /* the transport driver will eventually put the subsystem */ 2286 return -EINVAL; 2287 } 2288 2289 mutex_lock(&subsys->lock); 2290 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2291 mutex_unlock(&subsys->lock); 2292 2293 return 0; 2294 2295 out_unlock: 2296 mutex_unlock(&nvme_subsystems_lock); 2297 put_device(&subsys->dev); 2298 return ret; 2299 } 2300 2301 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2302 void *log, size_t size, u64 offset) 2303 { 2304 struct nvme_command c = { }; 2305 unsigned long dwlen = size / 4 - 1; 2306 2307 c.get_log_page.opcode = nvme_admin_get_log_page; 2308 c.get_log_page.nsid = cpu_to_le32(nsid); 2309 c.get_log_page.lid = log_page; 2310 c.get_log_page.lsp = lsp; 2311 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2312 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2313 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2314 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2315 2316 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2317 } 2318 2319 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2320 { 2321 int ret; 2322 2323 if (!ctrl->effects) 2324 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2325 2326 if (!ctrl->effects) 2327 return 0; 2328 2329 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2330 ctrl->effects, sizeof(*ctrl->effects), 0); 2331 if (ret) { 2332 kfree(ctrl->effects); 2333 ctrl->effects = NULL; 2334 } 2335 return ret; 2336 } 2337 2338 /* 2339 * Initialize the cached copies of the Identify data and various controller 2340 * register in our nvme_ctrl structure. This should be called as soon as 2341 * the admin queue is fully up and running. 2342 */ 2343 int nvme_init_identify(struct nvme_ctrl *ctrl) 2344 { 2345 struct nvme_id_ctrl *id; 2346 u64 cap; 2347 int ret, page_shift; 2348 u32 max_hw_sectors; 2349 bool prev_apst_enabled; 2350 2351 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2352 if (ret) { 2353 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2354 return ret; 2355 } 2356 2357 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2358 if (ret) { 2359 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2360 return ret; 2361 } 2362 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2363 2364 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2365 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2366 2367 ret = nvme_identify_ctrl(ctrl, &id); 2368 if (ret) { 2369 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2370 return -EIO; 2371 } 2372 2373 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2374 ret = nvme_get_effects_log(ctrl); 2375 if (ret < 0) 2376 goto out_free; 2377 } 2378 2379 if (!ctrl->identified) { 2380 int i; 2381 2382 ret = nvme_init_subsystem(ctrl, id); 2383 if (ret) 2384 goto out_free; 2385 2386 /* 2387 * Check for quirks. Quirk can depend on firmware version, 2388 * so, in principle, the set of quirks present can change 2389 * across a reset. As a possible future enhancement, we 2390 * could re-scan for quirks every time we reinitialize 2391 * the device, but we'd have to make sure that the driver 2392 * behaves intelligently if the quirks change. 2393 */ 2394 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2395 if (quirk_matches(id, &core_quirks[i])) 2396 ctrl->quirks |= core_quirks[i].quirks; 2397 } 2398 } 2399 2400 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2401 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2402 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2403 } 2404 2405 ctrl->oacs = le16_to_cpu(id->oacs); 2406 ctrl->oncs = le16_to_cpup(&id->oncs); 2407 ctrl->oaes = le32_to_cpu(id->oaes); 2408 atomic_set(&ctrl->abort_limit, id->acl + 1); 2409 ctrl->vwc = id->vwc; 2410 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2411 if (id->mdts) 2412 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2413 else 2414 max_hw_sectors = UINT_MAX; 2415 ctrl->max_hw_sectors = 2416 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2417 2418 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2419 ctrl->sgls = le32_to_cpu(id->sgls); 2420 ctrl->kas = le16_to_cpu(id->kas); 2421 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2422 2423 if (id->rtd3e) { 2424 /* us -> s */ 2425 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2426 2427 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2428 shutdown_timeout, 60); 2429 2430 if (ctrl->shutdown_timeout != shutdown_timeout) 2431 dev_info(ctrl->device, 2432 "Shutdown timeout set to %u seconds\n", 2433 ctrl->shutdown_timeout); 2434 } else 2435 ctrl->shutdown_timeout = shutdown_timeout; 2436 2437 ctrl->npss = id->npss; 2438 ctrl->apsta = id->apsta; 2439 prev_apst_enabled = ctrl->apst_enabled; 2440 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2441 if (force_apst && id->apsta) { 2442 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2443 ctrl->apst_enabled = true; 2444 } else { 2445 ctrl->apst_enabled = false; 2446 } 2447 } else { 2448 ctrl->apst_enabled = id->apsta; 2449 } 2450 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2451 2452 if (ctrl->ops->flags & NVME_F_FABRICS) { 2453 ctrl->icdoff = le16_to_cpu(id->icdoff); 2454 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2455 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2456 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2457 2458 /* 2459 * In fabrics we need to verify the cntlid matches the 2460 * admin connect 2461 */ 2462 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2463 ret = -EINVAL; 2464 goto out_free; 2465 } 2466 2467 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2468 dev_err(ctrl->device, 2469 "keep-alive support is mandatory for fabrics\n"); 2470 ret = -EINVAL; 2471 goto out_free; 2472 } 2473 } else { 2474 ctrl->cntlid = le16_to_cpu(id->cntlid); 2475 ctrl->hmpre = le32_to_cpu(id->hmpre); 2476 ctrl->hmmin = le32_to_cpu(id->hmmin); 2477 ctrl->hmminds = le32_to_cpu(id->hmminds); 2478 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2479 } 2480 2481 ret = nvme_mpath_init(ctrl, id); 2482 kfree(id); 2483 2484 if (ret < 0) 2485 return ret; 2486 2487 if (ctrl->apst_enabled && !prev_apst_enabled) 2488 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2489 else if (!ctrl->apst_enabled && prev_apst_enabled) 2490 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2491 2492 ret = nvme_configure_apst(ctrl); 2493 if (ret < 0) 2494 return ret; 2495 2496 ret = nvme_configure_timestamp(ctrl); 2497 if (ret < 0) 2498 return ret; 2499 2500 ret = nvme_configure_directives(ctrl); 2501 if (ret < 0) 2502 return ret; 2503 2504 ctrl->identified = true; 2505 2506 return 0; 2507 2508 out_free: 2509 kfree(id); 2510 return ret; 2511 } 2512 EXPORT_SYMBOL_GPL(nvme_init_identify); 2513 2514 static int nvme_dev_open(struct inode *inode, struct file *file) 2515 { 2516 struct nvme_ctrl *ctrl = 2517 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2518 2519 switch (ctrl->state) { 2520 case NVME_CTRL_LIVE: 2521 case NVME_CTRL_ADMIN_ONLY: 2522 break; 2523 default: 2524 return -EWOULDBLOCK; 2525 } 2526 2527 file->private_data = ctrl; 2528 return 0; 2529 } 2530 2531 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2532 { 2533 struct nvme_ns *ns; 2534 int ret; 2535 2536 down_read(&ctrl->namespaces_rwsem); 2537 if (list_empty(&ctrl->namespaces)) { 2538 ret = -ENOTTY; 2539 goto out_unlock; 2540 } 2541 2542 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2543 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2544 dev_warn(ctrl->device, 2545 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2546 ret = -EINVAL; 2547 goto out_unlock; 2548 } 2549 2550 dev_warn(ctrl->device, 2551 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2552 kref_get(&ns->kref); 2553 up_read(&ctrl->namespaces_rwsem); 2554 2555 ret = nvme_user_cmd(ctrl, ns, argp); 2556 nvme_put_ns(ns); 2557 return ret; 2558 2559 out_unlock: 2560 up_read(&ctrl->namespaces_rwsem); 2561 return ret; 2562 } 2563 2564 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2565 unsigned long arg) 2566 { 2567 struct nvme_ctrl *ctrl = file->private_data; 2568 void __user *argp = (void __user *)arg; 2569 2570 switch (cmd) { 2571 case NVME_IOCTL_ADMIN_CMD: 2572 return nvme_user_cmd(ctrl, NULL, argp); 2573 case NVME_IOCTL_IO_CMD: 2574 return nvme_dev_user_cmd(ctrl, argp); 2575 case NVME_IOCTL_RESET: 2576 dev_warn(ctrl->device, "resetting controller\n"); 2577 return nvme_reset_ctrl_sync(ctrl); 2578 case NVME_IOCTL_SUBSYS_RESET: 2579 return nvme_reset_subsystem(ctrl); 2580 case NVME_IOCTL_RESCAN: 2581 nvme_queue_scan(ctrl); 2582 return 0; 2583 default: 2584 return -ENOTTY; 2585 } 2586 } 2587 2588 static const struct file_operations nvme_dev_fops = { 2589 .owner = THIS_MODULE, 2590 .open = nvme_dev_open, 2591 .unlocked_ioctl = nvme_dev_ioctl, 2592 .compat_ioctl = nvme_dev_ioctl, 2593 }; 2594 2595 static ssize_t nvme_sysfs_reset(struct device *dev, 2596 struct device_attribute *attr, const char *buf, 2597 size_t count) 2598 { 2599 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2600 int ret; 2601 2602 ret = nvme_reset_ctrl_sync(ctrl); 2603 if (ret < 0) 2604 return ret; 2605 return count; 2606 } 2607 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2608 2609 static ssize_t nvme_sysfs_rescan(struct device *dev, 2610 struct device_attribute *attr, const char *buf, 2611 size_t count) 2612 { 2613 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2614 2615 nvme_queue_scan(ctrl); 2616 return count; 2617 } 2618 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2619 2620 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2621 { 2622 struct gendisk *disk = dev_to_disk(dev); 2623 2624 if (disk->fops == &nvme_fops) 2625 return nvme_get_ns_from_dev(dev)->head; 2626 else 2627 return disk->private_data; 2628 } 2629 2630 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2631 char *buf) 2632 { 2633 struct nvme_ns_head *head = dev_to_ns_head(dev); 2634 struct nvme_ns_ids *ids = &head->ids; 2635 struct nvme_subsystem *subsys = head->subsys; 2636 int serial_len = sizeof(subsys->serial); 2637 int model_len = sizeof(subsys->model); 2638 2639 if (!uuid_is_null(&ids->uuid)) 2640 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2641 2642 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2643 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2644 2645 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2646 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2647 2648 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2649 subsys->serial[serial_len - 1] == '\0')) 2650 serial_len--; 2651 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2652 subsys->model[model_len - 1] == '\0')) 2653 model_len--; 2654 2655 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2656 serial_len, subsys->serial, model_len, subsys->model, 2657 head->ns_id); 2658 } 2659 static DEVICE_ATTR_RO(wwid); 2660 2661 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2662 char *buf) 2663 { 2664 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2665 } 2666 static DEVICE_ATTR_RO(nguid); 2667 2668 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2669 char *buf) 2670 { 2671 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2672 2673 /* For backward compatibility expose the NGUID to userspace if 2674 * we have no UUID set 2675 */ 2676 if (uuid_is_null(&ids->uuid)) { 2677 printk_ratelimited(KERN_WARNING 2678 "No UUID available providing old NGUID\n"); 2679 return sprintf(buf, "%pU\n", ids->nguid); 2680 } 2681 return sprintf(buf, "%pU\n", &ids->uuid); 2682 } 2683 static DEVICE_ATTR_RO(uuid); 2684 2685 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2686 char *buf) 2687 { 2688 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2689 } 2690 static DEVICE_ATTR_RO(eui); 2691 2692 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2693 char *buf) 2694 { 2695 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2696 } 2697 static DEVICE_ATTR_RO(nsid); 2698 2699 static struct attribute *nvme_ns_id_attrs[] = { 2700 &dev_attr_wwid.attr, 2701 &dev_attr_uuid.attr, 2702 &dev_attr_nguid.attr, 2703 &dev_attr_eui.attr, 2704 &dev_attr_nsid.attr, 2705 #ifdef CONFIG_NVME_MULTIPATH 2706 &dev_attr_ana_grpid.attr, 2707 &dev_attr_ana_state.attr, 2708 #endif 2709 NULL, 2710 }; 2711 2712 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2713 struct attribute *a, int n) 2714 { 2715 struct device *dev = container_of(kobj, struct device, kobj); 2716 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2717 2718 if (a == &dev_attr_uuid.attr) { 2719 if (uuid_is_null(&ids->uuid) && 2720 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2721 return 0; 2722 } 2723 if (a == &dev_attr_nguid.attr) { 2724 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2725 return 0; 2726 } 2727 if (a == &dev_attr_eui.attr) { 2728 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2729 return 0; 2730 } 2731 #ifdef CONFIG_NVME_MULTIPATH 2732 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2733 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2734 return 0; 2735 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2736 return 0; 2737 } 2738 #endif 2739 return a->mode; 2740 } 2741 2742 static const struct attribute_group nvme_ns_id_attr_group = { 2743 .attrs = nvme_ns_id_attrs, 2744 .is_visible = nvme_ns_id_attrs_are_visible, 2745 }; 2746 2747 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2748 &nvme_ns_id_attr_group, 2749 #ifdef CONFIG_NVM 2750 &nvme_nvm_attr_group, 2751 #endif 2752 NULL, 2753 }; 2754 2755 #define nvme_show_str_function(field) \ 2756 static ssize_t field##_show(struct device *dev, \ 2757 struct device_attribute *attr, char *buf) \ 2758 { \ 2759 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2760 return sprintf(buf, "%.*s\n", \ 2761 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2762 } \ 2763 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2764 2765 nvme_show_str_function(model); 2766 nvme_show_str_function(serial); 2767 nvme_show_str_function(firmware_rev); 2768 2769 #define nvme_show_int_function(field) \ 2770 static ssize_t field##_show(struct device *dev, \ 2771 struct device_attribute *attr, char *buf) \ 2772 { \ 2773 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2774 return sprintf(buf, "%d\n", ctrl->field); \ 2775 } \ 2776 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2777 2778 nvme_show_int_function(cntlid); 2779 2780 static ssize_t nvme_sysfs_delete(struct device *dev, 2781 struct device_attribute *attr, const char *buf, 2782 size_t count) 2783 { 2784 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2785 2786 if (device_remove_file_self(dev, attr)) 2787 nvme_delete_ctrl_sync(ctrl); 2788 return count; 2789 } 2790 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2791 2792 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2793 struct device_attribute *attr, 2794 char *buf) 2795 { 2796 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2797 2798 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2799 } 2800 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2801 2802 static ssize_t nvme_sysfs_show_state(struct device *dev, 2803 struct device_attribute *attr, 2804 char *buf) 2805 { 2806 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2807 static const char *const state_name[] = { 2808 [NVME_CTRL_NEW] = "new", 2809 [NVME_CTRL_LIVE] = "live", 2810 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2811 [NVME_CTRL_RESETTING] = "resetting", 2812 [NVME_CTRL_CONNECTING] = "connecting", 2813 [NVME_CTRL_DELETING] = "deleting", 2814 [NVME_CTRL_DEAD] = "dead", 2815 }; 2816 2817 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2818 state_name[ctrl->state]) 2819 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2820 2821 return sprintf(buf, "unknown state\n"); 2822 } 2823 2824 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2825 2826 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2827 struct device_attribute *attr, 2828 char *buf) 2829 { 2830 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2831 2832 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2833 } 2834 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2835 2836 static ssize_t nvme_sysfs_show_address(struct device *dev, 2837 struct device_attribute *attr, 2838 char *buf) 2839 { 2840 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2841 2842 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2843 } 2844 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2845 2846 static struct attribute *nvme_dev_attrs[] = { 2847 &dev_attr_reset_controller.attr, 2848 &dev_attr_rescan_controller.attr, 2849 &dev_attr_model.attr, 2850 &dev_attr_serial.attr, 2851 &dev_attr_firmware_rev.attr, 2852 &dev_attr_cntlid.attr, 2853 &dev_attr_delete_controller.attr, 2854 &dev_attr_transport.attr, 2855 &dev_attr_subsysnqn.attr, 2856 &dev_attr_address.attr, 2857 &dev_attr_state.attr, 2858 NULL 2859 }; 2860 2861 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2862 struct attribute *a, int n) 2863 { 2864 struct device *dev = container_of(kobj, struct device, kobj); 2865 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2866 2867 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2868 return 0; 2869 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2870 return 0; 2871 2872 return a->mode; 2873 } 2874 2875 static struct attribute_group nvme_dev_attrs_group = { 2876 .attrs = nvme_dev_attrs, 2877 .is_visible = nvme_dev_attrs_are_visible, 2878 }; 2879 2880 static const struct attribute_group *nvme_dev_attr_groups[] = { 2881 &nvme_dev_attrs_group, 2882 NULL, 2883 }; 2884 2885 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2886 unsigned nsid) 2887 { 2888 struct nvme_ns_head *h; 2889 2890 lockdep_assert_held(&subsys->lock); 2891 2892 list_for_each_entry(h, &subsys->nsheads, entry) { 2893 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2894 return h; 2895 } 2896 2897 return NULL; 2898 } 2899 2900 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2901 struct nvme_ns_head *new) 2902 { 2903 struct nvme_ns_head *h; 2904 2905 lockdep_assert_held(&subsys->lock); 2906 2907 list_for_each_entry(h, &subsys->nsheads, entry) { 2908 if (nvme_ns_ids_valid(&new->ids) && 2909 !list_empty(&h->list) && 2910 nvme_ns_ids_equal(&new->ids, &h->ids)) 2911 return -EINVAL; 2912 } 2913 2914 return 0; 2915 } 2916 2917 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2918 unsigned nsid, struct nvme_id_ns *id) 2919 { 2920 struct nvme_ns_head *head; 2921 size_t size = sizeof(*head); 2922 int ret = -ENOMEM; 2923 2924 #ifdef CONFIG_NVME_MULTIPATH 2925 size += num_possible_nodes() * sizeof(struct nvme_ns *); 2926 #endif 2927 2928 head = kzalloc(size, GFP_KERNEL); 2929 if (!head) 2930 goto out; 2931 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2932 if (ret < 0) 2933 goto out_free_head; 2934 head->instance = ret; 2935 INIT_LIST_HEAD(&head->list); 2936 ret = init_srcu_struct(&head->srcu); 2937 if (ret) 2938 goto out_ida_remove; 2939 head->subsys = ctrl->subsys; 2940 head->ns_id = nsid; 2941 kref_init(&head->ref); 2942 2943 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2944 2945 ret = __nvme_check_ids(ctrl->subsys, head); 2946 if (ret) { 2947 dev_err(ctrl->device, 2948 "duplicate IDs for nsid %d\n", nsid); 2949 goto out_cleanup_srcu; 2950 } 2951 2952 ret = nvme_mpath_alloc_disk(ctrl, head); 2953 if (ret) 2954 goto out_cleanup_srcu; 2955 2956 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2957 2958 kref_get(&ctrl->subsys->ref); 2959 2960 return head; 2961 out_cleanup_srcu: 2962 cleanup_srcu_struct(&head->srcu); 2963 out_ida_remove: 2964 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2965 out_free_head: 2966 kfree(head); 2967 out: 2968 return ERR_PTR(ret); 2969 } 2970 2971 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2972 struct nvme_id_ns *id) 2973 { 2974 struct nvme_ctrl *ctrl = ns->ctrl; 2975 bool is_shared = id->nmic & (1 << 0); 2976 struct nvme_ns_head *head = NULL; 2977 int ret = 0; 2978 2979 mutex_lock(&ctrl->subsys->lock); 2980 if (is_shared) 2981 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2982 if (!head) { 2983 head = nvme_alloc_ns_head(ctrl, nsid, id); 2984 if (IS_ERR(head)) { 2985 ret = PTR_ERR(head); 2986 goto out_unlock; 2987 } 2988 } else { 2989 struct nvme_ns_ids ids; 2990 2991 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2992 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2993 dev_err(ctrl->device, 2994 "IDs don't match for shared namespace %d\n", 2995 nsid); 2996 ret = -EINVAL; 2997 goto out_unlock; 2998 } 2999 } 3000 3001 list_add_tail(&ns->siblings, &head->list); 3002 ns->head = head; 3003 3004 out_unlock: 3005 mutex_unlock(&ctrl->subsys->lock); 3006 return ret; 3007 } 3008 3009 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3010 { 3011 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3012 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3013 3014 return nsa->head->ns_id - nsb->head->ns_id; 3015 } 3016 3017 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3018 { 3019 struct nvme_ns *ns, *ret = NULL; 3020 3021 down_read(&ctrl->namespaces_rwsem); 3022 list_for_each_entry(ns, &ctrl->namespaces, list) { 3023 if (ns->head->ns_id == nsid) { 3024 if (!kref_get_unless_zero(&ns->kref)) 3025 continue; 3026 ret = ns; 3027 break; 3028 } 3029 if (ns->head->ns_id > nsid) 3030 break; 3031 } 3032 up_read(&ctrl->namespaces_rwsem); 3033 return ret; 3034 } 3035 3036 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3037 { 3038 struct streams_directive_params s; 3039 int ret; 3040 3041 if (!ctrl->nr_streams) 3042 return 0; 3043 3044 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3045 if (ret) 3046 return ret; 3047 3048 ns->sws = le32_to_cpu(s.sws); 3049 ns->sgs = le16_to_cpu(s.sgs); 3050 3051 if (ns->sws) { 3052 unsigned int bs = 1 << ns->lba_shift; 3053 3054 blk_queue_io_min(ns->queue, bs * ns->sws); 3055 if (ns->sgs) 3056 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3057 } 3058 3059 return 0; 3060 } 3061 3062 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3063 { 3064 struct nvme_ns *ns; 3065 struct gendisk *disk; 3066 struct nvme_id_ns *id; 3067 char disk_name[DISK_NAME_LEN]; 3068 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 3069 3070 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3071 if (!ns) 3072 return; 3073 3074 ns->queue = blk_mq_init_queue(ctrl->tagset); 3075 if (IS_ERR(ns->queue)) 3076 goto out_free_ns; 3077 3078 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3079 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3080 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3081 3082 ns->queue->queuedata = ns; 3083 ns->ctrl = ctrl; 3084 3085 kref_init(&ns->kref); 3086 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3087 3088 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3089 nvme_set_queue_limits(ctrl, ns->queue); 3090 3091 id = nvme_identify_ns(ctrl, nsid); 3092 if (!id) 3093 goto out_free_queue; 3094 3095 if (id->ncap == 0) 3096 goto out_free_id; 3097 3098 if (nvme_init_ns_head(ns, nsid, id)) 3099 goto out_free_id; 3100 nvme_setup_streams_ns(ctrl, ns); 3101 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3102 3103 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3104 if (nvme_nvm_register(ns, disk_name, node)) { 3105 dev_warn(ctrl->device, "LightNVM init failure\n"); 3106 goto out_unlink_ns; 3107 } 3108 } 3109 3110 disk = alloc_disk_node(0, node); 3111 if (!disk) 3112 goto out_unlink_ns; 3113 3114 disk->fops = &nvme_fops; 3115 disk->private_data = ns; 3116 disk->queue = ns->queue; 3117 disk->flags = flags; 3118 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3119 ns->disk = disk; 3120 3121 __nvme_revalidate_disk(disk, id); 3122 3123 down_write(&ctrl->namespaces_rwsem); 3124 list_add_tail(&ns->list, &ctrl->namespaces); 3125 up_write(&ctrl->namespaces_rwsem); 3126 3127 nvme_get_ctrl(ctrl); 3128 3129 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3130 3131 nvme_mpath_add_disk(ns, id); 3132 nvme_fault_inject_init(ns); 3133 kfree(id); 3134 3135 return; 3136 out_unlink_ns: 3137 mutex_lock(&ctrl->subsys->lock); 3138 list_del_rcu(&ns->siblings); 3139 mutex_unlock(&ctrl->subsys->lock); 3140 out_free_id: 3141 kfree(id); 3142 out_free_queue: 3143 blk_cleanup_queue(ns->queue); 3144 out_free_ns: 3145 kfree(ns); 3146 } 3147 3148 static void nvme_ns_remove(struct nvme_ns *ns) 3149 { 3150 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3151 return; 3152 3153 nvme_fault_inject_fini(ns); 3154 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3155 del_gendisk(ns->disk); 3156 blk_cleanup_queue(ns->queue); 3157 if (blk_get_integrity(ns->disk)) 3158 blk_integrity_unregister(ns->disk); 3159 } 3160 3161 mutex_lock(&ns->ctrl->subsys->lock); 3162 list_del_rcu(&ns->siblings); 3163 nvme_mpath_clear_current_path(ns); 3164 mutex_unlock(&ns->ctrl->subsys->lock); 3165 3166 down_write(&ns->ctrl->namespaces_rwsem); 3167 list_del_init(&ns->list); 3168 up_write(&ns->ctrl->namespaces_rwsem); 3169 3170 synchronize_srcu(&ns->head->srcu); 3171 nvme_mpath_check_last_path(ns); 3172 nvme_put_ns(ns); 3173 } 3174 3175 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3176 { 3177 struct nvme_ns *ns; 3178 3179 ns = nvme_find_get_ns(ctrl, nsid); 3180 if (ns) { 3181 if (ns->disk && revalidate_disk(ns->disk)) 3182 nvme_ns_remove(ns); 3183 nvme_put_ns(ns); 3184 } else 3185 nvme_alloc_ns(ctrl, nsid); 3186 } 3187 3188 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3189 unsigned nsid) 3190 { 3191 struct nvme_ns *ns, *next; 3192 LIST_HEAD(rm_list); 3193 3194 down_write(&ctrl->namespaces_rwsem); 3195 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3196 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3197 list_move_tail(&ns->list, &rm_list); 3198 } 3199 up_write(&ctrl->namespaces_rwsem); 3200 3201 list_for_each_entry_safe(ns, next, &rm_list, list) 3202 nvme_ns_remove(ns); 3203 3204 } 3205 3206 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3207 { 3208 struct nvme_ns *ns; 3209 __le32 *ns_list; 3210 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3211 int ret = 0; 3212 3213 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3214 if (!ns_list) 3215 return -ENOMEM; 3216 3217 for (i = 0; i < num_lists; i++) { 3218 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3219 if (ret) 3220 goto free; 3221 3222 for (j = 0; j < min(nn, 1024U); j++) { 3223 nsid = le32_to_cpu(ns_list[j]); 3224 if (!nsid) 3225 goto out; 3226 3227 nvme_validate_ns(ctrl, nsid); 3228 3229 while (++prev < nsid) { 3230 ns = nvme_find_get_ns(ctrl, prev); 3231 if (ns) { 3232 nvme_ns_remove(ns); 3233 nvme_put_ns(ns); 3234 } 3235 } 3236 } 3237 nn -= j; 3238 } 3239 out: 3240 nvme_remove_invalid_namespaces(ctrl, prev); 3241 free: 3242 kfree(ns_list); 3243 return ret; 3244 } 3245 3246 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3247 { 3248 unsigned i; 3249 3250 for (i = 1; i <= nn; i++) 3251 nvme_validate_ns(ctrl, i); 3252 3253 nvme_remove_invalid_namespaces(ctrl, nn); 3254 } 3255 3256 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3257 { 3258 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3259 __le32 *log; 3260 int error; 3261 3262 log = kzalloc(log_size, GFP_KERNEL); 3263 if (!log) 3264 return; 3265 3266 /* 3267 * We need to read the log to clear the AEN, but we don't want to rely 3268 * on it for the changed namespace information as userspace could have 3269 * raced with us in reading the log page, which could cause us to miss 3270 * updates. 3271 */ 3272 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3273 log_size, 0); 3274 if (error) 3275 dev_warn(ctrl->device, 3276 "reading changed ns log failed: %d\n", error); 3277 3278 kfree(log); 3279 } 3280 3281 static void nvme_scan_work(struct work_struct *work) 3282 { 3283 struct nvme_ctrl *ctrl = 3284 container_of(work, struct nvme_ctrl, scan_work); 3285 struct nvme_id_ctrl *id; 3286 unsigned nn; 3287 3288 if (ctrl->state != NVME_CTRL_LIVE) 3289 return; 3290 3291 WARN_ON_ONCE(!ctrl->tagset); 3292 3293 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3294 dev_info(ctrl->device, "rescanning namespaces.\n"); 3295 nvme_clear_changed_ns_log(ctrl); 3296 } 3297 3298 if (nvme_identify_ctrl(ctrl, &id)) 3299 return; 3300 3301 nn = le32_to_cpu(id->nn); 3302 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3303 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3304 if (!nvme_scan_ns_list(ctrl, nn)) 3305 goto out_free_id; 3306 } 3307 nvme_scan_ns_sequential(ctrl, nn); 3308 out_free_id: 3309 kfree(id); 3310 down_write(&ctrl->namespaces_rwsem); 3311 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3312 up_write(&ctrl->namespaces_rwsem); 3313 } 3314 3315 /* 3316 * This function iterates the namespace list unlocked to allow recovery from 3317 * controller failure. It is up to the caller to ensure the namespace list is 3318 * not modified by scan work while this function is executing. 3319 */ 3320 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3321 { 3322 struct nvme_ns *ns, *next; 3323 LIST_HEAD(ns_list); 3324 3325 /* prevent racing with ns scanning */ 3326 flush_work(&ctrl->scan_work); 3327 3328 /* 3329 * The dead states indicates the controller was not gracefully 3330 * disconnected. In that case, we won't be able to flush any data while 3331 * removing the namespaces' disks; fail all the queues now to avoid 3332 * potentially having to clean up the failed sync later. 3333 */ 3334 if (ctrl->state == NVME_CTRL_DEAD) 3335 nvme_kill_queues(ctrl); 3336 3337 down_write(&ctrl->namespaces_rwsem); 3338 list_splice_init(&ctrl->namespaces, &ns_list); 3339 up_write(&ctrl->namespaces_rwsem); 3340 3341 list_for_each_entry_safe(ns, next, &ns_list, list) 3342 nvme_ns_remove(ns); 3343 } 3344 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3345 3346 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3347 { 3348 char *envp[2] = { NULL, NULL }; 3349 u32 aen_result = ctrl->aen_result; 3350 3351 ctrl->aen_result = 0; 3352 if (!aen_result) 3353 return; 3354 3355 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3356 if (!envp[0]) 3357 return; 3358 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3359 kfree(envp[0]); 3360 } 3361 3362 static void nvme_async_event_work(struct work_struct *work) 3363 { 3364 struct nvme_ctrl *ctrl = 3365 container_of(work, struct nvme_ctrl, async_event_work); 3366 3367 nvme_aen_uevent(ctrl); 3368 ctrl->ops->submit_async_event(ctrl); 3369 } 3370 3371 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3372 { 3373 3374 u32 csts; 3375 3376 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3377 return false; 3378 3379 if (csts == ~0) 3380 return false; 3381 3382 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3383 } 3384 3385 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3386 { 3387 struct nvme_fw_slot_info_log *log; 3388 3389 log = kmalloc(sizeof(*log), GFP_KERNEL); 3390 if (!log) 3391 return; 3392 3393 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3394 sizeof(*log), 0)) 3395 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3396 kfree(log); 3397 } 3398 3399 static void nvme_fw_act_work(struct work_struct *work) 3400 { 3401 struct nvme_ctrl *ctrl = container_of(work, 3402 struct nvme_ctrl, fw_act_work); 3403 unsigned long fw_act_timeout; 3404 3405 if (ctrl->mtfa) 3406 fw_act_timeout = jiffies + 3407 msecs_to_jiffies(ctrl->mtfa * 100); 3408 else 3409 fw_act_timeout = jiffies + 3410 msecs_to_jiffies(admin_timeout * 1000); 3411 3412 nvme_stop_queues(ctrl); 3413 while (nvme_ctrl_pp_status(ctrl)) { 3414 if (time_after(jiffies, fw_act_timeout)) { 3415 dev_warn(ctrl->device, 3416 "Fw activation timeout, reset controller\n"); 3417 nvme_reset_ctrl(ctrl); 3418 break; 3419 } 3420 msleep(100); 3421 } 3422 3423 if (ctrl->state != NVME_CTRL_LIVE) 3424 return; 3425 3426 nvme_start_queues(ctrl); 3427 /* read FW slot information to clear the AER */ 3428 nvme_get_fw_slot_info(ctrl); 3429 } 3430 3431 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3432 { 3433 u32 aer_notice_type = (result & 0xff00) >> 8; 3434 3435 switch (aer_notice_type) { 3436 case NVME_AER_NOTICE_NS_CHANGED: 3437 trace_nvme_async_event(ctrl, aer_notice_type); 3438 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3439 nvme_queue_scan(ctrl); 3440 break; 3441 case NVME_AER_NOTICE_FW_ACT_STARTING: 3442 trace_nvme_async_event(ctrl, aer_notice_type); 3443 queue_work(nvme_wq, &ctrl->fw_act_work); 3444 break; 3445 #ifdef CONFIG_NVME_MULTIPATH 3446 case NVME_AER_NOTICE_ANA: 3447 trace_nvme_async_event(ctrl, aer_notice_type); 3448 if (!ctrl->ana_log_buf) 3449 break; 3450 queue_work(nvme_wq, &ctrl->ana_work); 3451 break; 3452 #endif 3453 default: 3454 dev_warn(ctrl->device, "async event result %08x\n", result); 3455 } 3456 } 3457 3458 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3459 volatile union nvme_result *res) 3460 { 3461 u32 result = le32_to_cpu(res->u32); 3462 u32 aer_type = result & 0x07; 3463 3464 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3465 return; 3466 3467 switch (aer_type) { 3468 case NVME_AER_NOTICE: 3469 nvme_handle_aen_notice(ctrl, result); 3470 break; 3471 case NVME_AER_ERROR: 3472 case NVME_AER_SMART: 3473 case NVME_AER_CSS: 3474 case NVME_AER_VS: 3475 trace_nvme_async_event(ctrl, aer_type); 3476 ctrl->aen_result = result; 3477 break; 3478 default: 3479 break; 3480 } 3481 queue_work(nvme_wq, &ctrl->async_event_work); 3482 } 3483 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3484 3485 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3486 { 3487 nvme_mpath_stop(ctrl); 3488 nvme_stop_keep_alive(ctrl); 3489 flush_work(&ctrl->async_event_work); 3490 cancel_work_sync(&ctrl->fw_act_work); 3491 if (ctrl->ops->stop_ctrl) 3492 ctrl->ops->stop_ctrl(ctrl); 3493 } 3494 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3495 3496 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3497 { 3498 if (ctrl->kato) 3499 nvme_start_keep_alive(ctrl); 3500 3501 if (ctrl->queue_count > 1) { 3502 nvme_queue_scan(ctrl); 3503 nvme_enable_aen(ctrl); 3504 queue_work(nvme_wq, &ctrl->async_event_work); 3505 nvme_start_queues(ctrl); 3506 } 3507 } 3508 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3509 3510 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3511 { 3512 cdev_device_del(&ctrl->cdev, ctrl->device); 3513 } 3514 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3515 3516 static void nvme_free_ctrl(struct device *dev) 3517 { 3518 struct nvme_ctrl *ctrl = 3519 container_of(dev, struct nvme_ctrl, ctrl_device); 3520 struct nvme_subsystem *subsys = ctrl->subsys; 3521 3522 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3523 kfree(ctrl->effects); 3524 nvme_mpath_uninit(ctrl); 3525 3526 if (subsys) { 3527 mutex_lock(&subsys->lock); 3528 list_del(&ctrl->subsys_entry); 3529 mutex_unlock(&subsys->lock); 3530 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3531 } 3532 3533 ctrl->ops->free_ctrl(ctrl); 3534 3535 if (subsys) 3536 nvme_put_subsystem(subsys); 3537 } 3538 3539 /* 3540 * Initialize a NVMe controller structures. This needs to be called during 3541 * earliest initialization so that we have the initialized structured around 3542 * during probing. 3543 */ 3544 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3545 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3546 { 3547 int ret; 3548 3549 ctrl->state = NVME_CTRL_NEW; 3550 spin_lock_init(&ctrl->lock); 3551 INIT_LIST_HEAD(&ctrl->namespaces); 3552 init_rwsem(&ctrl->namespaces_rwsem); 3553 ctrl->dev = dev; 3554 ctrl->ops = ops; 3555 ctrl->quirks = quirks; 3556 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3557 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3558 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3559 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3560 3561 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3562 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3563 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3564 3565 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3566 if (ret < 0) 3567 goto out; 3568 ctrl->instance = ret; 3569 3570 device_initialize(&ctrl->ctrl_device); 3571 ctrl->device = &ctrl->ctrl_device; 3572 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3573 ctrl->device->class = nvme_class; 3574 ctrl->device->parent = ctrl->dev; 3575 ctrl->device->groups = nvme_dev_attr_groups; 3576 ctrl->device->release = nvme_free_ctrl; 3577 dev_set_drvdata(ctrl->device, ctrl); 3578 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3579 if (ret) 3580 goto out_release_instance; 3581 3582 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3583 ctrl->cdev.owner = ops->module; 3584 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3585 if (ret) 3586 goto out_free_name; 3587 3588 /* 3589 * Initialize latency tolerance controls. The sysfs files won't 3590 * be visible to userspace unless the device actually supports APST. 3591 */ 3592 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3593 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3594 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3595 3596 return 0; 3597 out_free_name: 3598 kfree_const(ctrl->device->kobj.name); 3599 out_release_instance: 3600 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3601 out: 3602 return ret; 3603 } 3604 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3605 3606 /** 3607 * nvme_kill_queues(): Ends all namespace queues 3608 * @ctrl: the dead controller that needs to end 3609 * 3610 * Call this function when the driver determines it is unable to get the 3611 * controller in a state capable of servicing IO. 3612 */ 3613 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3614 { 3615 struct nvme_ns *ns; 3616 3617 down_read(&ctrl->namespaces_rwsem); 3618 3619 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3620 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3621 blk_mq_unquiesce_queue(ctrl->admin_q); 3622 3623 list_for_each_entry(ns, &ctrl->namespaces, list) 3624 nvme_set_queue_dying(ns); 3625 3626 up_read(&ctrl->namespaces_rwsem); 3627 } 3628 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3629 3630 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3631 { 3632 struct nvme_ns *ns; 3633 3634 down_read(&ctrl->namespaces_rwsem); 3635 list_for_each_entry(ns, &ctrl->namespaces, list) 3636 blk_mq_unfreeze_queue(ns->queue); 3637 up_read(&ctrl->namespaces_rwsem); 3638 } 3639 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3640 3641 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3642 { 3643 struct nvme_ns *ns; 3644 3645 down_read(&ctrl->namespaces_rwsem); 3646 list_for_each_entry(ns, &ctrl->namespaces, list) { 3647 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3648 if (timeout <= 0) 3649 break; 3650 } 3651 up_read(&ctrl->namespaces_rwsem); 3652 } 3653 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3654 3655 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3656 { 3657 struct nvme_ns *ns; 3658 3659 down_read(&ctrl->namespaces_rwsem); 3660 list_for_each_entry(ns, &ctrl->namespaces, list) 3661 blk_mq_freeze_queue_wait(ns->queue); 3662 up_read(&ctrl->namespaces_rwsem); 3663 } 3664 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3665 3666 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3667 { 3668 struct nvme_ns *ns; 3669 3670 down_read(&ctrl->namespaces_rwsem); 3671 list_for_each_entry(ns, &ctrl->namespaces, list) 3672 blk_freeze_queue_start(ns->queue); 3673 up_read(&ctrl->namespaces_rwsem); 3674 } 3675 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3676 3677 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3678 { 3679 struct nvme_ns *ns; 3680 3681 down_read(&ctrl->namespaces_rwsem); 3682 list_for_each_entry(ns, &ctrl->namespaces, list) 3683 blk_mq_quiesce_queue(ns->queue); 3684 up_read(&ctrl->namespaces_rwsem); 3685 } 3686 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3687 3688 void nvme_start_queues(struct nvme_ctrl *ctrl) 3689 { 3690 struct nvme_ns *ns; 3691 3692 down_read(&ctrl->namespaces_rwsem); 3693 list_for_each_entry(ns, &ctrl->namespaces, list) 3694 blk_mq_unquiesce_queue(ns->queue); 3695 up_read(&ctrl->namespaces_rwsem); 3696 } 3697 EXPORT_SYMBOL_GPL(nvme_start_queues); 3698 3699 int __init nvme_core_init(void) 3700 { 3701 int result = -ENOMEM; 3702 3703 nvme_wq = alloc_workqueue("nvme-wq", 3704 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3705 if (!nvme_wq) 3706 goto out; 3707 3708 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3709 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3710 if (!nvme_reset_wq) 3711 goto destroy_wq; 3712 3713 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3714 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3715 if (!nvme_delete_wq) 3716 goto destroy_reset_wq; 3717 3718 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3719 if (result < 0) 3720 goto destroy_delete_wq; 3721 3722 nvme_class = class_create(THIS_MODULE, "nvme"); 3723 if (IS_ERR(nvme_class)) { 3724 result = PTR_ERR(nvme_class); 3725 goto unregister_chrdev; 3726 } 3727 3728 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3729 if (IS_ERR(nvme_subsys_class)) { 3730 result = PTR_ERR(nvme_subsys_class); 3731 goto destroy_class; 3732 } 3733 return 0; 3734 3735 destroy_class: 3736 class_destroy(nvme_class); 3737 unregister_chrdev: 3738 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3739 destroy_delete_wq: 3740 destroy_workqueue(nvme_delete_wq); 3741 destroy_reset_wq: 3742 destroy_workqueue(nvme_reset_wq); 3743 destroy_wq: 3744 destroy_workqueue(nvme_wq); 3745 out: 3746 return result; 3747 } 3748 3749 void nvme_core_exit(void) 3750 { 3751 ida_destroy(&nvme_subsystems_ida); 3752 class_destroy(nvme_subsys_class); 3753 class_destroy(nvme_class); 3754 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3755 destroy_workqueue(nvme_delete_wq); 3756 destroy_workqueue(nvme_reset_wq); 3757 destroy_workqueue(nvme_wq); 3758 } 3759 3760 MODULE_LICENSE("GPL"); 3761 MODULE_VERSION("1.0"); 3762 module_init(nvme_core_init); 3763 module_exit(nvme_core_exit); 3764