xref: /openbmc/linux/drivers/nvme/host/core.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 					   unsigned nsid);
105 
106 static void nvme_set_queue_dying(struct nvme_ns *ns)
107 {
108 	/*
109 	 * Revalidating a dead namespace sets capacity to 0. This will end
110 	 * buffered writers dirtying pages that can't be synced.
111 	 */
112 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 		return;
114 	revalidate_disk(ns->disk);
115 	blk_set_queue_dying(ns->queue);
116 	/* Forcibly unquiesce queues to avoid blocking dispatch */
117 	blk_mq_unquiesce_queue(ns->queue);
118 }
119 
120 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121 {
122 	/*
123 	 * Only new queue scan work when admin and IO queues are both alive
124 	 */
125 	if (ctrl->state == NVME_CTRL_LIVE)
126 		queue_work(nvme_wq, &ctrl->scan_work);
127 }
128 
129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130 {
131 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138 
139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140 {
141 	int ret;
142 
143 	ret = nvme_reset_ctrl(ctrl);
144 	if (!ret) {
145 		flush_work(&ctrl->reset_work);
146 		if (ctrl->state != NVME_CTRL_LIVE &&
147 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 			ret = -ENETRESET;
149 	}
150 
151 	return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154 
155 static void nvme_delete_ctrl_work(struct work_struct *work)
156 {
157 	struct nvme_ctrl *ctrl =
158 		container_of(work, struct nvme_ctrl, delete_work);
159 
160 	dev_info(ctrl->device,
161 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162 
163 	flush_work(&ctrl->reset_work);
164 	nvme_stop_ctrl(ctrl);
165 	nvme_remove_namespaces(ctrl);
166 	ctrl->ops->delete_ctrl(ctrl);
167 	nvme_uninit_ctrl(ctrl);
168 	nvme_put_ctrl(ctrl);
169 }
170 
171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172 {
173 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 		return -EBUSY;
175 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 		return -EBUSY;
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180 
181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182 {
183 	int ret = 0;
184 
185 	/*
186 	 * Keep a reference until the work is flushed since ->delete_ctrl
187 	 * can free the controller.
188 	 */
189 	nvme_get_ctrl(ctrl);
190 	ret = nvme_delete_ctrl(ctrl);
191 	if (!ret)
192 		flush_work(&ctrl->delete_work);
193 	nvme_put_ctrl(ctrl);
194 	return ret;
195 }
196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197 
198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199 {
200 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201 }
202 
203 static blk_status_t nvme_error_status(struct request *req)
204 {
205 	switch (nvme_req(req)->status & 0x7ff) {
206 	case NVME_SC_SUCCESS:
207 		return BLK_STS_OK;
208 	case NVME_SC_CAP_EXCEEDED:
209 		return BLK_STS_NOSPC;
210 	case NVME_SC_LBA_RANGE:
211 		return BLK_STS_TARGET;
212 	case NVME_SC_BAD_ATTRIBUTES:
213 	case NVME_SC_ONCS_NOT_SUPPORTED:
214 	case NVME_SC_INVALID_OPCODE:
215 	case NVME_SC_INVALID_FIELD:
216 	case NVME_SC_INVALID_NS:
217 		return BLK_STS_NOTSUPP;
218 	case NVME_SC_WRITE_FAULT:
219 	case NVME_SC_READ_ERROR:
220 	case NVME_SC_UNWRITTEN_BLOCK:
221 	case NVME_SC_ACCESS_DENIED:
222 	case NVME_SC_READ_ONLY:
223 	case NVME_SC_COMPARE_FAILED:
224 		return BLK_STS_MEDIUM;
225 	case NVME_SC_GUARD_CHECK:
226 	case NVME_SC_APPTAG_CHECK:
227 	case NVME_SC_REFTAG_CHECK:
228 	case NVME_SC_INVALID_PI:
229 		return BLK_STS_PROTECTION;
230 	case NVME_SC_RESERVATION_CONFLICT:
231 		return BLK_STS_NEXUS;
232 	default:
233 		return BLK_STS_IOERR;
234 	}
235 }
236 
237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239 	if (blk_noretry_request(req))
240 		return false;
241 	if (nvme_req(req)->status & NVME_SC_DNR)
242 		return false;
243 	if (nvme_req(req)->retries >= nvme_max_retries)
244 		return false;
245 	return true;
246 }
247 
248 void nvme_complete_rq(struct request *req)
249 {
250 	blk_status_t status = nvme_error_status(req);
251 
252 	trace_nvme_complete_rq(req);
253 
254 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
256 		    blk_path_error(status)) {
257 			nvme_failover_req(req);
258 			return;
259 		}
260 
261 		if (!blk_queue_dying(req->q)) {
262 			nvme_req(req)->retries++;
263 			blk_mq_requeue_request(req, true);
264 			return;
265 		}
266 	}
267 	blk_mq_end_request(req, status);
268 }
269 EXPORT_SYMBOL_GPL(nvme_complete_rq);
270 
271 void nvme_cancel_request(struct request *req, void *data, bool reserved)
272 {
273 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
274 				"Cancelling I/O %d", req->tag);
275 
276 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
277 	blk_mq_complete_request(req);
278 
279 }
280 EXPORT_SYMBOL_GPL(nvme_cancel_request);
281 
282 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
283 		enum nvme_ctrl_state new_state)
284 {
285 	enum nvme_ctrl_state old_state;
286 	unsigned long flags;
287 	bool changed = false;
288 
289 	spin_lock_irqsave(&ctrl->lock, flags);
290 
291 	old_state = ctrl->state;
292 	switch (new_state) {
293 	case NVME_CTRL_ADMIN_ONLY:
294 		switch (old_state) {
295 		case NVME_CTRL_CONNECTING:
296 			changed = true;
297 			/* FALLTHRU */
298 		default:
299 			break;
300 		}
301 		break;
302 	case NVME_CTRL_LIVE:
303 		switch (old_state) {
304 		case NVME_CTRL_NEW:
305 		case NVME_CTRL_RESETTING:
306 		case NVME_CTRL_CONNECTING:
307 			changed = true;
308 			/* FALLTHRU */
309 		default:
310 			break;
311 		}
312 		break;
313 	case NVME_CTRL_RESETTING:
314 		switch (old_state) {
315 		case NVME_CTRL_NEW:
316 		case NVME_CTRL_LIVE:
317 		case NVME_CTRL_ADMIN_ONLY:
318 			changed = true;
319 			/* FALLTHRU */
320 		default:
321 			break;
322 		}
323 		break;
324 	case NVME_CTRL_CONNECTING:
325 		switch (old_state) {
326 		case NVME_CTRL_NEW:
327 		case NVME_CTRL_RESETTING:
328 			changed = true;
329 			/* FALLTHRU */
330 		default:
331 			break;
332 		}
333 		break;
334 	case NVME_CTRL_DELETING:
335 		switch (old_state) {
336 		case NVME_CTRL_LIVE:
337 		case NVME_CTRL_ADMIN_ONLY:
338 		case NVME_CTRL_RESETTING:
339 		case NVME_CTRL_CONNECTING:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_DEAD:
347 		switch (old_state) {
348 		case NVME_CTRL_DELETING:
349 			changed = true;
350 			/* FALLTHRU */
351 		default:
352 			break;
353 		}
354 		break;
355 	default:
356 		break;
357 	}
358 
359 	if (changed)
360 		ctrl->state = new_state;
361 
362 	spin_unlock_irqrestore(&ctrl->lock, flags);
363 	if (changed && ctrl->state == NVME_CTRL_LIVE)
364 		nvme_kick_requeue_lists(ctrl);
365 	return changed;
366 }
367 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
368 
369 static void nvme_free_ns_head(struct kref *ref)
370 {
371 	struct nvme_ns_head *head =
372 		container_of(ref, struct nvme_ns_head, ref);
373 
374 	nvme_mpath_remove_disk(head);
375 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
376 	list_del_init(&head->entry);
377 	cleanup_srcu_struct_quiesced(&head->srcu);
378 	nvme_put_subsystem(head->subsys);
379 	kfree(head);
380 }
381 
382 static void nvme_put_ns_head(struct nvme_ns_head *head)
383 {
384 	kref_put(&head->ref, nvme_free_ns_head);
385 }
386 
387 static void nvme_free_ns(struct kref *kref)
388 {
389 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
390 
391 	if (ns->ndev)
392 		nvme_nvm_unregister(ns);
393 
394 	put_disk(ns->disk);
395 	nvme_put_ns_head(ns->head);
396 	nvme_put_ctrl(ns->ctrl);
397 	kfree(ns);
398 }
399 
400 static void nvme_put_ns(struct nvme_ns *ns)
401 {
402 	kref_put(&ns->kref, nvme_free_ns);
403 }
404 
405 static inline void nvme_clear_nvme_request(struct request *req)
406 {
407 	if (!(req->rq_flags & RQF_DONTPREP)) {
408 		nvme_req(req)->retries = 0;
409 		nvme_req(req)->flags = 0;
410 		req->rq_flags |= RQF_DONTPREP;
411 	}
412 }
413 
414 struct request *nvme_alloc_request(struct request_queue *q,
415 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
416 {
417 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
418 	struct request *req;
419 
420 	if (qid == NVME_QID_ANY) {
421 		req = blk_mq_alloc_request(q, op, flags);
422 	} else {
423 		req = blk_mq_alloc_request_hctx(q, op, flags,
424 				qid ? qid - 1 : 0);
425 	}
426 	if (IS_ERR(req))
427 		return req;
428 
429 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
430 	nvme_clear_nvme_request(req);
431 	nvme_req(req)->cmd = cmd;
432 
433 	return req;
434 }
435 EXPORT_SYMBOL_GPL(nvme_alloc_request);
436 
437 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
438 {
439 	struct nvme_command c;
440 
441 	memset(&c, 0, sizeof(c));
442 
443 	c.directive.opcode = nvme_admin_directive_send;
444 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
445 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
446 	c.directive.dtype = NVME_DIR_IDENTIFY;
447 	c.directive.tdtype = NVME_DIR_STREAMS;
448 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
449 
450 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
451 }
452 
453 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
454 {
455 	return nvme_toggle_streams(ctrl, false);
456 }
457 
458 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
459 {
460 	return nvme_toggle_streams(ctrl, true);
461 }
462 
463 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
464 				  struct streams_directive_params *s, u32 nsid)
465 {
466 	struct nvme_command c;
467 
468 	memset(&c, 0, sizeof(c));
469 	memset(s, 0, sizeof(*s));
470 
471 	c.directive.opcode = nvme_admin_directive_recv;
472 	c.directive.nsid = cpu_to_le32(nsid);
473 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
474 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
475 	c.directive.dtype = NVME_DIR_STREAMS;
476 
477 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
478 }
479 
480 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
481 {
482 	struct streams_directive_params s;
483 	int ret;
484 
485 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
486 		return 0;
487 	if (!streams)
488 		return 0;
489 
490 	ret = nvme_enable_streams(ctrl);
491 	if (ret)
492 		return ret;
493 
494 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
495 	if (ret)
496 		return ret;
497 
498 	ctrl->nssa = le16_to_cpu(s.nssa);
499 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
500 		dev_info(ctrl->device, "too few streams (%u) available\n",
501 					ctrl->nssa);
502 		nvme_disable_streams(ctrl);
503 		return 0;
504 	}
505 
506 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
507 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
508 	return 0;
509 }
510 
511 /*
512  * Check if 'req' has a write hint associated with it. If it does, assign
513  * a valid namespace stream to the write.
514  */
515 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
516 				     struct request *req, u16 *control,
517 				     u32 *dsmgmt)
518 {
519 	enum rw_hint streamid = req->write_hint;
520 
521 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
522 		streamid = 0;
523 	else {
524 		streamid--;
525 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
526 			return;
527 
528 		*control |= NVME_RW_DTYPE_STREAMS;
529 		*dsmgmt |= streamid << 16;
530 	}
531 
532 	if (streamid < ARRAY_SIZE(req->q->write_hints))
533 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
534 }
535 
536 static inline void nvme_setup_flush(struct nvme_ns *ns,
537 		struct nvme_command *cmnd)
538 {
539 	memset(cmnd, 0, sizeof(*cmnd));
540 	cmnd->common.opcode = nvme_cmd_flush;
541 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
542 }
543 
544 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
545 		struct nvme_command *cmnd)
546 {
547 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
548 	struct nvme_dsm_range *range;
549 	struct bio *bio;
550 
551 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
552 	if (!range)
553 		return BLK_STS_RESOURCE;
554 
555 	__rq_for_each_bio(bio, req) {
556 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
557 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
558 
559 		if (n < segments) {
560 			range[n].cattr = cpu_to_le32(0);
561 			range[n].nlb = cpu_to_le32(nlb);
562 			range[n].slba = cpu_to_le64(slba);
563 		}
564 		n++;
565 	}
566 
567 	if (WARN_ON_ONCE(n != segments)) {
568 		kfree(range);
569 		return BLK_STS_IOERR;
570 	}
571 
572 	memset(cmnd, 0, sizeof(*cmnd));
573 	cmnd->dsm.opcode = nvme_cmd_dsm;
574 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
575 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
576 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
577 
578 	req->special_vec.bv_page = virt_to_page(range);
579 	req->special_vec.bv_offset = offset_in_page(range);
580 	req->special_vec.bv_len = sizeof(*range) * segments;
581 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
582 
583 	return BLK_STS_OK;
584 }
585 
586 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
587 		struct request *req, struct nvme_command *cmnd)
588 {
589 	struct nvme_ctrl *ctrl = ns->ctrl;
590 	u16 control = 0;
591 	u32 dsmgmt = 0;
592 
593 	if (req->cmd_flags & REQ_FUA)
594 		control |= NVME_RW_FUA;
595 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
596 		control |= NVME_RW_LR;
597 
598 	if (req->cmd_flags & REQ_RAHEAD)
599 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
600 
601 	memset(cmnd, 0, sizeof(*cmnd));
602 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
603 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
604 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606 
607 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
608 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
609 
610 	if (ns->ms) {
611 		/*
612 		 * If formated with metadata, the block layer always provides a
613 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
614 		 * we enable the PRACT bit for protection information or set the
615 		 * namespace capacity to zero to prevent any I/O.
616 		 */
617 		if (!blk_integrity_rq(req)) {
618 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
619 				return BLK_STS_NOTSUPP;
620 			control |= NVME_RW_PRINFO_PRACT;
621 		} else if (req_op(req) == REQ_OP_WRITE) {
622 			t10_pi_prepare(req, ns->pi_type);
623 		}
624 
625 		switch (ns->pi_type) {
626 		case NVME_NS_DPS_PI_TYPE3:
627 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
628 			break;
629 		case NVME_NS_DPS_PI_TYPE1:
630 		case NVME_NS_DPS_PI_TYPE2:
631 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
632 					NVME_RW_PRINFO_PRCHK_REF;
633 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
634 			break;
635 		}
636 	}
637 
638 	cmnd->rw.control = cpu_to_le16(control);
639 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
640 	return 0;
641 }
642 
643 void nvme_cleanup_cmd(struct request *req)
644 {
645 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
646 	    nvme_req(req)->status == 0) {
647 		struct nvme_ns *ns = req->rq_disk->private_data;
648 
649 		t10_pi_complete(req, ns->pi_type,
650 				blk_rq_bytes(req) >> ns->lba_shift);
651 	}
652 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
653 		kfree(page_address(req->special_vec.bv_page) +
654 		      req->special_vec.bv_offset);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
658 
659 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
660 		struct nvme_command *cmd)
661 {
662 	blk_status_t ret = BLK_STS_OK;
663 
664 	nvme_clear_nvme_request(req);
665 
666 	switch (req_op(req)) {
667 	case REQ_OP_DRV_IN:
668 	case REQ_OP_DRV_OUT:
669 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
670 		break;
671 	case REQ_OP_FLUSH:
672 		nvme_setup_flush(ns, cmd);
673 		break;
674 	case REQ_OP_WRITE_ZEROES:
675 		/* currently only aliased to deallocate for a few ctrls: */
676 	case REQ_OP_DISCARD:
677 		ret = nvme_setup_discard(ns, req, cmd);
678 		break;
679 	case REQ_OP_READ:
680 	case REQ_OP_WRITE:
681 		ret = nvme_setup_rw(ns, req, cmd);
682 		break;
683 	default:
684 		WARN_ON_ONCE(1);
685 		return BLK_STS_IOERR;
686 	}
687 
688 	cmd->common.command_id = req->tag;
689 	trace_nvme_setup_cmd(req, cmd);
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
693 
694 /*
695  * Returns 0 on success.  If the result is negative, it's a Linux error code;
696  * if the result is positive, it's an NVM Express status code
697  */
698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 		union nvme_result *result, void *buffer, unsigned bufflen,
700 		unsigned timeout, int qid, int at_head,
701 		blk_mq_req_flags_t flags)
702 {
703 	struct request *req;
704 	int ret;
705 
706 	req = nvme_alloc_request(q, cmd, flags, qid);
707 	if (IS_ERR(req))
708 		return PTR_ERR(req);
709 
710 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
711 
712 	if (buffer && bufflen) {
713 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	blk_execute_rq(req->q, NULL, req, at_head);
719 	if (result)
720 		*result = nvme_req(req)->result;
721 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
722 		ret = -EINTR;
723 	else
724 		ret = nvme_req(req)->status;
725  out:
726 	blk_mq_free_request(req);
727 	return ret;
728 }
729 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
730 
731 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
732 		void *buffer, unsigned bufflen)
733 {
734 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
735 			NVME_QID_ANY, 0, 0);
736 }
737 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
738 
739 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
740 		unsigned len, u32 seed, bool write)
741 {
742 	struct bio_integrity_payload *bip;
743 	int ret = -ENOMEM;
744 	void *buf;
745 
746 	buf = kmalloc(len, GFP_KERNEL);
747 	if (!buf)
748 		goto out;
749 
750 	ret = -EFAULT;
751 	if (write && copy_from_user(buf, ubuf, len))
752 		goto out_free_meta;
753 
754 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
755 	if (IS_ERR(bip)) {
756 		ret = PTR_ERR(bip);
757 		goto out_free_meta;
758 	}
759 
760 	bip->bip_iter.bi_size = len;
761 	bip->bip_iter.bi_sector = seed;
762 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
763 			offset_in_page(buf));
764 	if (ret == len)
765 		return buf;
766 	ret = -ENOMEM;
767 out_free_meta:
768 	kfree(buf);
769 out:
770 	return ERR_PTR(ret);
771 }
772 
773 static int nvme_submit_user_cmd(struct request_queue *q,
774 		struct nvme_command *cmd, void __user *ubuffer,
775 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
776 		u32 meta_seed, u32 *result, unsigned timeout)
777 {
778 	bool write = nvme_is_write(cmd);
779 	struct nvme_ns *ns = q->queuedata;
780 	struct gendisk *disk = ns ? ns->disk : NULL;
781 	struct request *req;
782 	struct bio *bio = NULL;
783 	void *meta = NULL;
784 	int ret;
785 
786 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
787 	if (IS_ERR(req))
788 		return PTR_ERR(req);
789 
790 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
792 
793 	if (ubuffer && bufflen) {
794 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
795 				GFP_KERNEL);
796 		if (ret)
797 			goto out;
798 		bio = req->bio;
799 		bio->bi_disk = disk;
800 		if (disk && meta_buffer && meta_len) {
801 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
802 					meta_seed, write);
803 			if (IS_ERR(meta)) {
804 				ret = PTR_ERR(meta);
805 				goto out_unmap;
806 			}
807 			req->cmd_flags |= REQ_INTEGRITY;
808 		}
809 	}
810 
811 	blk_execute_rq(req->q, disk, req, 0);
812 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
813 		ret = -EINTR;
814 	else
815 		ret = nvme_req(req)->status;
816 	if (result)
817 		*result = le32_to_cpu(nvme_req(req)->result.u32);
818 	if (meta && !ret && !write) {
819 		if (copy_to_user(meta_buffer, meta, meta_len))
820 			ret = -EFAULT;
821 	}
822 	kfree(meta);
823  out_unmap:
824 	if (bio)
825 		blk_rq_unmap_user(bio);
826  out:
827 	blk_mq_free_request(req);
828 	return ret;
829 }
830 
831 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
832 {
833 	struct nvme_ctrl *ctrl = rq->end_io_data;
834 	unsigned long flags;
835 	bool startka = false;
836 
837 	blk_mq_free_request(rq);
838 
839 	if (status) {
840 		dev_err(ctrl->device,
841 			"failed nvme_keep_alive_end_io error=%d\n",
842 				status);
843 		return;
844 	}
845 
846 	spin_lock_irqsave(&ctrl->lock, flags);
847 	if (ctrl->state == NVME_CTRL_LIVE ||
848 	    ctrl->state == NVME_CTRL_CONNECTING)
849 		startka = true;
850 	spin_unlock_irqrestore(&ctrl->lock, flags);
851 	if (startka)
852 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
853 }
854 
855 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
856 {
857 	struct request *rq;
858 
859 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
860 			NVME_QID_ANY);
861 	if (IS_ERR(rq))
862 		return PTR_ERR(rq);
863 
864 	rq->timeout = ctrl->kato * HZ;
865 	rq->end_io_data = ctrl;
866 
867 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
868 
869 	return 0;
870 }
871 
872 static void nvme_keep_alive_work(struct work_struct *work)
873 {
874 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
875 			struct nvme_ctrl, ka_work);
876 
877 	if (nvme_keep_alive(ctrl)) {
878 		/* allocation failure, reset the controller */
879 		dev_err(ctrl->device, "keep-alive failed\n");
880 		nvme_reset_ctrl(ctrl);
881 		return;
882 	}
883 }
884 
885 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
886 {
887 	if (unlikely(ctrl->kato == 0))
888 		return;
889 
890 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
891 }
892 
893 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
894 {
895 	if (unlikely(ctrl->kato == 0))
896 		return;
897 
898 	cancel_delayed_work_sync(&ctrl->ka_work);
899 }
900 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
901 
902 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
903 {
904 	struct nvme_command c = { };
905 	int error;
906 
907 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
908 	c.identify.opcode = nvme_admin_identify;
909 	c.identify.cns = NVME_ID_CNS_CTRL;
910 
911 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
912 	if (!*id)
913 		return -ENOMEM;
914 
915 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
916 			sizeof(struct nvme_id_ctrl));
917 	if (error)
918 		kfree(*id);
919 	return error;
920 }
921 
922 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
923 		struct nvme_ns_ids *ids)
924 {
925 	struct nvme_command c = { };
926 	int status;
927 	void *data;
928 	int pos;
929 	int len;
930 
931 	c.identify.opcode = nvme_admin_identify;
932 	c.identify.nsid = cpu_to_le32(nsid);
933 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
934 
935 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
936 	if (!data)
937 		return -ENOMEM;
938 
939 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
940 				      NVME_IDENTIFY_DATA_SIZE);
941 	if (status)
942 		goto free_data;
943 
944 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
945 		struct nvme_ns_id_desc *cur = data + pos;
946 
947 		if (cur->nidl == 0)
948 			break;
949 
950 		switch (cur->nidt) {
951 		case NVME_NIDT_EUI64:
952 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
953 				dev_warn(ctrl->device,
954 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
955 					 cur->nidl);
956 				goto free_data;
957 			}
958 			len = NVME_NIDT_EUI64_LEN;
959 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
960 			break;
961 		case NVME_NIDT_NGUID:
962 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
963 				dev_warn(ctrl->device,
964 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
965 					 cur->nidl);
966 				goto free_data;
967 			}
968 			len = NVME_NIDT_NGUID_LEN;
969 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
970 			break;
971 		case NVME_NIDT_UUID:
972 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
973 				dev_warn(ctrl->device,
974 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
975 					 cur->nidl);
976 				goto free_data;
977 			}
978 			len = NVME_NIDT_UUID_LEN;
979 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
980 			break;
981 		default:
982 			/* Skip unknown types */
983 			len = cur->nidl;
984 			break;
985 		}
986 
987 		len += sizeof(*cur);
988 	}
989 free_data:
990 	kfree(data);
991 	return status;
992 }
993 
994 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
995 {
996 	struct nvme_command c = { };
997 
998 	c.identify.opcode = nvme_admin_identify;
999 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1000 	c.identify.nsid = cpu_to_le32(nsid);
1001 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1002 				    NVME_IDENTIFY_DATA_SIZE);
1003 }
1004 
1005 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1006 		unsigned nsid)
1007 {
1008 	struct nvme_id_ns *id;
1009 	struct nvme_command c = { };
1010 	int error;
1011 
1012 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1013 	c.identify.opcode = nvme_admin_identify;
1014 	c.identify.nsid = cpu_to_le32(nsid);
1015 	c.identify.cns = NVME_ID_CNS_NS;
1016 
1017 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1018 	if (!id)
1019 		return NULL;
1020 
1021 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1022 	if (error) {
1023 		dev_warn(ctrl->device, "Identify namespace failed\n");
1024 		kfree(id);
1025 		return NULL;
1026 	}
1027 
1028 	return id;
1029 }
1030 
1031 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1032 		      void *buffer, size_t buflen, u32 *result)
1033 {
1034 	struct nvme_command c;
1035 	union nvme_result res;
1036 	int ret;
1037 
1038 	memset(&c, 0, sizeof(c));
1039 	c.features.opcode = nvme_admin_set_features;
1040 	c.features.fid = cpu_to_le32(fid);
1041 	c.features.dword11 = cpu_to_le32(dword11);
1042 
1043 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1044 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1045 	if (ret >= 0 && result)
1046 		*result = le32_to_cpu(res.u32);
1047 	return ret;
1048 }
1049 
1050 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1051 {
1052 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1053 	u32 result;
1054 	int status, nr_io_queues;
1055 
1056 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1057 			&result);
1058 	if (status < 0)
1059 		return status;
1060 
1061 	/*
1062 	 * Degraded controllers might return an error when setting the queue
1063 	 * count.  We still want to be able to bring them online and offer
1064 	 * access to the admin queue, as that might be only way to fix them up.
1065 	 */
1066 	if (status > 0) {
1067 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1068 		*count = 0;
1069 	} else {
1070 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1071 		*count = min(*count, nr_io_queues);
1072 	}
1073 
1074 	return 0;
1075 }
1076 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1077 
1078 #define NVME_AEN_SUPPORTED \
1079 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1080 
1081 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1082 {
1083 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1084 	int status;
1085 
1086 	if (!supported_aens)
1087 		return;
1088 
1089 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1090 			NULL, 0, &result);
1091 	if (status)
1092 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1093 			 supported_aens);
1094 }
1095 
1096 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1097 {
1098 	struct nvme_user_io io;
1099 	struct nvme_command c;
1100 	unsigned length, meta_len;
1101 	void __user *metadata;
1102 
1103 	if (copy_from_user(&io, uio, sizeof(io)))
1104 		return -EFAULT;
1105 	if (io.flags)
1106 		return -EINVAL;
1107 
1108 	switch (io.opcode) {
1109 	case nvme_cmd_write:
1110 	case nvme_cmd_read:
1111 	case nvme_cmd_compare:
1112 		break;
1113 	default:
1114 		return -EINVAL;
1115 	}
1116 
1117 	length = (io.nblocks + 1) << ns->lba_shift;
1118 	meta_len = (io.nblocks + 1) * ns->ms;
1119 	metadata = (void __user *)(uintptr_t)io.metadata;
1120 
1121 	if (ns->ext) {
1122 		length += meta_len;
1123 		meta_len = 0;
1124 	} else if (meta_len) {
1125 		if ((io.metadata & 3) || !io.metadata)
1126 			return -EINVAL;
1127 	}
1128 
1129 	memset(&c, 0, sizeof(c));
1130 	c.rw.opcode = io.opcode;
1131 	c.rw.flags = io.flags;
1132 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1133 	c.rw.slba = cpu_to_le64(io.slba);
1134 	c.rw.length = cpu_to_le16(io.nblocks);
1135 	c.rw.control = cpu_to_le16(io.control);
1136 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1137 	c.rw.reftag = cpu_to_le32(io.reftag);
1138 	c.rw.apptag = cpu_to_le16(io.apptag);
1139 	c.rw.appmask = cpu_to_le16(io.appmask);
1140 
1141 	return nvme_submit_user_cmd(ns->queue, &c,
1142 			(void __user *)(uintptr_t)io.addr, length,
1143 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1144 }
1145 
1146 static u32 nvme_known_admin_effects(u8 opcode)
1147 {
1148 	switch (opcode) {
1149 	case nvme_admin_format_nvm:
1150 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1151 					NVME_CMD_EFFECTS_CSE_MASK;
1152 	case nvme_admin_sanitize_nvm:
1153 		return NVME_CMD_EFFECTS_CSE_MASK;
1154 	default:
1155 		break;
1156 	}
1157 	return 0;
1158 }
1159 
1160 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1161 								u8 opcode)
1162 {
1163 	u32 effects = 0;
1164 
1165 	if (ns) {
1166 		if (ctrl->effects)
1167 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1168 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1169 			dev_warn(ctrl->device,
1170 				 "IO command:%02x has unhandled effects:%08x\n",
1171 				 opcode, effects);
1172 		return 0;
1173 	}
1174 
1175 	if (ctrl->effects)
1176 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1177 	else
1178 		effects = nvme_known_admin_effects(opcode);
1179 
1180 	/*
1181 	 * For simplicity, IO to all namespaces is quiesced even if the command
1182 	 * effects say only one namespace is affected.
1183 	 */
1184 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1185 		nvme_start_freeze(ctrl);
1186 		nvme_wait_freeze(ctrl);
1187 	}
1188 	return effects;
1189 }
1190 
1191 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1192 {
1193 	struct nvme_ns *ns;
1194 
1195 	down_read(&ctrl->namespaces_rwsem);
1196 	list_for_each_entry(ns, &ctrl->namespaces, list)
1197 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1198 			nvme_set_queue_dying(ns);
1199 	up_read(&ctrl->namespaces_rwsem);
1200 
1201 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1202 }
1203 
1204 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1205 {
1206 	/*
1207 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1208 	 * prevent memory corruption if a logical block size was changed by
1209 	 * this command.
1210 	 */
1211 	if (effects & NVME_CMD_EFFECTS_LBCC)
1212 		nvme_update_formats(ctrl);
1213 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1214 		nvme_unfreeze(ctrl);
1215 	if (effects & NVME_CMD_EFFECTS_CCC)
1216 		nvme_init_identify(ctrl);
1217 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1218 		nvme_queue_scan(ctrl);
1219 }
1220 
1221 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1222 			struct nvme_passthru_cmd __user *ucmd)
1223 {
1224 	struct nvme_passthru_cmd cmd;
1225 	struct nvme_command c;
1226 	unsigned timeout = 0;
1227 	u32 effects;
1228 	int status;
1229 
1230 	if (!capable(CAP_SYS_ADMIN))
1231 		return -EACCES;
1232 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1233 		return -EFAULT;
1234 	if (cmd.flags)
1235 		return -EINVAL;
1236 
1237 	memset(&c, 0, sizeof(c));
1238 	c.common.opcode = cmd.opcode;
1239 	c.common.flags = cmd.flags;
1240 	c.common.nsid = cpu_to_le32(cmd.nsid);
1241 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1242 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1243 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1244 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1245 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1246 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1247 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1248 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1249 
1250 	if (cmd.timeout_ms)
1251 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1252 
1253 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1254 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1255 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1256 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1257 			0, &cmd.result, timeout);
1258 	nvme_passthru_end(ctrl, effects);
1259 
1260 	if (status >= 0) {
1261 		if (put_user(cmd.result, &ucmd->result))
1262 			return -EFAULT;
1263 	}
1264 
1265 	return status;
1266 }
1267 
1268 /*
1269  * Issue ioctl requests on the first available path.  Note that unlike normal
1270  * block layer requests we will not retry failed request on another controller.
1271  */
1272 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1273 		struct nvme_ns_head **head, int *srcu_idx)
1274 {
1275 #ifdef CONFIG_NVME_MULTIPATH
1276 	if (disk->fops == &nvme_ns_head_ops) {
1277 		*head = disk->private_data;
1278 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1279 		return nvme_find_path(*head);
1280 	}
1281 #endif
1282 	*head = NULL;
1283 	*srcu_idx = -1;
1284 	return disk->private_data;
1285 }
1286 
1287 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1288 {
1289 	if (head)
1290 		srcu_read_unlock(&head->srcu, idx);
1291 }
1292 
1293 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1294 {
1295 	switch (cmd) {
1296 	case NVME_IOCTL_ID:
1297 		force_successful_syscall_return();
1298 		return ns->head->ns_id;
1299 	case NVME_IOCTL_ADMIN_CMD:
1300 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1301 	case NVME_IOCTL_IO_CMD:
1302 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1303 	case NVME_IOCTL_SUBMIT_IO:
1304 		return nvme_submit_io(ns, (void __user *)arg);
1305 	default:
1306 #ifdef CONFIG_NVM
1307 		if (ns->ndev)
1308 			return nvme_nvm_ioctl(ns, cmd, arg);
1309 #endif
1310 		if (is_sed_ioctl(cmd))
1311 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1312 					 (void __user *) arg);
1313 		return -ENOTTY;
1314 	}
1315 }
1316 
1317 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1318 		unsigned int cmd, unsigned long arg)
1319 {
1320 	struct nvme_ns_head *head = NULL;
1321 	struct nvme_ns *ns;
1322 	int srcu_idx, ret;
1323 
1324 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1325 	if (unlikely(!ns))
1326 		ret = -EWOULDBLOCK;
1327 	else
1328 		ret = nvme_ns_ioctl(ns, cmd, arg);
1329 	nvme_put_ns_from_disk(head, srcu_idx);
1330 	return ret;
1331 }
1332 
1333 static int nvme_open(struct block_device *bdev, fmode_t mode)
1334 {
1335 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1336 
1337 #ifdef CONFIG_NVME_MULTIPATH
1338 	/* should never be called due to GENHD_FL_HIDDEN */
1339 	if (WARN_ON_ONCE(ns->head->disk))
1340 		goto fail;
1341 #endif
1342 	if (!kref_get_unless_zero(&ns->kref))
1343 		goto fail;
1344 	if (!try_module_get(ns->ctrl->ops->module))
1345 		goto fail_put_ns;
1346 
1347 	return 0;
1348 
1349 fail_put_ns:
1350 	nvme_put_ns(ns);
1351 fail:
1352 	return -ENXIO;
1353 }
1354 
1355 static void nvme_release(struct gendisk *disk, fmode_t mode)
1356 {
1357 	struct nvme_ns *ns = disk->private_data;
1358 
1359 	module_put(ns->ctrl->ops->module);
1360 	nvme_put_ns(ns);
1361 }
1362 
1363 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1364 {
1365 	/* some standard values */
1366 	geo->heads = 1 << 6;
1367 	geo->sectors = 1 << 5;
1368 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1369 	return 0;
1370 }
1371 
1372 #ifdef CONFIG_BLK_DEV_INTEGRITY
1373 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1374 {
1375 	struct blk_integrity integrity;
1376 
1377 	memset(&integrity, 0, sizeof(integrity));
1378 	switch (pi_type) {
1379 	case NVME_NS_DPS_PI_TYPE3:
1380 		integrity.profile = &t10_pi_type3_crc;
1381 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1382 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1383 		break;
1384 	case NVME_NS_DPS_PI_TYPE1:
1385 	case NVME_NS_DPS_PI_TYPE2:
1386 		integrity.profile = &t10_pi_type1_crc;
1387 		integrity.tag_size = sizeof(u16);
1388 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1389 		break;
1390 	default:
1391 		integrity.profile = NULL;
1392 		break;
1393 	}
1394 	integrity.tuple_size = ms;
1395 	blk_integrity_register(disk, &integrity);
1396 	blk_queue_max_integrity_segments(disk->queue, 1);
1397 }
1398 #else
1399 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1400 {
1401 }
1402 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1403 
1404 static void nvme_set_chunk_size(struct nvme_ns *ns)
1405 {
1406 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1407 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1408 }
1409 
1410 static void nvme_config_discard(struct nvme_ns *ns)
1411 {
1412 	struct nvme_ctrl *ctrl = ns->ctrl;
1413 	struct request_queue *queue = ns->queue;
1414 	u32 size = queue_logical_block_size(queue);
1415 
1416 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1417 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1418 		return;
1419 	}
1420 
1421 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1422 		size *= ns->sws * ns->sgs;
1423 
1424 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1425 			NVME_DSM_MAX_RANGES);
1426 
1427 	queue->limits.discard_alignment = 0;
1428 	queue->limits.discard_granularity = size;
1429 
1430 	/* If discard is already enabled, don't reset queue limits */
1431 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1432 		return;
1433 
1434 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1435 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1436 
1437 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1438 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1439 }
1440 
1441 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1442 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1443 {
1444 	memset(ids, 0, sizeof(*ids));
1445 
1446 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1447 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1448 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1449 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1450 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1451 		 /* Don't treat error as fatal we potentially
1452 		  * already have a NGUID or EUI-64
1453 		  */
1454 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1455 			dev_warn(ctrl->device,
1456 				 "%s: Identify Descriptors failed\n", __func__);
1457 	}
1458 }
1459 
1460 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1461 {
1462 	return !uuid_is_null(&ids->uuid) ||
1463 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1464 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1465 }
1466 
1467 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1468 {
1469 	return uuid_equal(&a->uuid, &b->uuid) &&
1470 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1471 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1472 }
1473 
1474 static void nvme_update_disk_info(struct gendisk *disk,
1475 		struct nvme_ns *ns, struct nvme_id_ns *id)
1476 {
1477 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1478 	unsigned short bs = 1 << ns->lba_shift;
1479 
1480 	blk_mq_freeze_queue(disk->queue);
1481 	blk_integrity_unregister(disk);
1482 
1483 	blk_queue_logical_block_size(disk->queue, bs);
1484 	blk_queue_physical_block_size(disk->queue, bs);
1485 	blk_queue_io_min(disk->queue, bs);
1486 
1487 	if (ns->ms && !ns->ext &&
1488 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1489 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1490 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1491 		capacity = 0;
1492 
1493 	set_capacity(disk, capacity);
1494 	nvme_config_discard(ns);
1495 
1496 	if (id->nsattr & (1 << 0))
1497 		set_disk_ro(disk, true);
1498 	else
1499 		set_disk_ro(disk, false);
1500 
1501 	blk_mq_unfreeze_queue(disk->queue);
1502 }
1503 
1504 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1505 {
1506 	struct nvme_ns *ns = disk->private_data;
1507 
1508 	/*
1509 	 * If identify namespace failed, use default 512 byte block size so
1510 	 * block layer can use before failing read/write for 0 capacity.
1511 	 */
1512 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1513 	if (ns->lba_shift == 0)
1514 		ns->lba_shift = 9;
1515 	ns->noiob = le16_to_cpu(id->noiob);
1516 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1517 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1518 	/* the PI implementation requires metadata equal t10 pi tuple size */
1519 	if (ns->ms == sizeof(struct t10_pi_tuple))
1520 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1521 	else
1522 		ns->pi_type = 0;
1523 
1524 	if (ns->noiob)
1525 		nvme_set_chunk_size(ns);
1526 	nvme_update_disk_info(disk, ns, id);
1527 	if (ns->ndev)
1528 		nvme_nvm_update_nvm_info(ns);
1529 #ifdef CONFIG_NVME_MULTIPATH
1530 	if (ns->head->disk) {
1531 		nvme_update_disk_info(ns->head->disk, ns, id);
1532 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1533 	}
1534 #endif
1535 }
1536 
1537 static int nvme_revalidate_disk(struct gendisk *disk)
1538 {
1539 	struct nvme_ns *ns = disk->private_data;
1540 	struct nvme_ctrl *ctrl = ns->ctrl;
1541 	struct nvme_id_ns *id;
1542 	struct nvme_ns_ids ids;
1543 	int ret = 0;
1544 
1545 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1546 		set_capacity(disk, 0);
1547 		return -ENODEV;
1548 	}
1549 
1550 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1551 	if (!id)
1552 		return -ENODEV;
1553 
1554 	if (id->ncap == 0) {
1555 		ret = -ENODEV;
1556 		goto out;
1557 	}
1558 
1559 	__nvme_revalidate_disk(disk, id);
1560 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1561 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1562 		dev_err(ctrl->device,
1563 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1564 		ret = -ENODEV;
1565 	}
1566 
1567 out:
1568 	kfree(id);
1569 	return ret;
1570 }
1571 
1572 static char nvme_pr_type(enum pr_type type)
1573 {
1574 	switch (type) {
1575 	case PR_WRITE_EXCLUSIVE:
1576 		return 1;
1577 	case PR_EXCLUSIVE_ACCESS:
1578 		return 2;
1579 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1580 		return 3;
1581 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1582 		return 4;
1583 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1584 		return 5;
1585 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1586 		return 6;
1587 	default:
1588 		return 0;
1589 	}
1590 };
1591 
1592 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1593 				u64 key, u64 sa_key, u8 op)
1594 {
1595 	struct nvme_ns_head *head = NULL;
1596 	struct nvme_ns *ns;
1597 	struct nvme_command c;
1598 	int srcu_idx, ret;
1599 	u8 data[16] = { 0, };
1600 
1601 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1602 	if (unlikely(!ns))
1603 		return -EWOULDBLOCK;
1604 
1605 	put_unaligned_le64(key, &data[0]);
1606 	put_unaligned_le64(sa_key, &data[8]);
1607 
1608 	memset(&c, 0, sizeof(c));
1609 	c.common.opcode = op;
1610 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1611 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1612 
1613 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1614 	nvme_put_ns_from_disk(head, srcu_idx);
1615 	return ret;
1616 }
1617 
1618 static int nvme_pr_register(struct block_device *bdev, u64 old,
1619 		u64 new, unsigned flags)
1620 {
1621 	u32 cdw10;
1622 
1623 	if (flags & ~PR_FL_IGNORE_KEY)
1624 		return -EOPNOTSUPP;
1625 
1626 	cdw10 = old ? 2 : 0;
1627 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1628 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1629 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1630 }
1631 
1632 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1633 		enum pr_type type, unsigned flags)
1634 {
1635 	u32 cdw10;
1636 
1637 	if (flags & ~PR_FL_IGNORE_KEY)
1638 		return -EOPNOTSUPP;
1639 
1640 	cdw10 = nvme_pr_type(type) << 8;
1641 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1642 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1643 }
1644 
1645 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1646 		enum pr_type type, bool abort)
1647 {
1648 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1649 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1650 }
1651 
1652 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1653 {
1654 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1655 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1656 }
1657 
1658 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1659 {
1660 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1661 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1662 }
1663 
1664 static const struct pr_ops nvme_pr_ops = {
1665 	.pr_register	= nvme_pr_register,
1666 	.pr_reserve	= nvme_pr_reserve,
1667 	.pr_release	= nvme_pr_release,
1668 	.pr_preempt	= nvme_pr_preempt,
1669 	.pr_clear	= nvme_pr_clear,
1670 };
1671 
1672 #ifdef CONFIG_BLK_SED_OPAL
1673 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1674 		bool send)
1675 {
1676 	struct nvme_ctrl *ctrl = data;
1677 	struct nvme_command cmd;
1678 
1679 	memset(&cmd, 0, sizeof(cmd));
1680 	if (send)
1681 		cmd.common.opcode = nvme_admin_security_send;
1682 	else
1683 		cmd.common.opcode = nvme_admin_security_recv;
1684 	cmd.common.nsid = 0;
1685 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1686 	cmd.common.cdw10[1] = cpu_to_le32(len);
1687 
1688 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1689 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1690 }
1691 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1692 #endif /* CONFIG_BLK_SED_OPAL */
1693 
1694 static const struct block_device_operations nvme_fops = {
1695 	.owner		= THIS_MODULE,
1696 	.ioctl		= nvme_ioctl,
1697 	.compat_ioctl	= nvme_ioctl,
1698 	.open		= nvme_open,
1699 	.release	= nvme_release,
1700 	.getgeo		= nvme_getgeo,
1701 	.revalidate_disk= nvme_revalidate_disk,
1702 	.pr_ops		= &nvme_pr_ops,
1703 };
1704 
1705 #ifdef CONFIG_NVME_MULTIPATH
1706 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1707 {
1708 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1709 
1710 	if (!kref_get_unless_zero(&head->ref))
1711 		return -ENXIO;
1712 	return 0;
1713 }
1714 
1715 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1716 {
1717 	nvme_put_ns_head(disk->private_data);
1718 }
1719 
1720 const struct block_device_operations nvme_ns_head_ops = {
1721 	.owner		= THIS_MODULE,
1722 	.open		= nvme_ns_head_open,
1723 	.release	= nvme_ns_head_release,
1724 	.ioctl		= nvme_ioctl,
1725 	.compat_ioctl	= nvme_ioctl,
1726 	.getgeo		= nvme_getgeo,
1727 	.pr_ops		= &nvme_pr_ops,
1728 };
1729 #endif /* CONFIG_NVME_MULTIPATH */
1730 
1731 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1732 {
1733 	unsigned long timeout =
1734 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1735 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1736 	int ret;
1737 
1738 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1739 		if (csts == ~0)
1740 			return -ENODEV;
1741 		if ((csts & NVME_CSTS_RDY) == bit)
1742 			break;
1743 
1744 		msleep(100);
1745 		if (fatal_signal_pending(current))
1746 			return -EINTR;
1747 		if (time_after(jiffies, timeout)) {
1748 			dev_err(ctrl->device,
1749 				"Device not ready; aborting %s\n", enabled ?
1750 						"initialisation" : "reset");
1751 			return -ENODEV;
1752 		}
1753 	}
1754 
1755 	return ret;
1756 }
1757 
1758 /*
1759  * If the device has been passed off to us in an enabled state, just clear
1760  * the enabled bit.  The spec says we should set the 'shutdown notification
1761  * bits', but doing so may cause the device to complete commands to the
1762  * admin queue ... and we don't know what memory that might be pointing at!
1763  */
1764 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1765 {
1766 	int ret;
1767 
1768 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1769 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1770 
1771 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1772 	if (ret)
1773 		return ret;
1774 
1775 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1776 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1777 
1778 	return nvme_wait_ready(ctrl, cap, false);
1779 }
1780 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1781 
1782 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1783 {
1784 	/*
1785 	 * Default to a 4K page size, with the intention to update this
1786 	 * path in the future to accomodate architectures with differing
1787 	 * kernel and IO page sizes.
1788 	 */
1789 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1790 	int ret;
1791 
1792 	if (page_shift < dev_page_min) {
1793 		dev_err(ctrl->device,
1794 			"Minimum device page size %u too large for host (%u)\n",
1795 			1 << dev_page_min, 1 << page_shift);
1796 		return -ENODEV;
1797 	}
1798 
1799 	ctrl->page_size = 1 << page_shift;
1800 
1801 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1802 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1803 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1804 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1805 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1806 
1807 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1808 	if (ret)
1809 		return ret;
1810 	return nvme_wait_ready(ctrl, cap, true);
1811 }
1812 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1813 
1814 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1815 {
1816 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1817 	u32 csts;
1818 	int ret;
1819 
1820 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1821 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1822 
1823 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1824 	if (ret)
1825 		return ret;
1826 
1827 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1828 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1829 			break;
1830 
1831 		msleep(100);
1832 		if (fatal_signal_pending(current))
1833 			return -EINTR;
1834 		if (time_after(jiffies, timeout)) {
1835 			dev_err(ctrl->device,
1836 				"Device shutdown incomplete; abort shutdown\n");
1837 			return -ENODEV;
1838 		}
1839 	}
1840 
1841 	return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1844 
1845 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1846 		struct request_queue *q)
1847 {
1848 	bool vwc = false;
1849 
1850 	if (ctrl->max_hw_sectors) {
1851 		u32 max_segments =
1852 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1853 
1854 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1855 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1856 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1857 	}
1858 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1859 	    is_power_of_2(ctrl->max_hw_sectors))
1860 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1861 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1862 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1863 		vwc = true;
1864 	blk_queue_write_cache(q, vwc, vwc);
1865 }
1866 
1867 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1868 {
1869 	__le64 ts;
1870 	int ret;
1871 
1872 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1873 		return 0;
1874 
1875 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1876 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1877 			NULL);
1878 	if (ret)
1879 		dev_warn_once(ctrl->device,
1880 			"could not set timestamp (%d)\n", ret);
1881 	return ret;
1882 }
1883 
1884 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1885 {
1886 	/*
1887 	 * APST (Autonomous Power State Transition) lets us program a
1888 	 * table of power state transitions that the controller will
1889 	 * perform automatically.  We configure it with a simple
1890 	 * heuristic: we are willing to spend at most 2% of the time
1891 	 * transitioning between power states.  Therefore, when running
1892 	 * in any given state, we will enter the next lower-power
1893 	 * non-operational state after waiting 50 * (enlat + exlat)
1894 	 * microseconds, as long as that state's exit latency is under
1895 	 * the requested maximum latency.
1896 	 *
1897 	 * We will not autonomously enter any non-operational state for
1898 	 * which the total latency exceeds ps_max_latency_us.  Users
1899 	 * can set ps_max_latency_us to zero to turn off APST.
1900 	 */
1901 
1902 	unsigned apste;
1903 	struct nvme_feat_auto_pst *table;
1904 	u64 max_lat_us = 0;
1905 	int max_ps = -1;
1906 	int ret;
1907 
1908 	/*
1909 	 * If APST isn't supported or if we haven't been initialized yet,
1910 	 * then don't do anything.
1911 	 */
1912 	if (!ctrl->apsta)
1913 		return 0;
1914 
1915 	if (ctrl->npss > 31) {
1916 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1917 		return 0;
1918 	}
1919 
1920 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1921 	if (!table)
1922 		return 0;
1923 
1924 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1925 		/* Turn off APST. */
1926 		apste = 0;
1927 		dev_dbg(ctrl->device, "APST disabled\n");
1928 	} else {
1929 		__le64 target = cpu_to_le64(0);
1930 		int state;
1931 
1932 		/*
1933 		 * Walk through all states from lowest- to highest-power.
1934 		 * According to the spec, lower-numbered states use more
1935 		 * power.  NPSS, despite the name, is the index of the
1936 		 * lowest-power state, not the number of states.
1937 		 */
1938 		for (state = (int)ctrl->npss; state >= 0; state--) {
1939 			u64 total_latency_us, exit_latency_us, transition_ms;
1940 
1941 			if (target)
1942 				table->entries[state] = target;
1943 
1944 			/*
1945 			 * Don't allow transitions to the deepest state
1946 			 * if it's quirked off.
1947 			 */
1948 			if (state == ctrl->npss &&
1949 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1950 				continue;
1951 
1952 			/*
1953 			 * Is this state a useful non-operational state for
1954 			 * higher-power states to autonomously transition to?
1955 			 */
1956 			if (!(ctrl->psd[state].flags &
1957 			      NVME_PS_FLAGS_NON_OP_STATE))
1958 				continue;
1959 
1960 			exit_latency_us =
1961 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1962 			if (exit_latency_us > ctrl->ps_max_latency_us)
1963 				continue;
1964 
1965 			total_latency_us =
1966 				exit_latency_us +
1967 				le32_to_cpu(ctrl->psd[state].entry_lat);
1968 
1969 			/*
1970 			 * This state is good.  Use it as the APST idle
1971 			 * target for higher power states.
1972 			 */
1973 			transition_ms = total_latency_us + 19;
1974 			do_div(transition_ms, 20);
1975 			if (transition_ms > (1 << 24) - 1)
1976 				transition_ms = (1 << 24) - 1;
1977 
1978 			target = cpu_to_le64((state << 3) |
1979 					     (transition_ms << 8));
1980 
1981 			if (max_ps == -1)
1982 				max_ps = state;
1983 
1984 			if (total_latency_us > max_lat_us)
1985 				max_lat_us = total_latency_us;
1986 		}
1987 
1988 		apste = 1;
1989 
1990 		if (max_ps == -1) {
1991 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1992 		} else {
1993 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1994 				max_ps, max_lat_us, (int)sizeof(*table), table);
1995 		}
1996 	}
1997 
1998 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1999 				table, sizeof(*table), NULL);
2000 	if (ret)
2001 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2002 
2003 	kfree(table);
2004 	return ret;
2005 }
2006 
2007 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2008 {
2009 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2010 	u64 latency;
2011 
2012 	switch (val) {
2013 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2014 	case PM_QOS_LATENCY_ANY:
2015 		latency = U64_MAX;
2016 		break;
2017 
2018 	default:
2019 		latency = val;
2020 	}
2021 
2022 	if (ctrl->ps_max_latency_us != latency) {
2023 		ctrl->ps_max_latency_us = latency;
2024 		nvme_configure_apst(ctrl);
2025 	}
2026 }
2027 
2028 struct nvme_core_quirk_entry {
2029 	/*
2030 	 * NVMe model and firmware strings are padded with spaces.  For
2031 	 * simplicity, strings in the quirk table are padded with NULLs
2032 	 * instead.
2033 	 */
2034 	u16 vid;
2035 	const char *mn;
2036 	const char *fr;
2037 	unsigned long quirks;
2038 };
2039 
2040 static const struct nvme_core_quirk_entry core_quirks[] = {
2041 	{
2042 		/*
2043 		 * This Toshiba device seems to die using any APST states.  See:
2044 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2045 		 */
2046 		.vid = 0x1179,
2047 		.mn = "THNSF5256GPUK TOSHIBA",
2048 		.quirks = NVME_QUIRK_NO_APST,
2049 	}
2050 };
2051 
2052 /* match is null-terminated but idstr is space-padded. */
2053 static bool string_matches(const char *idstr, const char *match, size_t len)
2054 {
2055 	size_t matchlen;
2056 
2057 	if (!match)
2058 		return true;
2059 
2060 	matchlen = strlen(match);
2061 	WARN_ON_ONCE(matchlen > len);
2062 
2063 	if (memcmp(idstr, match, matchlen))
2064 		return false;
2065 
2066 	for (; matchlen < len; matchlen++)
2067 		if (idstr[matchlen] != ' ')
2068 			return false;
2069 
2070 	return true;
2071 }
2072 
2073 static bool quirk_matches(const struct nvme_id_ctrl *id,
2074 			  const struct nvme_core_quirk_entry *q)
2075 {
2076 	return q->vid == le16_to_cpu(id->vid) &&
2077 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2078 		string_matches(id->fr, q->fr, sizeof(id->fr));
2079 }
2080 
2081 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2082 		struct nvme_id_ctrl *id)
2083 {
2084 	size_t nqnlen;
2085 	int off;
2086 
2087 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2088 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2089 		strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2090 		return;
2091 	}
2092 
2093 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2094 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2095 
2096 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2097 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2098 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2099 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2100 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2101 	off += sizeof(id->sn);
2102 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2103 	off += sizeof(id->mn);
2104 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2105 }
2106 
2107 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2108 {
2109 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2110 	kfree(subsys);
2111 }
2112 
2113 static void nvme_release_subsystem(struct device *dev)
2114 {
2115 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2116 }
2117 
2118 static void nvme_destroy_subsystem(struct kref *ref)
2119 {
2120 	struct nvme_subsystem *subsys =
2121 			container_of(ref, struct nvme_subsystem, ref);
2122 
2123 	mutex_lock(&nvme_subsystems_lock);
2124 	list_del(&subsys->entry);
2125 	mutex_unlock(&nvme_subsystems_lock);
2126 
2127 	ida_destroy(&subsys->ns_ida);
2128 	device_del(&subsys->dev);
2129 	put_device(&subsys->dev);
2130 }
2131 
2132 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2133 {
2134 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2135 }
2136 
2137 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2138 {
2139 	struct nvme_subsystem *subsys;
2140 
2141 	lockdep_assert_held(&nvme_subsystems_lock);
2142 
2143 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2144 		if (strcmp(subsys->subnqn, subsysnqn))
2145 			continue;
2146 		if (!kref_get_unless_zero(&subsys->ref))
2147 			continue;
2148 		return subsys;
2149 	}
2150 
2151 	return NULL;
2152 }
2153 
2154 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2155 	struct device_attribute subsys_attr_##_name = \
2156 		__ATTR(_name, _mode, _show, NULL)
2157 
2158 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2159 				    struct device_attribute *attr,
2160 				    char *buf)
2161 {
2162 	struct nvme_subsystem *subsys =
2163 		container_of(dev, struct nvme_subsystem, dev);
2164 
2165 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2166 }
2167 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2168 
2169 #define nvme_subsys_show_str_function(field)				\
2170 static ssize_t subsys_##field##_show(struct device *dev,		\
2171 			    struct device_attribute *attr, char *buf)	\
2172 {									\
2173 	struct nvme_subsystem *subsys =					\
2174 		container_of(dev, struct nvme_subsystem, dev);		\
2175 	return sprintf(buf, "%.*s\n",					\
2176 		       (int)sizeof(subsys->field), subsys->field);	\
2177 }									\
2178 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2179 
2180 nvme_subsys_show_str_function(model);
2181 nvme_subsys_show_str_function(serial);
2182 nvme_subsys_show_str_function(firmware_rev);
2183 
2184 static struct attribute *nvme_subsys_attrs[] = {
2185 	&subsys_attr_model.attr,
2186 	&subsys_attr_serial.attr,
2187 	&subsys_attr_firmware_rev.attr,
2188 	&subsys_attr_subsysnqn.attr,
2189 	NULL,
2190 };
2191 
2192 static struct attribute_group nvme_subsys_attrs_group = {
2193 	.attrs = nvme_subsys_attrs,
2194 };
2195 
2196 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2197 	&nvme_subsys_attrs_group,
2198 	NULL,
2199 };
2200 
2201 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2202 {
2203 	int count = 0;
2204 	struct nvme_ctrl *ctrl;
2205 
2206 	mutex_lock(&subsys->lock);
2207 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2208 		if (ctrl->state != NVME_CTRL_DELETING &&
2209 		    ctrl->state != NVME_CTRL_DEAD)
2210 			count++;
2211 	}
2212 	mutex_unlock(&subsys->lock);
2213 
2214 	return count;
2215 }
2216 
2217 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2218 {
2219 	struct nvme_subsystem *subsys, *found;
2220 	int ret;
2221 
2222 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2223 	if (!subsys)
2224 		return -ENOMEM;
2225 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2226 	if (ret < 0) {
2227 		kfree(subsys);
2228 		return ret;
2229 	}
2230 	subsys->instance = ret;
2231 	mutex_init(&subsys->lock);
2232 	kref_init(&subsys->ref);
2233 	INIT_LIST_HEAD(&subsys->ctrls);
2234 	INIT_LIST_HEAD(&subsys->nsheads);
2235 	nvme_init_subnqn(subsys, ctrl, id);
2236 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2237 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2238 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2239 	subsys->vendor_id = le16_to_cpu(id->vid);
2240 	subsys->cmic = id->cmic;
2241 
2242 	subsys->dev.class = nvme_subsys_class;
2243 	subsys->dev.release = nvme_release_subsystem;
2244 	subsys->dev.groups = nvme_subsys_attrs_groups;
2245 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2246 	device_initialize(&subsys->dev);
2247 
2248 	mutex_lock(&nvme_subsystems_lock);
2249 	found = __nvme_find_get_subsystem(subsys->subnqn);
2250 	if (found) {
2251 		/*
2252 		 * Verify that the subsystem actually supports multiple
2253 		 * controllers, else bail out.
2254 		 */
2255 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2256 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2257 			dev_err(ctrl->device,
2258 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2259 				found->subnqn);
2260 			nvme_put_subsystem(found);
2261 			ret = -EINVAL;
2262 			goto out_unlock;
2263 		}
2264 
2265 		__nvme_release_subsystem(subsys);
2266 		subsys = found;
2267 	} else {
2268 		ret = device_add(&subsys->dev);
2269 		if (ret) {
2270 			dev_err(ctrl->device,
2271 				"failed to register subsystem device.\n");
2272 			goto out_unlock;
2273 		}
2274 		ida_init(&subsys->ns_ida);
2275 		list_add_tail(&subsys->entry, &nvme_subsystems);
2276 	}
2277 
2278 	ctrl->subsys = subsys;
2279 	mutex_unlock(&nvme_subsystems_lock);
2280 
2281 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2282 			dev_name(ctrl->device))) {
2283 		dev_err(ctrl->device,
2284 			"failed to create sysfs link from subsystem.\n");
2285 		/* the transport driver will eventually put the subsystem */
2286 		return -EINVAL;
2287 	}
2288 
2289 	mutex_lock(&subsys->lock);
2290 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2291 	mutex_unlock(&subsys->lock);
2292 
2293 	return 0;
2294 
2295 out_unlock:
2296 	mutex_unlock(&nvme_subsystems_lock);
2297 	put_device(&subsys->dev);
2298 	return ret;
2299 }
2300 
2301 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2302 		void *log, size_t size, u64 offset)
2303 {
2304 	struct nvme_command c = { };
2305 	unsigned long dwlen = size / 4 - 1;
2306 
2307 	c.get_log_page.opcode = nvme_admin_get_log_page;
2308 	c.get_log_page.nsid = cpu_to_le32(nsid);
2309 	c.get_log_page.lid = log_page;
2310 	c.get_log_page.lsp = lsp;
2311 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2312 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2313 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2314 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2315 
2316 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2317 }
2318 
2319 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2320 {
2321 	int ret;
2322 
2323 	if (!ctrl->effects)
2324 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2325 
2326 	if (!ctrl->effects)
2327 		return 0;
2328 
2329 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2330 			ctrl->effects, sizeof(*ctrl->effects), 0);
2331 	if (ret) {
2332 		kfree(ctrl->effects);
2333 		ctrl->effects = NULL;
2334 	}
2335 	return ret;
2336 }
2337 
2338 /*
2339  * Initialize the cached copies of the Identify data and various controller
2340  * register in our nvme_ctrl structure.  This should be called as soon as
2341  * the admin queue is fully up and running.
2342  */
2343 int nvme_init_identify(struct nvme_ctrl *ctrl)
2344 {
2345 	struct nvme_id_ctrl *id;
2346 	u64 cap;
2347 	int ret, page_shift;
2348 	u32 max_hw_sectors;
2349 	bool prev_apst_enabled;
2350 
2351 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2352 	if (ret) {
2353 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2354 		return ret;
2355 	}
2356 
2357 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2358 	if (ret) {
2359 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2360 		return ret;
2361 	}
2362 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2363 
2364 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2365 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2366 
2367 	ret = nvme_identify_ctrl(ctrl, &id);
2368 	if (ret) {
2369 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2370 		return -EIO;
2371 	}
2372 
2373 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2374 		ret = nvme_get_effects_log(ctrl);
2375 		if (ret < 0)
2376 			goto out_free;
2377 	}
2378 
2379 	if (!ctrl->identified) {
2380 		int i;
2381 
2382 		ret = nvme_init_subsystem(ctrl, id);
2383 		if (ret)
2384 			goto out_free;
2385 
2386 		/*
2387 		 * Check for quirks.  Quirk can depend on firmware version,
2388 		 * so, in principle, the set of quirks present can change
2389 		 * across a reset.  As a possible future enhancement, we
2390 		 * could re-scan for quirks every time we reinitialize
2391 		 * the device, but we'd have to make sure that the driver
2392 		 * behaves intelligently if the quirks change.
2393 		 */
2394 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2395 			if (quirk_matches(id, &core_quirks[i]))
2396 				ctrl->quirks |= core_quirks[i].quirks;
2397 		}
2398 	}
2399 
2400 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2401 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2402 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2403 	}
2404 
2405 	ctrl->oacs = le16_to_cpu(id->oacs);
2406 	ctrl->oncs = le16_to_cpup(&id->oncs);
2407 	ctrl->oaes = le32_to_cpu(id->oaes);
2408 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2409 	ctrl->vwc = id->vwc;
2410 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2411 	if (id->mdts)
2412 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2413 	else
2414 		max_hw_sectors = UINT_MAX;
2415 	ctrl->max_hw_sectors =
2416 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2417 
2418 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2419 	ctrl->sgls = le32_to_cpu(id->sgls);
2420 	ctrl->kas = le16_to_cpu(id->kas);
2421 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2422 
2423 	if (id->rtd3e) {
2424 		/* us -> s */
2425 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2426 
2427 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2428 						 shutdown_timeout, 60);
2429 
2430 		if (ctrl->shutdown_timeout != shutdown_timeout)
2431 			dev_info(ctrl->device,
2432 				 "Shutdown timeout set to %u seconds\n",
2433 				 ctrl->shutdown_timeout);
2434 	} else
2435 		ctrl->shutdown_timeout = shutdown_timeout;
2436 
2437 	ctrl->npss = id->npss;
2438 	ctrl->apsta = id->apsta;
2439 	prev_apst_enabled = ctrl->apst_enabled;
2440 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2441 		if (force_apst && id->apsta) {
2442 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2443 			ctrl->apst_enabled = true;
2444 		} else {
2445 			ctrl->apst_enabled = false;
2446 		}
2447 	} else {
2448 		ctrl->apst_enabled = id->apsta;
2449 	}
2450 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2451 
2452 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2453 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2454 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2455 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2456 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2457 
2458 		/*
2459 		 * In fabrics we need to verify the cntlid matches the
2460 		 * admin connect
2461 		 */
2462 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2463 			ret = -EINVAL;
2464 			goto out_free;
2465 		}
2466 
2467 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2468 			dev_err(ctrl->device,
2469 				"keep-alive support is mandatory for fabrics\n");
2470 			ret = -EINVAL;
2471 			goto out_free;
2472 		}
2473 	} else {
2474 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2475 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2476 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2477 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2478 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2479 	}
2480 
2481 	ret = nvme_mpath_init(ctrl, id);
2482 	kfree(id);
2483 
2484 	if (ret < 0)
2485 		return ret;
2486 
2487 	if (ctrl->apst_enabled && !prev_apst_enabled)
2488 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2489 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2490 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2491 
2492 	ret = nvme_configure_apst(ctrl);
2493 	if (ret < 0)
2494 		return ret;
2495 
2496 	ret = nvme_configure_timestamp(ctrl);
2497 	if (ret < 0)
2498 		return ret;
2499 
2500 	ret = nvme_configure_directives(ctrl);
2501 	if (ret < 0)
2502 		return ret;
2503 
2504 	ctrl->identified = true;
2505 
2506 	return 0;
2507 
2508 out_free:
2509 	kfree(id);
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL_GPL(nvme_init_identify);
2513 
2514 static int nvme_dev_open(struct inode *inode, struct file *file)
2515 {
2516 	struct nvme_ctrl *ctrl =
2517 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2518 
2519 	switch (ctrl->state) {
2520 	case NVME_CTRL_LIVE:
2521 	case NVME_CTRL_ADMIN_ONLY:
2522 		break;
2523 	default:
2524 		return -EWOULDBLOCK;
2525 	}
2526 
2527 	file->private_data = ctrl;
2528 	return 0;
2529 }
2530 
2531 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2532 {
2533 	struct nvme_ns *ns;
2534 	int ret;
2535 
2536 	down_read(&ctrl->namespaces_rwsem);
2537 	if (list_empty(&ctrl->namespaces)) {
2538 		ret = -ENOTTY;
2539 		goto out_unlock;
2540 	}
2541 
2542 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2543 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2544 		dev_warn(ctrl->device,
2545 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2546 		ret = -EINVAL;
2547 		goto out_unlock;
2548 	}
2549 
2550 	dev_warn(ctrl->device,
2551 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2552 	kref_get(&ns->kref);
2553 	up_read(&ctrl->namespaces_rwsem);
2554 
2555 	ret = nvme_user_cmd(ctrl, ns, argp);
2556 	nvme_put_ns(ns);
2557 	return ret;
2558 
2559 out_unlock:
2560 	up_read(&ctrl->namespaces_rwsem);
2561 	return ret;
2562 }
2563 
2564 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2565 		unsigned long arg)
2566 {
2567 	struct nvme_ctrl *ctrl = file->private_data;
2568 	void __user *argp = (void __user *)arg;
2569 
2570 	switch (cmd) {
2571 	case NVME_IOCTL_ADMIN_CMD:
2572 		return nvme_user_cmd(ctrl, NULL, argp);
2573 	case NVME_IOCTL_IO_CMD:
2574 		return nvme_dev_user_cmd(ctrl, argp);
2575 	case NVME_IOCTL_RESET:
2576 		dev_warn(ctrl->device, "resetting controller\n");
2577 		return nvme_reset_ctrl_sync(ctrl);
2578 	case NVME_IOCTL_SUBSYS_RESET:
2579 		return nvme_reset_subsystem(ctrl);
2580 	case NVME_IOCTL_RESCAN:
2581 		nvme_queue_scan(ctrl);
2582 		return 0;
2583 	default:
2584 		return -ENOTTY;
2585 	}
2586 }
2587 
2588 static const struct file_operations nvme_dev_fops = {
2589 	.owner		= THIS_MODULE,
2590 	.open		= nvme_dev_open,
2591 	.unlocked_ioctl	= nvme_dev_ioctl,
2592 	.compat_ioctl	= nvme_dev_ioctl,
2593 };
2594 
2595 static ssize_t nvme_sysfs_reset(struct device *dev,
2596 				struct device_attribute *attr, const char *buf,
2597 				size_t count)
2598 {
2599 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2600 	int ret;
2601 
2602 	ret = nvme_reset_ctrl_sync(ctrl);
2603 	if (ret < 0)
2604 		return ret;
2605 	return count;
2606 }
2607 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2608 
2609 static ssize_t nvme_sysfs_rescan(struct device *dev,
2610 				struct device_attribute *attr, const char *buf,
2611 				size_t count)
2612 {
2613 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2614 
2615 	nvme_queue_scan(ctrl);
2616 	return count;
2617 }
2618 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2619 
2620 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2621 {
2622 	struct gendisk *disk = dev_to_disk(dev);
2623 
2624 	if (disk->fops == &nvme_fops)
2625 		return nvme_get_ns_from_dev(dev)->head;
2626 	else
2627 		return disk->private_data;
2628 }
2629 
2630 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2631 		char *buf)
2632 {
2633 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2634 	struct nvme_ns_ids *ids = &head->ids;
2635 	struct nvme_subsystem *subsys = head->subsys;
2636 	int serial_len = sizeof(subsys->serial);
2637 	int model_len = sizeof(subsys->model);
2638 
2639 	if (!uuid_is_null(&ids->uuid))
2640 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2641 
2642 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2643 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2644 
2645 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2646 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2647 
2648 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2649 				  subsys->serial[serial_len - 1] == '\0'))
2650 		serial_len--;
2651 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2652 				 subsys->model[model_len - 1] == '\0'))
2653 		model_len--;
2654 
2655 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2656 		serial_len, subsys->serial, model_len, subsys->model,
2657 		head->ns_id);
2658 }
2659 static DEVICE_ATTR_RO(wwid);
2660 
2661 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2662 		char *buf)
2663 {
2664 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2665 }
2666 static DEVICE_ATTR_RO(nguid);
2667 
2668 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2669 		char *buf)
2670 {
2671 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2672 
2673 	/* For backward compatibility expose the NGUID to userspace if
2674 	 * we have no UUID set
2675 	 */
2676 	if (uuid_is_null(&ids->uuid)) {
2677 		printk_ratelimited(KERN_WARNING
2678 				   "No UUID available providing old NGUID\n");
2679 		return sprintf(buf, "%pU\n", ids->nguid);
2680 	}
2681 	return sprintf(buf, "%pU\n", &ids->uuid);
2682 }
2683 static DEVICE_ATTR_RO(uuid);
2684 
2685 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2686 		char *buf)
2687 {
2688 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2689 }
2690 static DEVICE_ATTR_RO(eui);
2691 
2692 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2693 		char *buf)
2694 {
2695 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2696 }
2697 static DEVICE_ATTR_RO(nsid);
2698 
2699 static struct attribute *nvme_ns_id_attrs[] = {
2700 	&dev_attr_wwid.attr,
2701 	&dev_attr_uuid.attr,
2702 	&dev_attr_nguid.attr,
2703 	&dev_attr_eui.attr,
2704 	&dev_attr_nsid.attr,
2705 #ifdef CONFIG_NVME_MULTIPATH
2706 	&dev_attr_ana_grpid.attr,
2707 	&dev_attr_ana_state.attr,
2708 #endif
2709 	NULL,
2710 };
2711 
2712 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2713 		struct attribute *a, int n)
2714 {
2715 	struct device *dev = container_of(kobj, struct device, kobj);
2716 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2717 
2718 	if (a == &dev_attr_uuid.attr) {
2719 		if (uuid_is_null(&ids->uuid) &&
2720 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2721 			return 0;
2722 	}
2723 	if (a == &dev_attr_nguid.attr) {
2724 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2725 			return 0;
2726 	}
2727 	if (a == &dev_attr_eui.attr) {
2728 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2729 			return 0;
2730 	}
2731 #ifdef CONFIG_NVME_MULTIPATH
2732 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2733 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2734 			return 0;
2735 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2736 			return 0;
2737 	}
2738 #endif
2739 	return a->mode;
2740 }
2741 
2742 static const struct attribute_group nvme_ns_id_attr_group = {
2743 	.attrs		= nvme_ns_id_attrs,
2744 	.is_visible	= nvme_ns_id_attrs_are_visible,
2745 };
2746 
2747 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2748 	&nvme_ns_id_attr_group,
2749 #ifdef CONFIG_NVM
2750 	&nvme_nvm_attr_group,
2751 #endif
2752 	NULL,
2753 };
2754 
2755 #define nvme_show_str_function(field)						\
2756 static ssize_t  field##_show(struct device *dev,				\
2757 			    struct device_attribute *attr, char *buf)		\
2758 {										\
2759         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2760         return sprintf(buf, "%.*s\n",						\
2761 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2762 }										\
2763 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2764 
2765 nvme_show_str_function(model);
2766 nvme_show_str_function(serial);
2767 nvme_show_str_function(firmware_rev);
2768 
2769 #define nvme_show_int_function(field)						\
2770 static ssize_t  field##_show(struct device *dev,				\
2771 			    struct device_attribute *attr, char *buf)		\
2772 {										\
2773         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2774         return sprintf(buf, "%d\n", ctrl->field);	\
2775 }										\
2776 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2777 
2778 nvme_show_int_function(cntlid);
2779 
2780 static ssize_t nvme_sysfs_delete(struct device *dev,
2781 				struct device_attribute *attr, const char *buf,
2782 				size_t count)
2783 {
2784 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2785 
2786 	if (device_remove_file_self(dev, attr))
2787 		nvme_delete_ctrl_sync(ctrl);
2788 	return count;
2789 }
2790 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2791 
2792 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2793 					 struct device_attribute *attr,
2794 					 char *buf)
2795 {
2796 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2797 
2798 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2799 }
2800 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2801 
2802 static ssize_t nvme_sysfs_show_state(struct device *dev,
2803 				     struct device_attribute *attr,
2804 				     char *buf)
2805 {
2806 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2807 	static const char *const state_name[] = {
2808 		[NVME_CTRL_NEW]		= "new",
2809 		[NVME_CTRL_LIVE]	= "live",
2810 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2811 		[NVME_CTRL_RESETTING]	= "resetting",
2812 		[NVME_CTRL_CONNECTING]	= "connecting",
2813 		[NVME_CTRL_DELETING]	= "deleting",
2814 		[NVME_CTRL_DEAD]	= "dead",
2815 	};
2816 
2817 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2818 	    state_name[ctrl->state])
2819 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2820 
2821 	return sprintf(buf, "unknown state\n");
2822 }
2823 
2824 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2825 
2826 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2827 					 struct device_attribute *attr,
2828 					 char *buf)
2829 {
2830 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2831 
2832 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2833 }
2834 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2835 
2836 static ssize_t nvme_sysfs_show_address(struct device *dev,
2837 					 struct device_attribute *attr,
2838 					 char *buf)
2839 {
2840 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2841 
2842 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2843 }
2844 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2845 
2846 static struct attribute *nvme_dev_attrs[] = {
2847 	&dev_attr_reset_controller.attr,
2848 	&dev_attr_rescan_controller.attr,
2849 	&dev_attr_model.attr,
2850 	&dev_attr_serial.attr,
2851 	&dev_attr_firmware_rev.attr,
2852 	&dev_attr_cntlid.attr,
2853 	&dev_attr_delete_controller.attr,
2854 	&dev_attr_transport.attr,
2855 	&dev_attr_subsysnqn.attr,
2856 	&dev_attr_address.attr,
2857 	&dev_attr_state.attr,
2858 	NULL
2859 };
2860 
2861 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2862 		struct attribute *a, int n)
2863 {
2864 	struct device *dev = container_of(kobj, struct device, kobj);
2865 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2866 
2867 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2868 		return 0;
2869 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2870 		return 0;
2871 
2872 	return a->mode;
2873 }
2874 
2875 static struct attribute_group nvme_dev_attrs_group = {
2876 	.attrs		= nvme_dev_attrs,
2877 	.is_visible	= nvme_dev_attrs_are_visible,
2878 };
2879 
2880 static const struct attribute_group *nvme_dev_attr_groups[] = {
2881 	&nvme_dev_attrs_group,
2882 	NULL,
2883 };
2884 
2885 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2886 		unsigned nsid)
2887 {
2888 	struct nvme_ns_head *h;
2889 
2890 	lockdep_assert_held(&subsys->lock);
2891 
2892 	list_for_each_entry(h, &subsys->nsheads, entry) {
2893 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2894 			return h;
2895 	}
2896 
2897 	return NULL;
2898 }
2899 
2900 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2901 		struct nvme_ns_head *new)
2902 {
2903 	struct nvme_ns_head *h;
2904 
2905 	lockdep_assert_held(&subsys->lock);
2906 
2907 	list_for_each_entry(h, &subsys->nsheads, entry) {
2908 		if (nvme_ns_ids_valid(&new->ids) &&
2909 		    !list_empty(&h->list) &&
2910 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2911 			return -EINVAL;
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2918 		unsigned nsid, struct nvme_id_ns *id)
2919 {
2920 	struct nvme_ns_head *head;
2921 	size_t size = sizeof(*head);
2922 	int ret = -ENOMEM;
2923 
2924 #ifdef CONFIG_NVME_MULTIPATH
2925 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
2926 #endif
2927 
2928 	head = kzalloc(size, GFP_KERNEL);
2929 	if (!head)
2930 		goto out;
2931 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2932 	if (ret < 0)
2933 		goto out_free_head;
2934 	head->instance = ret;
2935 	INIT_LIST_HEAD(&head->list);
2936 	ret = init_srcu_struct(&head->srcu);
2937 	if (ret)
2938 		goto out_ida_remove;
2939 	head->subsys = ctrl->subsys;
2940 	head->ns_id = nsid;
2941 	kref_init(&head->ref);
2942 
2943 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2944 
2945 	ret = __nvme_check_ids(ctrl->subsys, head);
2946 	if (ret) {
2947 		dev_err(ctrl->device,
2948 			"duplicate IDs for nsid %d\n", nsid);
2949 		goto out_cleanup_srcu;
2950 	}
2951 
2952 	ret = nvme_mpath_alloc_disk(ctrl, head);
2953 	if (ret)
2954 		goto out_cleanup_srcu;
2955 
2956 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2957 
2958 	kref_get(&ctrl->subsys->ref);
2959 
2960 	return head;
2961 out_cleanup_srcu:
2962 	cleanup_srcu_struct(&head->srcu);
2963 out_ida_remove:
2964 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2965 out_free_head:
2966 	kfree(head);
2967 out:
2968 	return ERR_PTR(ret);
2969 }
2970 
2971 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2972 		struct nvme_id_ns *id)
2973 {
2974 	struct nvme_ctrl *ctrl = ns->ctrl;
2975 	bool is_shared = id->nmic & (1 << 0);
2976 	struct nvme_ns_head *head = NULL;
2977 	int ret = 0;
2978 
2979 	mutex_lock(&ctrl->subsys->lock);
2980 	if (is_shared)
2981 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2982 	if (!head) {
2983 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2984 		if (IS_ERR(head)) {
2985 			ret = PTR_ERR(head);
2986 			goto out_unlock;
2987 		}
2988 	} else {
2989 		struct nvme_ns_ids ids;
2990 
2991 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2992 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2993 			dev_err(ctrl->device,
2994 				"IDs don't match for shared namespace %d\n",
2995 					nsid);
2996 			ret = -EINVAL;
2997 			goto out_unlock;
2998 		}
2999 	}
3000 
3001 	list_add_tail(&ns->siblings, &head->list);
3002 	ns->head = head;
3003 
3004 out_unlock:
3005 	mutex_unlock(&ctrl->subsys->lock);
3006 	return ret;
3007 }
3008 
3009 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3010 {
3011 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3012 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3013 
3014 	return nsa->head->ns_id - nsb->head->ns_id;
3015 }
3016 
3017 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3018 {
3019 	struct nvme_ns *ns, *ret = NULL;
3020 
3021 	down_read(&ctrl->namespaces_rwsem);
3022 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3023 		if (ns->head->ns_id == nsid) {
3024 			if (!kref_get_unless_zero(&ns->kref))
3025 				continue;
3026 			ret = ns;
3027 			break;
3028 		}
3029 		if (ns->head->ns_id > nsid)
3030 			break;
3031 	}
3032 	up_read(&ctrl->namespaces_rwsem);
3033 	return ret;
3034 }
3035 
3036 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3037 {
3038 	struct streams_directive_params s;
3039 	int ret;
3040 
3041 	if (!ctrl->nr_streams)
3042 		return 0;
3043 
3044 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3045 	if (ret)
3046 		return ret;
3047 
3048 	ns->sws = le32_to_cpu(s.sws);
3049 	ns->sgs = le16_to_cpu(s.sgs);
3050 
3051 	if (ns->sws) {
3052 		unsigned int bs = 1 << ns->lba_shift;
3053 
3054 		blk_queue_io_min(ns->queue, bs * ns->sws);
3055 		if (ns->sgs)
3056 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3063 {
3064 	struct nvme_ns *ns;
3065 	struct gendisk *disk;
3066 	struct nvme_id_ns *id;
3067 	char disk_name[DISK_NAME_LEN];
3068 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3069 
3070 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3071 	if (!ns)
3072 		return;
3073 
3074 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3075 	if (IS_ERR(ns->queue))
3076 		goto out_free_ns;
3077 
3078 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3079 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3080 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3081 
3082 	ns->queue->queuedata = ns;
3083 	ns->ctrl = ctrl;
3084 
3085 	kref_init(&ns->kref);
3086 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3087 
3088 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3089 	nvme_set_queue_limits(ctrl, ns->queue);
3090 
3091 	id = nvme_identify_ns(ctrl, nsid);
3092 	if (!id)
3093 		goto out_free_queue;
3094 
3095 	if (id->ncap == 0)
3096 		goto out_free_id;
3097 
3098 	if (nvme_init_ns_head(ns, nsid, id))
3099 		goto out_free_id;
3100 	nvme_setup_streams_ns(ctrl, ns);
3101 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3102 
3103 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3104 		if (nvme_nvm_register(ns, disk_name, node)) {
3105 			dev_warn(ctrl->device, "LightNVM init failure\n");
3106 			goto out_unlink_ns;
3107 		}
3108 	}
3109 
3110 	disk = alloc_disk_node(0, node);
3111 	if (!disk)
3112 		goto out_unlink_ns;
3113 
3114 	disk->fops = &nvme_fops;
3115 	disk->private_data = ns;
3116 	disk->queue = ns->queue;
3117 	disk->flags = flags;
3118 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3119 	ns->disk = disk;
3120 
3121 	__nvme_revalidate_disk(disk, id);
3122 
3123 	down_write(&ctrl->namespaces_rwsem);
3124 	list_add_tail(&ns->list, &ctrl->namespaces);
3125 	up_write(&ctrl->namespaces_rwsem);
3126 
3127 	nvme_get_ctrl(ctrl);
3128 
3129 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3130 
3131 	nvme_mpath_add_disk(ns, id);
3132 	nvme_fault_inject_init(ns);
3133 	kfree(id);
3134 
3135 	return;
3136  out_unlink_ns:
3137 	mutex_lock(&ctrl->subsys->lock);
3138 	list_del_rcu(&ns->siblings);
3139 	mutex_unlock(&ctrl->subsys->lock);
3140  out_free_id:
3141 	kfree(id);
3142  out_free_queue:
3143 	blk_cleanup_queue(ns->queue);
3144  out_free_ns:
3145 	kfree(ns);
3146 }
3147 
3148 static void nvme_ns_remove(struct nvme_ns *ns)
3149 {
3150 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3151 		return;
3152 
3153 	nvme_fault_inject_fini(ns);
3154 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3155 		del_gendisk(ns->disk);
3156 		blk_cleanup_queue(ns->queue);
3157 		if (blk_get_integrity(ns->disk))
3158 			blk_integrity_unregister(ns->disk);
3159 	}
3160 
3161 	mutex_lock(&ns->ctrl->subsys->lock);
3162 	list_del_rcu(&ns->siblings);
3163 	nvme_mpath_clear_current_path(ns);
3164 	mutex_unlock(&ns->ctrl->subsys->lock);
3165 
3166 	down_write(&ns->ctrl->namespaces_rwsem);
3167 	list_del_init(&ns->list);
3168 	up_write(&ns->ctrl->namespaces_rwsem);
3169 
3170 	synchronize_srcu(&ns->head->srcu);
3171 	nvme_mpath_check_last_path(ns);
3172 	nvme_put_ns(ns);
3173 }
3174 
3175 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3176 {
3177 	struct nvme_ns *ns;
3178 
3179 	ns = nvme_find_get_ns(ctrl, nsid);
3180 	if (ns) {
3181 		if (ns->disk && revalidate_disk(ns->disk))
3182 			nvme_ns_remove(ns);
3183 		nvme_put_ns(ns);
3184 	} else
3185 		nvme_alloc_ns(ctrl, nsid);
3186 }
3187 
3188 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3189 					unsigned nsid)
3190 {
3191 	struct nvme_ns *ns, *next;
3192 	LIST_HEAD(rm_list);
3193 
3194 	down_write(&ctrl->namespaces_rwsem);
3195 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3196 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3197 			list_move_tail(&ns->list, &rm_list);
3198 	}
3199 	up_write(&ctrl->namespaces_rwsem);
3200 
3201 	list_for_each_entry_safe(ns, next, &rm_list, list)
3202 		nvme_ns_remove(ns);
3203 
3204 }
3205 
3206 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3207 {
3208 	struct nvme_ns *ns;
3209 	__le32 *ns_list;
3210 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3211 	int ret = 0;
3212 
3213 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3214 	if (!ns_list)
3215 		return -ENOMEM;
3216 
3217 	for (i = 0; i < num_lists; i++) {
3218 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3219 		if (ret)
3220 			goto free;
3221 
3222 		for (j = 0; j < min(nn, 1024U); j++) {
3223 			nsid = le32_to_cpu(ns_list[j]);
3224 			if (!nsid)
3225 				goto out;
3226 
3227 			nvme_validate_ns(ctrl, nsid);
3228 
3229 			while (++prev < nsid) {
3230 				ns = nvme_find_get_ns(ctrl, prev);
3231 				if (ns) {
3232 					nvme_ns_remove(ns);
3233 					nvme_put_ns(ns);
3234 				}
3235 			}
3236 		}
3237 		nn -= j;
3238 	}
3239  out:
3240 	nvme_remove_invalid_namespaces(ctrl, prev);
3241  free:
3242 	kfree(ns_list);
3243 	return ret;
3244 }
3245 
3246 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3247 {
3248 	unsigned i;
3249 
3250 	for (i = 1; i <= nn; i++)
3251 		nvme_validate_ns(ctrl, i);
3252 
3253 	nvme_remove_invalid_namespaces(ctrl, nn);
3254 }
3255 
3256 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3257 {
3258 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3259 	__le32 *log;
3260 	int error;
3261 
3262 	log = kzalloc(log_size, GFP_KERNEL);
3263 	if (!log)
3264 		return;
3265 
3266 	/*
3267 	 * We need to read the log to clear the AEN, but we don't want to rely
3268 	 * on it for the changed namespace information as userspace could have
3269 	 * raced with us in reading the log page, which could cause us to miss
3270 	 * updates.
3271 	 */
3272 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3273 			log_size, 0);
3274 	if (error)
3275 		dev_warn(ctrl->device,
3276 			"reading changed ns log failed: %d\n", error);
3277 
3278 	kfree(log);
3279 }
3280 
3281 static void nvme_scan_work(struct work_struct *work)
3282 {
3283 	struct nvme_ctrl *ctrl =
3284 		container_of(work, struct nvme_ctrl, scan_work);
3285 	struct nvme_id_ctrl *id;
3286 	unsigned nn;
3287 
3288 	if (ctrl->state != NVME_CTRL_LIVE)
3289 		return;
3290 
3291 	WARN_ON_ONCE(!ctrl->tagset);
3292 
3293 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3294 		dev_info(ctrl->device, "rescanning namespaces.\n");
3295 		nvme_clear_changed_ns_log(ctrl);
3296 	}
3297 
3298 	if (nvme_identify_ctrl(ctrl, &id))
3299 		return;
3300 
3301 	nn = le32_to_cpu(id->nn);
3302 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3303 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3304 		if (!nvme_scan_ns_list(ctrl, nn))
3305 			goto out_free_id;
3306 	}
3307 	nvme_scan_ns_sequential(ctrl, nn);
3308 out_free_id:
3309 	kfree(id);
3310 	down_write(&ctrl->namespaces_rwsem);
3311 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3312 	up_write(&ctrl->namespaces_rwsem);
3313 }
3314 
3315 /*
3316  * This function iterates the namespace list unlocked to allow recovery from
3317  * controller failure. It is up to the caller to ensure the namespace list is
3318  * not modified by scan work while this function is executing.
3319  */
3320 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3321 {
3322 	struct nvme_ns *ns, *next;
3323 	LIST_HEAD(ns_list);
3324 
3325 	/* prevent racing with ns scanning */
3326 	flush_work(&ctrl->scan_work);
3327 
3328 	/*
3329 	 * The dead states indicates the controller was not gracefully
3330 	 * disconnected. In that case, we won't be able to flush any data while
3331 	 * removing the namespaces' disks; fail all the queues now to avoid
3332 	 * potentially having to clean up the failed sync later.
3333 	 */
3334 	if (ctrl->state == NVME_CTRL_DEAD)
3335 		nvme_kill_queues(ctrl);
3336 
3337 	down_write(&ctrl->namespaces_rwsem);
3338 	list_splice_init(&ctrl->namespaces, &ns_list);
3339 	up_write(&ctrl->namespaces_rwsem);
3340 
3341 	list_for_each_entry_safe(ns, next, &ns_list, list)
3342 		nvme_ns_remove(ns);
3343 }
3344 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3345 
3346 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3347 {
3348 	char *envp[2] = { NULL, NULL };
3349 	u32 aen_result = ctrl->aen_result;
3350 
3351 	ctrl->aen_result = 0;
3352 	if (!aen_result)
3353 		return;
3354 
3355 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3356 	if (!envp[0])
3357 		return;
3358 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3359 	kfree(envp[0]);
3360 }
3361 
3362 static void nvme_async_event_work(struct work_struct *work)
3363 {
3364 	struct nvme_ctrl *ctrl =
3365 		container_of(work, struct nvme_ctrl, async_event_work);
3366 
3367 	nvme_aen_uevent(ctrl);
3368 	ctrl->ops->submit_async_event(ctrl);
3369 }
3370 
3371 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3372 {
3373 
3374 	u32 csts;
3375 
3376 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3377 		return false;
3378 
3379 	if (csts == ~0)
3380 		return false;
3381 
3382 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3383 }
3384 
3385 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3386 {
3387 	struct nvme_fw_slot_info_log *log;
3388 
3389 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3390 	if (!log)
3391 		return;
3392 
3393 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3394 			sizeof(*log), 0))
3395 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3396 	kfree(log);
3397 }
3398 
3399 static void nvme_fw_act_work(struct work_struct *work)
3400 {
3401 	struct nvme_ctrl *ctrl = container_of(work,
3402 				struct nvme_ctrl, fw_act_work);
3403 	unsigned long fw_act_timeout;
3404 
3405 	if (ctrl->mtfa)
3406 		fw_act_timeout = jiffies +
3407 				msecs_to_jiffies(ctrl->mtfa * 100);
3408 	else
3409 		fw_act_timeout = jiffies +
3410 				msecs_to_jiffies(admin_timeout * 1000);
3411 
3412 	nvme_stop_queues(ctrl);
3413 	while (nvme_ctrl_pp_status(ctrl)) {
3414 		if (time_after(jiffies, fw_act_timeout)) {
3415 			dev_warn(ctrl->device,
3416 				"Fw activation timeout, reset controller\n");
3417 			nvme_reset_ctrl(ctrl);
3418 			break;
3419 		}
3420 		msleep(100);
3421 	}
3422 
3423 	if (ctrl->state != NVME_CTRL_LIVE)
3424 		return;
3425 
3426 	nvme_start_queues(ctrl);
3427 	/* read FW slot information to clear the AER */
3428 	nvme_get_fw_slot_info(ctrl);
3429 }
3430 
3431 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3432 {
3433 	u32 aer_notice_type = (result & 0xff00) >> 8;
3434 
3435 	switch (aer_notice_type) {
3436 	case NVME_AER_NOTICE_NS_CHANGED:
3437 		trace_nvme_async_event(ctrl, aer_notice_type);
3438 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3439 		nvme_queue_scan(ctrl);
3440 		break;
3441 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3442 		trace_nvme_async_event(ctrl, aer_notice_type);
3443 		queue_work(nvme_wq, &ctrl->fw_act_work);
3444 		break;
3445 #ifdef CONFIG_NVME_MULTIPATH
3446 	case NVME_AER_NOTICE_ANA:
3447 		trace_nvme_async_event(ctrl, aer_notice_type);
3448 		if (!ctrl->ana_log_buf)
3449 			break;
3450 		queue_work(nvme_wq, &ctrl->ana_work);
3451 		break;
3452 #endif
3453 	default:
3454 		dev_warn(ctrl->device, "async event result %08x\n", result);
3455 	}
3456 }
3457 
3458 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3459 		volatile union nvme_result *res)
3460 {
3461 	u32 result = le32_to_cpu(res->u32);
3462 	u32 aer_type = result & 0x07;
3463 
3464 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3465 		return;
3466 
3467 	switch (aer_type) {
3468 	case NVME_AER_NOTICE:
3469 		nvme_handle_aen_notice(ctrl, result);
3470 		break;
3471 	case NVME_AER_ERROR:
3472 	case NVME_AER_SMART:
3473 	case NVME_AER_CSS:
3474 	case NVME_AER_VS:
3475 		trace_nvme_async_event(ctrl, aer_type);
3476 		ctrl->aen_result = result;
3477 		break;
3478 	default:
3479 		break;
3480 	}
3481 	queue_work(nvme_wq, &ctrl->async_event_work);
3482 }
3483 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3484 
3485 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3486 {
3487 	nvme_mpath_stop(ctrl);
3488 	nvme_stop_keep_alive(ctrl);
3489 	flush_work(&ctrl->async_event_work);
3490 	cancel_work_sync(&ctrl->fw_act_work);
3491 	if (ctrl->ops->stop_ctrl)
3492 		ctrl->ops->stop_ctrl(ctrl);
3493 }
3494 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3495 
3496 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3497 {
3498 	if (ctrl->kato)
3499 		nvme_start_keep_alive(ctrl);
3500 
3501 	if (ctrl->queue_count > 1) {
3502 		nvme_queue_scan(ctrl);
3503 		nvme_enable_aen(ctrl);
3504 		queue_work(nvme_wq, &ctrl->async_event_work);
3505 		nvme_start_queues(ctrl);
3506 	}
3507 }
3508 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3509 
3510 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3511 {
3512 	cdev_device_del(&ctrl->cdev, ctrl->device);
3513 }
3514 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3515 
3516 static void nvme_free_ctrl(struct device *dev)
3517 {
3518 	struct nvme_ctrl *ctrl =
3519 		container_of(dev, struct nvme_ctrl, ctrl_device);
3520 	struct nvme_subsystem *subsys = ctrl->subsys;
3521 
3522 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3523 	kfree(ctrl->effects);
3524 	nvme_mpath_uninit(ctrl);
3525 
3526 	if (subsys) {
3527 		mutex_lock(&subsys->lock);
3528 		list_del(&ctrl->subsys_entry);
3529 		mutex_unlock(&subsys->lock);
3530 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3531 	}
3532 
3533 	ctrl->ops->free_ctrl(ctrl);
3534 
3535 	if (subsys)
3536 		nvme_put_subsystem(subsys);
3537 }
3538 
3539 /*
3540  * Initialize a NVMe controller structures.  This needs to be called during
3541  * earliest initialization so that we have the initialized structured around
3542  * during probing.
3543  */
3544 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3545 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3546 {
3547 	int ret;
3548 
3549 	ctrl->state = NVME_CTRL_NEW;
3550 	spin_lock_init(&ctrl->lock);
3551 	INIT_LIST_HEAD(&ctrl->namespaces);
3552 	init_rwsem(&ctrl->namespaces_rwsem);
3553 	ctrl->dev = dev;
3554 	ctrl->ops = ops;
3555 	ctrl->quirks = quirks;
3556 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3557 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3558 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3559 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3560 
3561 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3562 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3563 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3564 
3565 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3566 	if (ret < 0)
3567 		goto out;
3568 	ctrl->instance = ret;
3569 
3570 	device_initialize(&ctrl->ctrl_device);
3571 	ctrl->device = &ctrl->ctrl_device;
3572 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3573 	ctrl->device->class = nvme_class;
3574 	ctrl->device->parent = ctrl->dev;
3575 	ctrl->device->groups = nvme_dev_attr_groups;
3576 	ctrl->device->release = nvme_free_ctrl;
3577 	dev_set_drvdata(ctrl->device, ctrl);
3578 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3579 	if (ret)
3580 		goto out_release_instance;
3581 
3582 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3583 	ctrl->cdev.owner = ops->module;
3584 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3585 	if (ret)
3586 		goto out_free_name;
3587 
3588 	/*
3589 	 * Initialize latency tolerance controls.  The sysfs files won't
3590 	 * be visible to userspace unless the device actually supports APST.
3591 	 */
3592 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3593 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3594 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3595 
3596 	return 0;
3597 out_free_name:
3598 	kfree_const(ctrl->device->kobj.name);
3599 out_release_instance:
3600 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3601 out:
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3605 
3606 /**
3607  * nvme_kill_queues(): Ends all namespace queues
3608  * @ctrl: the dead controller that needs to end
3609  *
3610  * Call this function when the driver determines it is unable to get the
3611  * controller in a state capable of servicing IO.
3612  */
3613 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3614 {
3615 	struct nvme_ns *ns;
3616 
3617 	down_read(&ctrl->namespaces_rwsem);
3618 
3619 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3620 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3621 		blk_mq_unquiesce_queue(ctrl->admin_q);
3622 
3623 	list_for_each_entry(ns, &ctrl->namespaces, list)
3624 		nvme_set_queue_dying(ns);
3625 
3626 	up_read(&ctrl->namespaces_rwsem);
3627 }
3628 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3629 
3630 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3631 {
3632 	struct nvme_ns *ns;
3633 
3634 	down_read(&ctrl->namespaces_rwsem);
3635 	list_for_each_entry(ns, &ctrl->namespaces, list)
3636 		blk_mq_unfreeze_queue(ns->queue);
3637 	up_read(&ctrl->namespaces_rwsem);
3638 }
3639 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3640 
3641 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3642 {
3643 	struct nvme_ns *ns;
3644 
3645 	down_read(&ctrl->namespaces_rwsem);
3646 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3647 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3648 		if (timeout <= 0)
3649 			break;
3650 	}
3651 	up_read(&ctrl->namespaces_rwsem);
3652 }
3653 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3654 
3655 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3656 {
3657 	struct nvme_ns *ns;
3658 
3659 	down_read(&ctrl->namespaces_rwsem);
3660 	list_for_each_entry(ns, &ctrl->namespaces, list)
3661 		blk_mq_freeze_queue_wait(ns->queue);
3662 	up_read(&ctrl->namespaces_rwsem);
3663 }
3664 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3665 
3666 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3667 {
3668 	struct nvme_ns *ns;
3669 
3670 	down_read(&ctrl->namespaces_rwsem);
3671 	list_for_each_entry(ns, &ctrl->namespaces, list)
3672 		blk_freeze_queue_start(ns->queue);
3673 	up_read(&ctrl->namespaces_rwsem);
3674 }
3675 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3676 
3677 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3678 {
3679 	struct nvme_ns *ns;
3680 
3681 	down_read(&ctrl->namespaces_rwsem);
3682 	list_for_each_entry(ns, &ctrl->namespaces, list)
3683 		blk_mq_quiesce_queue(ns->queue);
3684 	up_read(&ctrl->namespaces_rwsem);
3685 }
3686 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3687 
3688 void nvme_start_queues(struct nvme_ctrl *ctrl)
3689 {
3690 	struct nvme_ns *ns;
3691 
3692 	down_read(&ctrl->namespaces_rwsem);
3693 	list_for_each_entry(ns, &ctrl->namespaces, list)
3694 		blk_mq_unquiesce_queue(ns->queue);
3695 	up_read(&ctrl->namespaces_rwsem);
3696 }
3697 EXPORT_SYMBOL_GPL(nvme_start_queues);
3698 
3699 int __init nvme_core_init(void)
3700 {
3701 	int result = -ENOMEM;
3702 
3703 	nvme_wq = alloc_workqueue("nvme-wq",
3704 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3705 	if (!nvme_wq)
3706 		goto out;
3707 
3708 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3709 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3710 	if (!nvme_reset_wq)
3711 		goto destroy_wq;
3712 
3713 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3714 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3715 	if (!nvme_delete_wq)
3716 		goto destroy_reset_wq;
3717 
3718 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3719 	if (result < 0)
3720 		goto destroy_delete_wq;
3721 
3722 	nvme_class = class_create(THIS_MODULE, "nvme");
3723 	if (IS_ERR(nvme_class)) {
3724 		result = PTR_ERR(nvme_class);
3725 		goto unregister_chrdev;
3726 	}
3727 
3728 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3729 	if (IS_ERR(nvme_subsys_class)) {
3730 		result = PTR_ERR(nvme_subsys_class);
3731 		goto destroy_class;
3732 	}
3733 	return 0;
3734 
3735 destroy_class:
3736 	class_destroy(nvme_class);
3737 unregister_chrdev:
3738 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3739 destroy_delete_wq:
3740 	destroy_workqueue(nvme_delete_wq);
3741 destroy_reset_wq:
3742 	destroy_workqueue(nvme_reset_wq);
3743 destroy_wq:
3744 	destroy_workqueue(nvme_wq);
3745 out:
3746 	return result;
3747 }
3748 
3749 void nvme_core_exit(void)
3750 {
3751 	ida_destroy(&nvme_subsystems_ida);
3752 	class_destroy(nvme_subsys_class);
3753 	class_destroy(nvme_class);
3754 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3755 	destroy_workqueue(nvme_delete_wq);
3756 	destroy_workqueue(nvme_reset_wq);
3757 	destroy_workqueue(nvme_wq);
3758 }
3759 
3760 MODULE_LICENSE("GPL");
3761 MODULE_VERSION("1.0");
3762 module_init(nvme_core_init);
3763 module_exit(nvme_core_exit);
3764