xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24 
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33 
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 		struct nd_region_data *ndrd)
36 {
37 	int i, j;
38 
39 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 		struct resource *res = &nvdimm->flush_wpq[i];
43 		unsigned long pfn = PHYS_PFN(res->start);
44 		void __iomem *flush_page;
45 
46 		/* check if flush hints share a page */
47 		for (j = 0; j < i; j++) {
48 			struct resource *res_j = &nvdimm->flush_wpq[j];
49 			unsigned long pfn_j = PHYS_PFN(res_j->start);
50 
51 			if (pfn == pfn_j)
52 				break;
53 		}
54 
55 		if (j < i)
56 			flush_page = (void __iomem *) ((unsigned long)
57 					ndrd_get_flush_wpq(ndrd, dimm, j)
58 					& PAGE_MASK);
59 		else
60 			flush_page = devm_nvdimm_ioremap(dev,
61 					PFN_PHYS(pfn), PAGE_SIZE);
62 		if (!flush_page)
63 			return -ENXIO;
64 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 				+ (res->start & ~PAGE_MASK));
66 	}
67 
68 	return 0;
69 }
70 
71 int nd_region_activate(struct nd_region *nd_region)
72 {
73 	int i, j, num_flush = 0;
74 	struct nd_region_data *ndrd;
75 	struct device *dev = &nd_region->dev;
76 	size_t flush_data_size = sizeof(void *);
77 
78 	nvdimm_bus_lock(&nd_region->dev);
79 	for (i = 0; i < nd_region->ndr_mappings; i++) {
80 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
82 
83 		/* at least one null hint slot per-dimm for the "no-hint" case */
84 		flush_data_size += sizeof(void *);
85 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 		if (!nvdimm->num_flush)
87 			continue;
88 		flush_data_size += nvdimm->num_flush * sizeof(void *);
89 	}
90 	nvdimm_bus_unlock(&nd_region->dev);
91 
92 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93 	if (!ndrd)
94 		return -ENOMEM;
95 	dev_set_drvdata(dev, ndrd);
96 
97 	if (!num_flush)
98 		return 0;
99 
100 	ndrd->hints_shift = ilog2(num_flush);
101 	for (i = 0; i < nd_region->ndr_mappings; i++) {
102 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105 
106 		if (rc)
107 			return rc;
108 	}
109 
110 	/*
111 	 * Clear out entries that are duplicates. This should prevent the
112 	 * extra flushings.
113 	 */
114 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115 		/* ignore if NULL already */
116 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
117 			continue;
118 
119 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
120 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121 			    ndrd_get_flush_wpq(ndrd, j, 0))
122 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123 	}
124 
125 	return 0;
126 }
127 
128 static void nd_region_release(struct device *dev)
129 {
130 	struct nd_region *nd_region = to_nd_region(dev);
131 	u16 i;
132 
133 	for (i = 0; i < nd_region->ndr_mappings; i++) {
134 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
136 
137 		put_device(&nvdimm->dev);
138 	}
139 	free_percpu(nd_region->lane);
140 	ida_simple_remove(&region_ida, nd_region->id);
141 	if (is_nd_blk(dev))
142 		kfree(to_nd_blk_region(dev));
143 	else
144 		kfree(nd_region);
145 }
146 
147 static struct device_type nd_blk_device_type = {
148 	.name = "nd_blk",
149 	.release = nd_region_release,
150 };
151 
152 static struct device_type nd_pmem_device_type = {
153 	.name = "nd_pmem",
154 	.release = nd_region_release,
155 };
156 
157 static struct device_type nd_volatile_device_type = {
158 	.name = "nd_volatile",
159 	.release = nd_region_release,
160 };
161 
162 bool is_nd_pmem(struct device *dev)
163 {
164 	return dev ? dev->type == &nd_pmem_device_type : false;
165 }
166 
167 bool is_nd_blk(struct device *dev)
168 {
169 	return dev ? dev->type == &nd_blk_device_type : false;
170 }
171 
172 struct nd_region *to_nd_region(struct device *dev)
173 {
174 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175 
176 	WARN_ON(dev->type->release != nd_region_release);
177 	return nd_region;
178 }
179 EXPORT_SYMBOL_GPL(to_nd_region);
180 
181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
182 {
183 	struct nd_region *nd_region = to_nd_region(dev);
184 
185 	WARN_ON(!is_nd_blk(dev));
186 	return container_of(nd_region, struct nd_blk_region, nd_region);
187 }
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
189 
190 void *nd_region_provider_data(struct nd_region *nd_region)
191 {
192 	return nd_region->provider_data;
193 }
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
195 
196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197 {
198 	return ndbr->blk_provider_data;
199 }
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201 
202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203 {
204 	ndbr->blk_provider_data = data;
205 }
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207 
208 /**
209  * nd_region_to_nstype() - region to an integer namespace type
210  * @nd_region: region-device to interrogate
211  *
212  * This is the 'nstype' attribute of a region as well, an input to the
213  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214  * namespace devices with namespace drivers.
215  */
216 int nd_region_to_nstype(struct nd_region *nd_region)
217 {
218 	if (is_nd_pmem(&nd_region->dev)) {
219 		u16 i, alias;
220 
221 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
224 
225 			if (nvdimm->flags & NDD_ALIASING)
226 				alias++;
227 		}
228 		if (alias)
229 			return ND_DEVICE_NAMESPACE_PMEM;
230 		else
231 			return ND_DEVICE_NAMESPACE_IO;
232 	} else if (is_nd_blk(&nd_region->dev)) {
233 		return ND_DEVICE_NAMESPACE_BLK;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239 
240 static ssize_t size_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct nd_region *nd_region = to_nd_region(dev);
244 	unsigned long long size = 0;
245 
246 	if (is_nd_pmem(dev)) {
247 		size = nd_region->ndr_size;
248 	} else if (nd_region->ndr_mappings == 1) {
249 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250 
251 		size = nd_mapping->size;
252 	}
253 
254 	return sprintf(buf, "%llu\n", size);
255 }
256 static DEVICE_ATTR_RO(size);
257 
258 static ssize_t mappings_show(struct device *dev,
259 		struct device_attribute *attr, char *buf)
260 {
261 	struct nd_region *nd_region = to_nd_region(dev);
262 
263 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
264 }
265 static DEVICE_ATTR_RO(mappings);
266 
267 static ssize_t nstype_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
273 }
274 static DEVICE_ATTR_RO(nstype);
275 
276 static ssize_t set_cookie_show(struct device *dev,
277 		struct device_attribute *attr, char *buf)
278 {
279 	struct nd_region *nd_region = to_nd_region(dev);
280 	struct nd_interleave_set *nd_set = nd_region->nd_set;
281 
282 	if (is_nd_pmem(dev) && nd_set)
283 		/* pass, should be precluded by region_visible */;
284 	else
285 		return -ENXIO;
286 
287 	return sprintf(buf, "%#llx\n", nd_set->cookie);
288 }
289 static DEVICE_ATTR_RO(set_cookie);
290 
291 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
292 {
293 	resource_size_t blk_max_overlap = 0, available, overlap;
294 	int i;
295 
296 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
297 
298  retry:
299 	available = 0;
300 	overlap = blk_max_overlap;
301 	for (i = 0; i < nd_region->ndr_mappings; i++) {
302 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
303 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
304 
305 		/* if a dimm is disabled the available capacity is zero */
306 		if (!ndd)
307 			return 0;
308 
309 		if (is_nd_pmem(&nd_region->dev)) {
310 			available += nd_pmem_available_dpa(nd_region,
311 					nd_mapping, &overlap);
312 			if (overlap > blk_max_overlap) {
313 				blk_max_overlap = overlap;
314 				goto retry;
315 			}
316 		} else if (is_nd_blk(&nd_region->dev))
317 			available += nd_blk_available_dpa(nd_region);
318 	}
319 
320 	return available;
321 }
322 
323 static ssize_t available_size_show(struct device *dev,
324 		struct device_attribute *attr, char *buf)
325 {
326 	struct nd_region *nd_region = to_nd_region(dev);
327 	unsigned long long available = 0;
328 
329 	/*
330 	 * Flush in-flight updates and grab a snapshot of the available
331 	 * size.  Of course, this value is potentially invalidated the
332 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
333 	 * problem to not race itself.
334 	 */
335 	nvdimm_bus_lock(dev);
336 	wait_nvdimm_bus_probe_idle(dev);
337 	available = nd_region_available_dpa(nd_region);
338 	nvdimm_bus_unlock(dev);
339 
340 	return sprintf(buf, "%llu\n", available);
341 }
342 static DEVICE_ATTR_RO(available_size);
343 
344 static ssize_t init_namespaces_show(struct device *dev,
345 		struct device_attribute *attr, char *buf)
346 {
347 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
348 	ssize_t rc;
349 
350 	nvdimm_bus_lock(dev);
351 	if (ndrd)
352 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
353 	else
354 		rc = -ENXIO;
355 	nvdimm_bus_unlock(dev);
356 
357 	return rc;
358 }
359 static DEVICE_ATTR_RO(init_namespaces);
360 
361 static ssize_t namespace_seed_show(struct device *dev,
362 		struct device_attribute *attr, char *buf)
363 {
364 	struct nd_region *nd_region = to_nd_region(dev);
365 	ssize_t rc;
366 
367 	nvdimm_bus_lock(dev);
368 	if (nd_region->ns_seed)
369 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
370 	else
371 		rc = sprintf(buf, "\n");
372 	nvdimm_bus_unlock(dev);
373 	return rc;
374 }
375 static DEVICE_ATTR_RO(namespace_seed);
376 
377 static ssize_t btt_seed_show(struct device *dev,
378 		struct device_attribute *attr, char *buf)
379 {
380 	struct nd_region *nd_region = to_nd_region(dev);
381 	ssize_t rc;
382 
383 	nvdimm_bus_lock(dev);
384 	if (nd_region->btt_seed)
385 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
386 	else
387 		rc = sprintf(buf, "\n");
388 	nvdimm_bus_unlock(dev);
389 
390 	return rc;
391 }
392 static DEVICE_ATTR_RO(btt_seed);
393 
394 static ssize_t pfn_seed_show(struct device *dev,
395 		struct device_attribute *attr, char *buf)
396 {
397 	struct nd_region *nd_region = to_nd_region(dev);
398 	ssize_t rc;
399 
400 	nvdimm_bus_lock(dev);
401 	if (nd_region->pfn_seed)
402 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
403 	else
404 		rc = sprintf(buf, "\n");
405 	nvdimm_bus_unlock(dev);
406 
407 	return rc;
408 }
409 static DEVICE_ATTR_RO(pfn_seed);
410 
411 static ssize_t dax_seed_show(struct device *dev,
412 		struct device_attribute *attr, char *buf)
413 {
414 	struct nd_region *nd_region = to_nd_region(dev);
415 	ssize_t rc;
416 
417 	nvdimm_bus_lock(dev);
418 	if (nd_region->dax_seed)
419 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
420 	else
421 		rc = sprintf(buf, "\n");
422 	nvdimm_bus_unlock(dev);
423 
424 	return rc;
425 }
426 static DEVICE_ATTR_RO(dax_seed);
427 
428 static ssize_t read_only_show(struct device *dev,
429 		struct device_attribute *attr, char *buf)
430 {
431 	struct nd_region *nd_region = to_nd_region(dev);
432 
433 	return sprintf(buf, "%d\n", nd_region->ro);
434 }
435 
436 static ssize_t read_only_store(struct device *dev,
437 		struct device_attribute *attr, const char *buf, size_t len)
438 {
439 	bool ro;
440 	int rc = strtobool(buf, &ro);
441 	struct nd_region *nd_region = to_nd_region(dev);
442 
443 	if (rc)
444 		return rc;
445 
446 	nd_region->ro = ro;
447 	return len;
448 }
449 static DEVICE_ATTR_RW(read_only);
450 
451 static struct attribute *nd_region_attributes[] = {
452 	&dev_attr_size.attr,
453 	&dev_attr_nstype.attr,
454 	&dev_attr_mappings.attr,
455 	&dev_attr_btt_seed.attr,
456 	&dev_attr_pfn_seed.attr,
457 	&dev_attr_dax_seed.attr,
458 	&dev_attr_read_only.attr,
459 	&dev_attr_set_cookie.attr,
460 	&dev_attr_available_size.attr,
461 	&dev_attr_namespace_seed.attr,
462 	&dev_attr_init_namespaces.attr,
463 	NULL,
464 };
465 
466 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
467 {
468 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
469 	struct nd_region *nd_region = to_nd_region(dev);
470 	struct nd_interleave_set *nd_set = nd_region->nd_set;
471 	int type = nd_region_to_nstype(nd_region);
472 
473 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
474 		return 0;
475 
476 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
477 		return 0;
478 
479 	if (a != &dev_attr_set_cookie.attr
480 			&& a != &dev_attr_available_size.attr)
481 		return a->mode;
482 
483 	if ((type == ND_DEVICE_NAMESPACE_PMEM
484 				|| type == ND_DEVICE_NAMESPACE_BLK)
485 			&& a == &dev_attr_available_size.attr)
486 		return a->mode;
487 	else if (is_nd_pmem(dev) && nd_set)
488 		return a->mode;
489 
490 	return 0;
491 }
492 
493 struct attribute_group nd_region_attribute_group = {
494 	.attrs = nd_region_attributes,
495 	.is_visible = region_visible,
496 };
497 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
498 
499 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
500 {
501 	struct nd_interleave_set *nd_set = nd_region->nd_set;
502 
503 	if (nd_set)
504 		return nd_set->cookie;
505 	return 0;
506 }
507 
508 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
509 {
510 	struct nd_label_ent *label_ent, *e;
511 
512 	WARN_ON(!mutex_is_locked(&nd_mapping->lock));
513 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
514 		list_del(&label_ent->list);
515 		kfree(label_ent);
516 	}
517 }
518 
519 /*
520  * Upon successful probe/remove, take/release a reference on the
521  * associated interleave set (if present), and plant new btt + namespace
522  * seeds.  Also, on the removal of a BLK region, notify the provider to
523  * disable the region.
524  */
525 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
526 		struct device *dev, bool probe)
527 {
528 	struct nd_region *nd_region;
529 
530 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
531 		int i;
532 
533 		nd_region = to_nd_region(dev);
534 		for (i = 0; i < nd_region->ndr_mappings; i++) {
535 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
536 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
537 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
538 
539 			mutex_lock(&nd_mapping->lock);
540 			nd_mapping_free_labels(nd_mapping);
541 			mutex_unlock(&nd_mapping->lock);
542 
543 			put_ndd(ndd);
544 			nd_mapping->ndd = NULL;
545 			if (ndd)
546 				atomic_dec(&nvdimm->busy);
547 		}
548 
549 		if (is_nd_pmem(dev))
550 			return;
551 	}
552 	if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
553 			&& probe) {
554 		nd_region = to_nd_region(dev->parent);
555 		nvdimm_bus_lock(dev);
556 		if (nd_region->ns_seed == dev)
557 			nd_region_create_ns_seed(nd_region);
558 		nvdimm_bus_unlock(dev);
559 	}
560 	if (is_nd_btt(dev) && probe) {
561 		struct nd_btt *nd_btt = to_nd_btt(dev);
562 
563 		nd_region = to_nd_region(dev->parent);
564 		nvdimm_bus_lock(dev);
565 		if (nd_region->btt_seed == dev)
566 			nd_region_create_btt_seed(nd_region);
567 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
568 			nd_region_create_ns_seed(nd_region);
569 		nvdimm_bus_unlock(dev);
570 	}
571 	if (is_nd_pfn(dev) && probe) {
572 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
573 
574 		nd_region = to_nd_region(dev->parent);
575 		nvdimm_bus_lock(dev);
576 		if (nd_region->pfn_seed == dev)
577 			nd_region_create_pfn_seed(nd_region);
578 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
579 			nd_region_create_ns_seed(nd_region);
580 		nvdimm_bus_unlock(dev);
581 	}
582 	if (is_nd_dax(dev) && probe) {
583 		struct nd_dax *nd_dax = to_nd_dax(dev);
584 
585 		nd_region = to_nd_region(dev->parent);
586 		nvdimm_bus_lock(dev);
587 		if (nd_region->dax_seed == dev)
588 			nd_region_create_dax_seed(nd_region);
589 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
590 			nd_region_create_ns_seed(nd_region);
591 		nvdimm_bus_unlock(dev);
592 	}
593 }
594 
595 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
596 {
597 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
598 }
599 
600 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
601 {
602 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
603 }
604 
605 static ssize_t mappingN(struct device *dev, char *buf, int n)
606 {
607 	struct nd_region *nd_region = to_nd_region(dev);
608 	struct nd_mapping *nd_mapping;
609 	struct nvdimm *nvdimm;
610 
611 	if (n >= nd_region->ndr_mappings)
612 		return -ENXIO;
613 	nd_mapping = &nd_region->mapping[n];
614 	nvdimm = nd_mapping->nvdimm;
615 
616 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
617 			nd_mapping->start, nd_mapping->size);
618 }
619 
620 #define REGION_MAPPING(idx) \
621 static ssize_t mapping##idx##_show(struct device *dev,		\
622 		struct device_attribute *attr, char *buf)	\
623 {								\
624 	return mappingN(dev, buf, idx);				\
625 }								\
626 static DEVICE_ATTR_RO(mapping##idx)
627 
628 /*
629  * 32 should be enough for a while, even in the presence of socket
630  * interleave a 32-way interleave set is a degenerate case.
631  */
632 REGION_MAPPING(0);
633 REGION_MAPPING(1);
634 REGION_MAPPING(2);
635 REGION_MAPPING(3);
636 REGION_MAPPING(4);
637 REGION_MAPPING(5);
638 REGION_MAPPING(6);
639 REGION_MAPPING(7);
640 REGION_MAPPING(8);
641 REGION_MAPPING(9);
642 REGION_MAPPING(10);
643 REGION_MAPPING(11);
644 REGION_MAPPING(12);
645 REGION_MAPPING(13);
646 REGION_MAPPING(14);
647 REGION_MAPPING(15);
648 REGION_MAPPING(16);
649 REGION_MAPPING(17);
650 REGION_MAPPING(18);
651 REGION_MAPPING(19);
652 REGION_MAPPING(20);
653 REGION_MAPPING(21);
654 REGION_MAPPING(22);
655 REGION_MAPPING(23);
656 REGION_MAPPING(24);
657 REGION_MAPPING(25);
658 REGION_MAPPING(26);
659 REGION_MAPPING(27);
660 REGION_MAPPING(28);
661 REGION_MAPPING(29);
662 REGION_MAPPING(30);
663 REGION_MAPPING(31);
664 
665 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
666 {
667 	struct device *dev = container_of(kobj, struct device, kobj);
668 	struct nd_region *nd_region = to_nd_region(dev);
669 
670 	if (n < nd_region->ndr_mappings)
671 		return a->mode;
672 	return 0;
673 }
674 
675 static struct attribute *mapping_attributes[] = {
676 	&dev_attr_mapping0.attr,
677 	&dev_attr_mapping1.attr,
678 	&dev_attr_mapping2.attr,
679 	&dev_attr_mapping3.attr,
680 	&dev_attr_mapping4.attr,
681 	&dev_attr_mapping5.attr,
682 	&dev_attr_mapping6.attr,
683 	&dev_attr_mapping7.attr,
684 	&dev_attr_mapping8.attr,
685 	&dev_attr_mapping9.attr,
686 	&dev_attr_mapping10.attr,
687 	&dev_attr_mapping11.attr,
688 	&dev_attr_mapping12.attr,
689 	&dev_attr_mapping13.attr,
690 	&dev_attr_mapping14.attr,
691 	&dev_attr_mapping15.attr,
692 	&dev_attr_mapping16.attr,
693 	&dev_attr_mapping17.attr,
694 	&dev_attr_mapping18.attr,
695 	&dev_attr_mapping19.attr,
696 	&dev_attr_mapping20.attr,
697 	&dev_attr_mapping21.attr,
698 	&dev_attr_mapping22.attr,
699 	&dev_attr_mapping23.attr,
700 	&dev_attr_mapping24.attr,
701 	&dev_attr_mapping25.attr,
702 	&dev_attr_mapping26.attr,
703 	&dev_attr_mapping27.attr,
704 	&dev_attr_mapping28.attr,
705 	&dev_attr_mapping29.attr,
706 	&dev_attr_mapping30.attr,
707 	&dev_attr_mapping31.attr,
708 	NULL,
709 };
710 
711 struct attribute_group nd_mapping_attribute_group = {
712 	.is_visible = mapping_visible,
713 	.attrs = mapping_attributes,
714 };
715 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
716 
717 int nd_blk_region_init(struct nd_region *nd_region)
718 {
719 	struct device *dev = &nd_region->dev;
720 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
721 
722 	if (!is_nd_blk(dev))
723 		return 0;
724 
725 	if (nd_region->ndr_mappings < 1) {
726 		dev_err(dev, "invalid BLK region\n");
727 		return -ENXIO;
728 	}
729 
730 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
731 }
732 
733 /**
734  * nd_region_acquire_lane - allocate and lock a lane
735  * @nd_region: region id and number of lanes possible
736  *
737  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
738  * We optimize for the common case where there are 256 lanes, one
739  * per-cpu.  For larger systems we need to lock to share lanes.  For now
740  * this implementation assumes the cost of maintaining an allocator for
741  * free lanes is on the order of the lock hold time, so it implements a
742  * static lane = cpu % num_lanes mapping.
743  *
744  * In the case of a BTT instance on top of a BLK namespace a lane may be
745  * acquired recursively.  We lock on the first instance.
746  *
747  * In the case of a BTT instance on top of PMEM, we only acquire a lane
748  * for the BTT metadata updates.
749  */
750 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
751 {
752 	unsigned int cpu, lane;
753 
754 	cpu = get_cpu();
755 	if (nd_region->num_lanes < nr_cpu_ids) {
756 		struct nd_percpu_lane *ndl_lock, *ndl_count;
757 
758 		lane = cpu % nd_region->num_lanes;
759 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
760 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
761 		if (ndl_count->count++ == 0)
762 			spin_lock(&ndl_lock->lock);
763 	} else
764 		lane = cpu;
765 
766 	return lane;
767 }
768 EXPORT_SYMBOL(nd_region_acquire_lane);
769 
770 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
771 {
772 	if (nd_region->num_lanes < nr_cpu_ids) {
773 		unsigned int cpu = get_cpu();
774 		struct nd_percpu_lane *ndl_lock, *ndl_count;
775 
776 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
777 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
778 		if (--ndl_count->count == 0)
779 			spin_unlock(&ndl_lock->lock);
780 		put_cpu();
781 	}
782 	put_cpu();
783 }
784 EXPORT_SYMBOL(nd_region_release_lane);
785 
786 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
787 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
788 		const char *caller)
789 {
790 	struct nd_region *nd_region;
791 	struct device *dev;
792 	void *region_buf;
793 	unsigned int i;
794 	int ro = 0;
795 
796 	for (i = 0; i < ndr_desc->num_mappings; i++) {
797 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
798 		struct nvdimm *nvdimm = mapping->nvdimm;
799 
800 		if ((mapping->start | mapping->size) % SZ_4K) {
801 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
802 					caller, dev_name(&nvdimm->dev), i);
803 
804 			return NULL;
805 		}
806 
807 		if (nvdimm->flags & NDD_UNARMED)
808 			ro = 1;
809 	}
810 
811 	if (dev_type == &nd_blk_device_type) {
812 		struct nd_blk_region_desc *ndbr_desc;
813 		struct nd_blk_region *ndbr;
814 
815 		ndbr_desc = to_blk_region_desc(ndr_desc);
816 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
817 				* ndr_desc->num_mappings,
818 				GFP_KERNEL);
819 		if (ndbr) {
820 			nd_region = &ndbr->nd_region;
821 			ndbr->enable = ndbr_desc->enable;
822 			ndbr->do_io = ndbr_desc->do_io;
823 		}
824 		region_buf = ndbr;
825 	} else {
826 		nd_region = kzalloc(sizeof(struct nd_region)
827 				+ sizeof(struct nd_mapping)
828 				* ndr_desc->num_mappings,
829 				GFP_KERNEL);
830 		region_buf = nd_region;
831 	}
832 
833 	if (!region_buf)
834 		return NULL;
835 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
836 	if (nd_region->id < 0)
837 		goto err_id;
838 
839 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
840 	if (!nd_region->lane)
841 		goto err_percpu;
842 
843         for (i = 0; i < nr_cpu_ids; i++) {
844 		struct nd_percpu_lane *ndl;
845 
846 		ndl = per_cpu_ptr(nd_region->lane, i);
847 		spin_lock_init(&ndl->lock);
848 		ndl->count = 0;
849 	}
850 
851 	for (i = 0; i < ndr_desc->num_mappings; i++) {
852 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
853 		struct nvdimm *nvdimm = mapping->nvdimm;
854 
855 		nd_region->mapping[i].nvdimm = nvdimm;
856 		nd_region->mapping[i].start = mapping->start;
857 		nd_region->mapping[i].size = mapping->size;
858 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
859 		mutex_init(&nd_region->mapping[i].lock);
860 
861 		get_device(&nvdimm->dev);
862 	}
863 	nd_region->ndr_mappings = ndr_desc->num_mappings;
864 	nd_region->provider_data = ndr_desc->provider_data;
865 	nd_region->nd_set = ndr_desc->nd_set;
866 	nd_region->num_lanes = ndr_desc->num_lanes;
867 	nd_region->flags = ndr_desc->flags;
868 	nd_region->ro = ro;
869 	nd_region->numa_node = ndr_desc->numa_node;
870 	ida_init(&nd_region->ns_ida);
871 	ida_init(&nd_region->btt_ida);
872 	ida_init(&nd_region->pfn_ida);
873 	ida_init(&nd_region->dax_ida);
874 	dev = &nd_region->dev;
875 	dev_set_name(dev, "region%d", nd_region->id);
876 	dev->parent = &nvdimm_bus->dev;
877 	dev->type = dev_type;
878 	dev->groups = ndr_desc->attr_groups;
879 	nd_region->ndr_size = resource_size(ndr_desc->res);
880 	nd_region->ndr_start = ndr_desc->res->start;
881 	nd_device_register(dev);
882 
883 	return nd_region;
884 
885  err_percpu:
886 	ida_simple_remove(&region_ida, nd_region->id);
887  err_id:
888 	kfree(region_buf);
889 	return NULL;
890 }
891 
892 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
893 		struct nd_region_desc *ndr_desc)
894 {
895 	ndr_desc->num_lanes = ND_MAX_LANES;
896 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
897 			__func__);
898 }
899 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
900 
901 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
902 		struct nd_region_desc *ndr_desc)
903 {
904 	if (ndr_desc->num_mappings > 1)
905 		return NULL;
906 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
907 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
908 			__func__);
909 }
910 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
911 
912 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
913 		struct nd_region_desc *ndr_desc)
914 {
915 	ndr_desc->num_lanes = ND_MAX_LANES;
916 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
917 			__func__);
918 }
919 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
920 
921 /**
922  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
923  * @nd_region: blk or interleaved pmem region
924  */
925 void nvdimm_flush(struct nd_region *nd_region)
926 {
927 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
928 	int i, idx;
929 
930 	/*
931 	 * Try to encourage some diversity in flush hint addresses
932 	 * across cpus assuming a limited number of flush hints.
933 	 */
934 	idx = this_cpu_read(flush_idx);
935 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
936 
937 	/*
938 	 * The first wmb() is needed to 'sfence' all previous writes
939 	 * such that they are architecturally visible for the platform
940 	 * buffer flush.  Note that we've already arranged for pmem
941 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
942 	 * final wmb() ensures ordering for the NVDIMM flush write.
943 	 */
944 	wmb();
945 	for (i = 0; i < nd_region->ndr_mappings; i++)
946 		if (ndrd_get_flush_wpq(ndrd, i, 0))
947 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
948 	wmb();
949 }
950 EXPORT_SYMBOL_GPL(nvdimm_flush);
951 
952 /**
953  * nvdimm_has_flush - determine write flushing requirements
954  * @nd_region: blk or interleaved pmem region
955  *
956  * Returns 1 if writes require flushing
957  * Returns 0 if writes do not require flushing
958  * Returns -ENXIO if flushing capability can not be determined
959  */
960 int nvdimm_has_flush(struct nd_region *nd_region)
961 {
962 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
963 	int i;
964 
965 	/* no nvdimm == flushing capability unknown */
966 	if (nd_region->ndr_mappings == 0)
967 		return -ENXIO;
968 
969 	for (i = 0; i < nd_region->ndr_mappings; i++)
970 		/* flush hints present, flushing required */
971 		if (ndrd_get_flush_wpq(ndrd, i, 0))
972 			return 1;
973 
974 	/*
975 	 * The platform defines dimm devices without hints, assume
976 	 * platform persistence mechanism like ADR
977 	 */
978 	return 0;
979 }
980 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
981 
982 void __exit nd_region_devs_exit(void)
983 {
984 	ida_destroy(&region_ida);
985 }
986