xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23 
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32 
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34 		struct nd_region_data *ndrd)
35 {
36 	int i, j;
37 
38 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41 		struct resource *res = &nvdimm->flush_wpq[i];
42 		unsigned long pfn = PHYS_PFN(res->start);
43 		void __iomem *flush_page;
44 
45 		/* check if flush hints share a page */
46 		for (j = 0; j < i; j++) {
47 			struct resource *res_j = &nvdimm->flush_wpq[j];
48 			unsigned long pfn_j = PHYS_PFN(res_j->start);
49 
50 			if (pfn == pfn_j)
51 				break;
52 		}
53 
54 		if (j < i)
55 			flush_page = (void __iomem *) ((unsigned long)
56 					ndrd_get_flush_wpq(ndrd, dimm, j)
57 					& PAGE_MASK);
58 		else
59 			flush_page = devm_nvdimm_ioremap(dev,
60 					PFN_PHYS(pfn), PAGE_SIZE);
61 		if (!flush_page)
62 			return -ENXIO;
63 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64 				+ (res->start & ~PAGE_MASK));
65 	}
66 
67 	return 0;
68 }
69 
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 	int i, j, num_flush = 0;
73 	struct nd_region_data *ndrd;
74 	struct device *dev = &nd_region->dev;
75 	size_t flush_data_size = sizeof(void *);
76 
77 	nvdimm_bus_lock(&nd_region->dev);
78 	for (i = 0; i < nd_region->ndr_mappings; i++) {
79 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
81 
82 		/* at least one null hint slot per-dimm for the "no-hint" case */
83 		flush_data_size += sizeof(void *);
84 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 		if (!nvdimm->num_flush)
86 			continue;
87 		flush_data_size += nvdimm->num_flush * sizeof(void *);
88 	}
89 	nvdimm_bus_unlock(&nd_region->dev);
90 
91 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 	if (!ndrd)
93 		return -ENOMEM;
94 	dev_set_drvdata(dev, ndrd);
95 
96 	if (!num_flush)
97 		return 0;
98 
99 	ndrd->hints_shift = ilog2(num_flush);
100 	for (i = 0; i < nd_region->ndr_mappings; i++) {
101 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
102 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
103 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
104 
105 		if (rc)
106 			return rc;
107 	}
108 
109 	/*
110 	 * Clear out entries that are duplicates. This should prevent the
111 	 * extra flushings.
112 	 */
113 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
114 		/* ignore if NULL already */
115 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
116 			continue;
117 
118 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
119 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
120 			    ndrd_get_flush_wpq(ndrd, j, 0))
121 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
122 	}
123 
124 	return 0;
125 }
126 
127 static void nd_region_release(struct device *dev)
128 {
129 	struct nd_region *nd_region = to_nd_region(dev);
130 	u16 i;
131 
132 	for (i = 0; i < nd_region->ndr_mappings; i++) {
133 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
134 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
135 
136 		put_device(&nvdimm->dev);
137 	}
138 	free_percpu(nd_region->lane);
139 	ida_simple_remove(&region_ida, nd_region->id);
140 	if (is_nd_blk(dev))
141 		kfree(to_nd_blk_region(dev));
142 	else
143 		kfree(nd_region);
144 }
145 
146 static struct device_type nd_blk_device_type = {
147 	.name = "nd_blk",
148 	.release = nd_region_release,
149 };
150 
151 static struct device_type nd_pmem_device_type = {
152 	.name = "nd_pmem",
153 	.release = nd_region_release,
154 };
155 
156 static struct device_type nd_volatile_device_type = {
157 	.name = "nd_volatile",
158 	.release = nd_region_release,
159 };
160 
161 bool is_nd_pmem(struct device *dev)
162 {
163 	return dev ? dev->type == &nd_pmem_device_type : false;
164 }
165 
166 bool is_nd_blk(struct device *dev)
167 {
168 	return dev ? dev->type == &nd_blk_device_type : false;
169 }
170 
171 bool is_nd_volatile(struct device *dev)
172 {
173 	return dev ? dev->type == &nd_volatile_device_type : false;
174 }
175 
176 struct nd_region *to_nd_region(struct device *dev)
177 {
178 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
179 
180 	WARN_ON(dev->type->release != nd_region_release);
181 	return nd_region;
182 }
183 EXPORT_SYMBOL_GPL(to_nd_region);
184 
185 struct device *nd_region_dev(struct nd_region *nd_region)
186 {
187 	if (!nd_region)
188 		return NULL;
189 	return &nd_region->dev;
190 }
191 EXPORT_SYMBOL_GPL(nd_region_dev);
192 
193 struct nd_blk_region *to_nd_blk_region(struct device *dev)
194 {
195 	struct nd_region *nd_region = to_nd_region(dev);
196 
197 	WARN_ON(!is_nd_blk(dev));
198 	return container_of(nd_region, struct nd_blk_region, nd_region);
199 }
200 EXPORT_SYMBOL_GPL(to_nd_blk_region);
201 
202 void *nd_region_provider_data(struct nd_region *nd_region)
203 {
204 	return nd_region->provider_data;
205 }
206 EXPORT_SYMBOL_GPL(nd_region_provider_data);
207 
208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
209 {
210 	return ndbr->blk_provider_data;
211 }
212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
213 
214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
215 {
216 	ndbr->blk_provider_data = data;
217 }
218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
219 
220 /**
221  * nd_region_to_nstype() - region to an integer namespace type
222  * @nd_region: region-device to interrogate
223  *
224  * This is the 'nstype' attribute of a region as well, an input to the
225  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
226  * namespace devices with namespace drivers.
227  */
228 int nd_region_to_nstype(struct nd_region *nd_region)
229 {
230 	if (is_memory(&nd_region->dev)) {
231 		u16 i, alias;
232 
233 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
234 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
235 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
236 
237 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
238 				alias++;
239 		}
240 		if (alias)
241 			return ND_DEVICE_NAMESPACE_PMEM;
242 		else
243 			return ND_DEVICE_NAMESPACE_IO;
244 	} else if (is_nd_blk(&nd_region->dev)) {
245 		return ND_DEVICE_NAMESPACE_BLK;
246 	}
247 
248 	return 0;
249 }
250 EXPORT_SYMBOL(nd_region_to_nstype);
251 
252 static ssize_t size_show(struct device *dev,
253 		struct device_attribute *attr, char *buf)
254 {
255 	struct nd_region *nd_region = to_nd_region(dev);
256 	unsigned long long size = 0;
257 
258 	if (is_memory(dev)) {
259 		size = nd_region->ndr_size;
260 	} else if (nd_region->ndr_mappings == 1) {
261 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
262 
263 		size = nd_mapping->size;
264 	}
265 
266 	return sprintf(buf, "%llu\n", size);
267 }
268 static DEVICE_ATTR_RO(size);
269 
270 static ssize_t deep_flush_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct nd_region *nd_region = to_nd_region(dev);
274 
275 	/*
276 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
277 	 * not visible.
278 	 */
279 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
280 }
281 
282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
283 		const char *buf, size_t len)
284 {
285 	bool flush;
286 	int rc = strtobool(buf, &flush);
287 	struct nd_region *nd_region = to_nd_region(dev);
288 
289 	if (rc)
290 		return rc;
291 	if (!flush)
292 		return -EINVAL;
293 	nvdimm_flush(nd_region);
294 
295 	return len;
296 }
297 static DEVICE_ATTR_RW(deep_flush);
298 
299 static ssize_t mappings_show(struct device *dev,
300 		struct device_attribute *attr, char *buf)
301 {
302 	struct nd_region *nd_region = to_nd_region(dev);
303 
304 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
305 }
306 static DEVICE_ATTR_RO(mappings);
307 
308 static ssize_t nstype_show(struct device *dev,
309 		struct device_attribute *attr, char *buf)
310 {
311 	struct nd_region *nd_region = to_nd_region(dev);
312 
313 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
314 }
315 static DEVICE_ATTR_RO(nstype);
316 
317 static ssize_t set_cookie_show(struct device *dev,
318 		struct device_attribute *attr, char *buf)
319 {
320 	struct nd_region *nd_region = to_nd_region(dev);
321 	struct nd_interleave_set *nd_set = nd_region->nd_set;
322 	ssize_t rc = 0;
323 
324 	if (is_memory(dev) && nd_set)
325 		/* pass, should be precluded by region_visible */;
326 	else
327 		return -ENXIO;
328 
329 	/*
330 	 * The cookie to show depends on which specification of the
331 	 * labels we are using. If there are not labels then default to
332 	 * the v1.1 namespace label cookie definition. To read all this
333 	 * data we need to wait for probing to settle.
334 	 */
335 	device_lock(dev);
336 	nvdimm_bus_lock(dev);
337 	wait_nvdimm_bus_probe_idle(dev);
338 	if (nd_region->ndr_mappings) {
339 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
340 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
341 
342 		if (ndd) {
343 			struct nd_namespace_index *nsindex;
344 
345 			nsindex = to_namespace_index(ndd, ndd->ns_current);
346 			rc = sprintf(buf, "%#llx\n",
347 					nd_region_interleave_set_cookie(nd_region,
348 						nsindex));
349 		}
350 	}
351 	nvdimm_bus_unlock(dev);
352 	device_unlock(dev);
353 
354 	if (rc)
355 		return rc;
356 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
357 }
358 static DEVICE_ATTR_RO(set_cookie);
359 
360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
361 {
362 	resource_size_t blk_max_overlap = 0, available, overlap;
363 	int i;
364 
365 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
366 
367  retry:
368 	available = 0;
369 	overlap = blk_max_overlap;
370 	for (i = 0; i < nd_region->ndr_mappings; i++) {
371 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
373 
374 		/* if a dimm is disabled the available capacity is zero */
375 		if (!ndd)
376 			return 0;
377 
378 		if (is_memory(&nd_region->dev)) {
379 			available += nd_pmem_available_dpa(nd_region,
380 					nd_mapping, &overlap);
381 			if (overlap > blk_max_overlap) {
382 				blk_max_overlap = overlap;
383 				goto retry;
384 			}
385 		} else if (is_nd_blk(&nd_region->dev))
386 			available += nd_blk_available_dpa(nd_region);
387 	}
388 
389 	return available;
390 }
391 
392 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
393 {
394 	resource_size_t available = 0;
395 	int i;
396 
397 	if (is_memory(&nd_region->dev))
398 		available = PHYS_ADDR_MAX;
399 
400 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
401 	for (i = 0; i < nd_region->ndr_mappings; i++) {
402 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
403 
404 		if (is_memory(&nd_region->dev))
405 			available = min(available,
406 					nd_pmem_max_contiguous_dpa(nd_region,
407 								   nd_mapping));
408 		else if (is_nd_blk(&nd_region->dev))
409 			available += nd_blk_available_dpa(nd_region);
410 	}
411 	if (is_memory(&nd_region->dev))
412 		return available * nd_region->ndr_mappings;
413 	return available;
414 }
415 
416 static ssize_t available_size_show(struct device *dev,
417 		struct device_attribute *attr, char *buf)
418 {
419 	struct nd_region *nd_region = to_nd_region(dev);
420 	unsigned long long available = 0;
421 
422 	/*
423 	 * Flush in-flight updates and grab a snapshot of the available
424 	 * size.  Of course, this value is potentially invalidated the
425 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
426 	 * problem to not race itself.
427 	 */
428 	nvdimm_bus_lock(dev);
429 	wait_nvdimm_bus_probe_idle(dev);
430 	available = nd_region_available_dpa(nd_region);
431 	nvdimm_bus_unlock(dev);
432 
433 	return sprintf(buf, "%llu\n", available);
434 }
435 static DEVICE_ATTR_RO(available_size);
436 
437 static ssize_t max_available_extent_show(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	struct nd_region *nd_region = to_nd_region(dev);
441 	unsigned long long available = 0;
442 
443 	nvdimm_bus_lock(dev);
444 	wait_nvdimm_bus_probe_idle(dev);
445 	available = nd_region_allocatable_dpa(nd_region);
446 	nvdimm_bus_unlock(dev);
447 
448 	return sprintf(buf, "%llu\n", available);
449 }
450 static DEVICE_ATTR_RO(max_available_extent);
451 
452 static ssize_t init_namespaces_show(struct device *dev,
453 		struct device_attribute *attr, char *buf)
454 {
455 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
456 	ssize_t rc;
457 
458 	nvdimm_bus_lock(dev);
459 	if (ndrd)
460 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
461 	else
462 		rc = -ENXIO;
463 	nvdimm_bus_unlock(dev);
464 
465 	return rc;
466 }
467 static DEVICE_ATTR_RO(init_namespaces);
468 
469 static ssize_t namespace_seed_show(struct device *dev,
470 		struct device_attribute *attr, char *buf)
471 {
472 	struct nd_region *nd_region = to_nd_region(dev);
473 	ssize_t rc;
474 
475 	nvdimm_bus_lock(dev);
476 	if (nd_region->ns_seed)
477 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
478 	else
479 		rc = sprintf(buf, "\n");
480 	nvdimm_bus_unlock(dev);
481 	return rc;
482 }
483 static DEVICE_ATTR_RO(namespace_seed);
484 
485 static ssize_t btt_seed_show(struct device *dev,
486 		struct device_attribute *attr, char *buf)
487 {
488 	struct nd_region *nd_region = to_nd_region(dev);
489 	ssize_t rc;
490 
491 	nvdimm_bus_lock(dev);
492 	if (nd_region->btt_seed)
493 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
494 	else
495 		rc = sprintf(buf, "\n");
496 	nvdimm_bus_unlock(dev);
497 
498 	return rc;
499 }
500 static DEVICE_ATTR_RO(btt_seed);
501 
502 static ssize_t pfn_seed_show(struct device *dev,
503 		struct device_attribute *attr, char *buf)
504 {
505 	struct nd_region *nd_region = to_nd_region(dev);
506 	ssize_t rc;
507 
508 	nvdimm_bus_lock(dev);
509 	if (nd_region->pfn_seed)
510 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
511 	else
512 		rc = sprintf(buf, "\n");
513 	nvdimm_bus_unlock(dev);
514 
515 	return rc;
516 }
517 static DEVICE_ATTR_RO(pfn_seed);
518 
519 static ssize_t dax_seed_show(struct device *dev,
520 		struct device_attribute *attr, char *buf)
521 {
522 	struct nd_region *nd_region = to_nd_region(dev);
523 	ssize_t rc;
524 
525 	nvdimm_bus_lock(dev);
526 	if (nd_region->dax_seed)
527 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
528 	else
529 		rc = sprintf(buf, "\n");
530 	nvdimm_bus_unlock(dev);
531 
532 	return rc;
533 }
534 static DEVICE_ATTR_RO(dax_seed);
535 
536 static ssize_t read_only_show(struct device *dev,
537 		struct device_attribute *attr, char *buf)
538 {
539 	struct nd_region *nd_region = to_nd_region(dev);
540 
541 	return sprintf(buf, "%d\n", nd_region->ro);
542 }
543 
544 static ssize_t read_only_store(struct device *dev,
545 		struct device_attribute *attr, const char *buf, size_t len)
546 {
547 	bool ro;
548 	int rc = strtobool(buf, &ro);
549 	struct nd_region *nd_region = to_nd_region(dev);
550 
551 	if (rc)
552 		return rc;
553 
554 	nd_region->ro = ro;
555 	return len;
556 }
557 static DEVICE_ATTR_RW(read_only);
558 
559 static ssize_t region_badblocks_show(struct device *dev,
560 		struct device_attribute *attr, char *buf)
561 {
562 	struct nd_region *nd_region = to_nd_region(dev);
563 
564 	return badblocks_show(&nd_region->bb, buf, 0);
565 }
566 
567 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
568 
569 static ssize_t resource_show(struct device *dev,
570 		struct device_attribute *attr, char *buf)
571 {
572 	struct nd_region *nd_region = to_nd_region(dev);
573 
574 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
575 }
576 static DEVICE_ATTR_RO(resource);
577 
578 static ssize_t persistence_domain_show(struct device *dev,
579 		struct device_attribute *attr, char *buf)
580 {
581 	struct nd_region *nd_region = to_nd_region(dev);
582 
583 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
584 		return sprintf(buf, "cpu_cache\n");
585 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
586 		return sprintf(buf, "memory_controller\n");
587 	else
588 		return sprintf(buf, "\n");
589 }
590 static DEVICE_ATTR_RO(persistence_domain);
591 
592 static struct attribute *nd_region_attributes[] = {
593 	&dev_attr_size.attr,
594 	&dev_attr_nstype.attr,
595 	&dev_attr_mappings.attr,
596 	&dev_attr_btt_seed.attr,
597 	&dev_attr_pfn_seed.attr,
598 	&dev_attr_dax_seed.attr,
599 	&dev_attr_deep_flush.attr,
600 	&dev_attr_read_only.attr,
601 	&dev_attr_set_cookie.attr,
602 	&dev_attr_available_size.attr,
603 	&dev_attr_max_available_extent.attr,
604 	&dev_attr_namespace_seed.attr,
605 	&dev_attr_init_namespaces.attr,
606 	&dev_attr_badblocks.attr,
607 	&dev_attr_resource.attr,
608 	&dev_attr_persistence_domain.attr,
609 	NULL,
610 };
611 
612 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
613 {
614 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
615 	struct nd_region *nd_region = to_nd_region(dev);
616 	struct nd_interleave_set *nd_set = nd_region->nd_set;
617 	int type = nd_region_to_nstype(nd_region);
618 
619 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
620 		return 0;
621 
622 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
623 		return 0;
624 
625 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
626 		return 0;
627 
628 	if (a == &dev_attr_resource.attr) {
629 		if (is_nd_pmem(dev))
630 			return 0400;
631 		else
632 			return 0;
633 	}
634 
635 	if (a == &dev_attr_deep_flush.attr) {
636 		int has_flush = nvdimm_has_flush(nd_region);
637 
638 		if (has_flush == 1)
639 			return a->mode;
640 		else if (has_flush == 0)
641 			return 0444;
642 		else
643 			return 0;
644 	}
645 
646 	if (a == &dev_attr_persistence_domain.attr) {
647 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
648 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
649 			return 0;
650 		return a->mode;
651 	}
652 
653 	if (a != &dev_attr_set_cookie.attr
654 			&& a != &dev_attr_available_size.attr)
655 		return a->mode;
656 
657 	if ((type == ND_DEVICE_NAMESPACE_PMEM
658 				|| type == ND_DEVICE_NAMESPACE_BLK)
659 			&& a == &dev_attr_available_size.attr)
660 		return a->mode;
661 	else if (is_memory(dev) && nd_set)
662 		return a->mode;
663 
664 	return 0;
665 }
666 
667 struct attribute_group nd_region_attribute_group = {
668 	.attrs = nd_region_attributes,
669 	.is_visible = region_visible,
670 };
671 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
672 
673 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
674 		struct nd_namespace_index *nsindex)
675 {
676 	struct nd_interleave_set *nd_set = nd_region->nd_set;
677 
678 	if (!nd_set)
679 		return 0;
680 
681 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
682 			&& __le16_to_cpu(nsindex->minor) == 1)
683 		return nd_set->cookie1;
684 	return nd_set->cookie2;
685 }
686 
687 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
688 {
689 	struct nd_interleave_set *nd_set = nd_region->nd_set;
690 
691 	if (nd_set)
692 		return nd_set->altcookie;
693 	return 0;
694 }
695 
696 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
697 {
698 	struct nd_label_ent *label_ent, *e;
699 
700 	lockdep_assert_held(&nd_mapping->lock);
701 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
702 		list_del(&label_ent->list);
703 		kfree(label_ent);
704 	}
705 }
706 
707 /*
708  * Upon successful probe/remove, take/release a reference on the
709  * associated interleave set (if present), and plant new btt + namespace
710  * seeds.  Also, on the removal of a BLK region, notify the provider to
711  * disable the region.
712  */
713 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
714 		struct device *dev, bool probe)
715 {
716 	struct nd_region *nd_region;
717 
718 	if (!probe && is_nd_region(dev)) {
719 		int i;
720 
721 		nd_region = to_nd_region(dev);
722 		for (i = 0; i < nd_region->ndr_mappings; i++) {
723 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
724 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
725 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
726 
727 			mutex_lock(&nd_mapping->lock);
728 			nd_mapping_free_labels(nd_mapping);
729 			mutex_unlock(&nd_mapping->lock);
730 
731 			put_ndd(ndd);
732 			nd_mapping->ndd = NULL;
733 			if (ndd)
734 				atomic_dec(&nvdimm->busy);
735 		}
736 	}
737 	if (dev->parent && is_nd_region(dev->parent) && probe) {
738 		nd_region = to_nd_region(dev->parent);
739 		nvdimm_bus_lock(dev);
740 		if (nd_region->ns_seed == dev)
741 			nd_region_create_ns_seed(nd_region);
742 		nvdimm_bus_unlock(dev);
743 	}
744 	if (is_nd_btt(dev) && probe) {
745 		struct nd_btt *nd_btt = to_nd_btt(dev);
746 
747 		nd_region = to_nd_region(dev->parent);
748 		nvdimm_bus_lock(dev);
749 		if (nd_region->btt_seed == dev)
750 			nd_region_create_btt_seed(nd_region);
751 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
752 			nd_region_create_ns_seed(nd_region);
753 		nvdimm_bus_unlock(dev);
754 	}
755 	if (is_nd_pfn(dev) && probe) {
756 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
757 
758 		nd_region = to_nd_region(dev->parent);
759 		nvdimm_bus_lock(dev);
760 		if (nd_region->pfn_seed == dev)
761 			nd_region_create_pfn_seed(nd_region);
762 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
763 			nd_region_create_ns_seed(nd_region);
764 		nvdimm_bus_unlock(dev);
765 	}
766 	if (is_nd_dax(dev) && probe) {
767 		struct nd_dax *nd_dax = to_nd_dax(dev);
768 
769 		nd_region = to_nd_region(dev->parent);
770 		nvdimm_bus_lock(dev);
771 		if (nd_region->dax_seed == dev)
772 			nd_region_create_dax_seed(nd_region);
773 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
774 			nd_region_create_ns_seed(nd_region);
775 		nvdimm_bus_unlock(dev);
776 	}
777 }
778 
779 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
780 {
781 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
782 }
783 
784 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
785 {
786 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
787 }
788 
789 static ssize_t mappingN(struct device *dev, char *buf, int n)
790 {
791 	struct nd_region *nd_region = to_nd_region(dev);
792 	struct nd_mapping *nd_mapping;
793 	struct nvdimm *nvdimm;
794 
795 	if (n >= nd_region->ndr_mappings)
796 		return -ENXIO;
797 	nd_mapping = &nd_region->mapping[n];
798 	nvdimm = nd_mapping->nvdimm;
799 
800 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
801 			nd_mapping->start, nd_mapping->size,
802 			nd_mapping->position);
803 }
804 
805 #define REGION_MAPPING(idx) \
806 static ssize_t mapping##idx##_show(struct device *dev,		\
807 		struct device_attribute *attr, char *buf)	\
808 {								\
809 	return mappingN(dev, buf, idx);				\
810 }								\
811 static DEVICE_ATTR_RO(mapping##idx)
812 
813 /*
814  * 32 should be enough for a while, even in the presence of socket
815  * interleave a 32-way interleave set is a degenerate case.
816  */
817 REGION_MAPPING(0);
818 REGION_MAPPING(1);
819 REGION_MAPPING(2);
820 REGION_MAPPING(3);
821 REGION_MAPPING(4);
822 REGION_MAPPING(5);
823 REGION_MAPPING(6);
824 REGION_MAPPING(7);
825 REGION_MAPPING(8);
826 REGION_MAPPING(9);
827 REGION_MAPPING(10);
828 REGION_MAPPING(11);
829 REGION_MAPPING(12);
830 REGION_MAPPING(13);
831 REGION_MAPPING(14);
832 REGION_MAPPING(15);
833 REGION_MAPPING(16);
834 REGION_MAPPING(17);
835 REGION_MAPPING(18);
836 REGION_MAPPING(19);
837 REGION_MAPPING(20);
838 REGION_MAPPING(21);
839 REGION_MAPPING(22);
840 REGION_MAPPING(23);
841 REGION_MAPPING(24);
842 REGION_MAPPING(25);
843 REGION_MAPPING(26);
844 REGION_MAPPING(27);
845 REGION_MAPPING(28);
846 REGION_MAPPING(29);
847 REGION_MAPPING(30);
848 REGION_MAPPING(31);
849 
850 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
851 {
852 	struct device *dev = container_of(kobj, struct device, kobj);
853 	struct nd_region *nd_region = to_nd_region(dev);
854 
855 	if (n < nd_region->ndr_mappings)
856 		return a->mode;
857 	return 0;
858 }
859 
860 static struct attribute *mapping_attributes[] = {
861 	&dev_attr_mapping0.attr,
862 	&dev_attr_mapping1.attr,
863 	&dev_attr_mapping2.attr,
864 	&dev_attr_mapping3.attr,
865 	&dev_attr_mapping4.attr,
866 	&dev_attr_mapping5.attr,
867 	&dev_attr_mapping6.attr,
868 	&dev_attr_mapping7.attr,
869 	&dev_attr_mapping8.attr,
870 	&dev_attr_mapping9.attr,
871 	&dev_attr_mapping10.attr,
872 	&dev_attr_mapping11.attr,
873 	&dev_attr_mapping12.attr,
874 	&dev_attr_mapping13.attr,
875 	&dev_attr_mapping14.attr,
876 	&dev_attr_mapping15.attr,
877 	&dev_attr_mapping16.attr,
878 	&dev_attr_mapping17.attr,
879 	&dev_attr_mapping18.attr,
880 	&dev_attr_mapping19.attr,
881 	&dev_attr_mapping20.attr,
882 	&dev_attr_mapping21.attr,
883 	&dev_attr_mapping22.attr,
884 	&dev_attr_mapping23.attr,
885 	&dev_attr_mapping24.attr,
886 	&dev_attr_mapping25.attr,
887 	&dev_attr_mapping26.attr,
888 	&dev_attr_mapping27.attr,
889 	&dev_attr_mapping28.attr,
890 	&dev_attr_mapping29.attr,
891 	&dev_attr_mapping30.attr,
892 	&dev_attr_mapping31.attr,
893 	NULL,
894 };
895 
896 struct attribute_group nd_mapping_attribute_group = {
897 	.is_visible = mapping_visible,
898 	.attrs = mapping_attributes,
899 };
900 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
901 
902 int nd_blk_region_init(struct nd_region *nd_region)
903 {
904 	struct device *dev = &nd_region->dev;
905 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
906 
907 	if (!is_nd_blk(dev))
908 		return 0;
909 
910 	if (nd_region->ndr_mappings < 1) {
911 		dev_dbg(dev, "invalid BLK region\n");
912 		return -ENXIO;
913 	}
914 
915 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
916 }
917 
918 /**
919  * nd_region_acquire_lane - allocate and lock a lane
920  * @nd_region: region id and number of lanes possible
921  *
922  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
923  * We optimize for the common case where there are 256 lanes, one
924  * per-cpu.  For larger systems we need to lock to share lanes.  For now
925  * this implementation assumes the cost of maintaining an allocator for
926  * free lanes is on the order of the lock hold time, so it implements a
927  * static lane = cpu % num_lanes mapping.
928  *
929  * In the case of a BTT instance on top of a BLK namespace a lane may be
930  * acquired recursively.  We lock on the first instance.
931  *
932  * In the case of a BTT instance on top of PMEM, we only acquire a lane
933  * for the BTT metadata updates.
934  */
935 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
936 {
937 	unsigned int cpu, lane;
938 
939 	cpu = get_cpu();
940 	if (nd_region->num_lanes < nr_cpu_ids) {
941 		struct nd_percpu_lane *ndl_lock, *ndl_count;
942 
943 		lane = cpu % nd_region->num_lanes;
944 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
945 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
946 		if (ndl_count->count++ == 0)
947 			spin_lock(&ndl_lock->lock);
948 	} else
949 		lane = cpu;
950 
951 	return lane;
952 }
953 EXPORT_SYMBOL(nd_region_acquire_lane);
954 
955 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
956 {
957 	if (nd_region->num_lanes < nr_cpu_ids) {
958 		unsigned int cpu = get_cpu();
959 		struct nd_percpu_lane *ndl_lock, *ndl_count;
960 
961 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
962 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
963 		if (--ndl_count->count == 0)
964 			spin_unlock(&ndl_lock->lock);
965 		put_cpu();
966 	}
967 	put_cpu();
968 }
969 EXPORT_SYMBOL(nd_region_release_lane);
970 
971 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
972 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
973 		const char *caller)
974 {
975 	struct nd_region *nd_region;
976 	struct device *dev;
977 	void *region_buf;
978 	unsigned int i;
979 	int ro = 0;
980 
981 	for (i = 0; i < ndr_desc->num_mappings; i++) {
982 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
983 		struct nvdimm *nvdimm = mapping->nvdimm;
984 
985 		if ((mapping->start | mapping->size) % SZ_4K) {
986 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
987 					caller, dev_name(&nvdimm->dev), i);
988 
989 			return NULL;
990 		}
991 
992 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
993 			ro = 1;
994 	}
995 
996 	if (dev_type == &nd_blk_device_type) {
997 		struct nd_blk_region_desc *ndbr_desc;
998 		struct nd_blk_region *ndbr;
999 
1000 		ndbr_desc = to_blk_region_desc(ndr_desc);
1001 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1002 				* ndr_desc->num_mappings,
1003 				GFP_KERNEL);
1004 		if (ndbr) {
1005 			nd_region = &ndbr->nd_region;
1006 			ndbr->enable = ndbr_desc->enable;
1007 			ndbr->do_io = ndbr_desc->do_io;
1008 		}
1009 		region_buf = ndbr;
1010 	} else {
1011 		nd_region = kzalloc(sizeof(struct nd_region)
1012 				+ sizeof(struct nd_mapping)
1013 				* ndr_desc->num_mappings,
1014 				GFP_KERNEL);
1015 		region_buf = nd_region;
1016 	}
1017 
1018 	if (!region_buf)
1019 		return NULL;
1020 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1021 	if (nd_region->id < 0)
1022 		goto err_id;
1023 
1024 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1025 	if (!nd_region->lane)
1026 		goto err_percpu;
1027 
1028         for (i = 0; i < nr_cpu_ids; i++) {
1029 		struct nd_percpu_lane *ndl;
1030 
1031 		ndl = per_cpu_ptr(nd_region->lane, i);
1032 		spin_lock_init(&ndl->lock);
1033 		ndl->count = 0;
1034 	}
1035 
1036 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1037 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1038 		struct nvdimm *nvdimm = mapping->nvdimm;
1039 
1040 		nd_region->mapping[i].nvdimm = nvdimm;
1041 		nd_region->mapping[i].start = mapping->start;
1042 		nd_region->mapping[i].size = mapping->size;
1043 		nd_region->mapping[i].position = mapping->position;
1044 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1045 		mutex_init(&nd_region->mapping[i].lock);
1046 
1047 		get_device(&nvdimm->dev);
1048 	}
1049 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1050 	nd_region->provider_data = ndr_desc->provider_data;
1051 	nd_region->nd_set = ndr_desc->nd_set;
1052 	nd_region->num_lanes = ndr_desc->num_lanes;
1053 	nd_region->flags = ndr_desc->flags;
1054 	nd_region->ro = ro;
1055 	nd_region->numa_node = ndr_desc->numa_node;
1056 	ida_init(&nd_region->ns_ida);
1057 	ida_init(&nd_region->btt_ida);
1058 	ida_init(&nd_region->pfn_ida);
1059 	ida_init(&nd_region->dax_ida);
1060 	dev = &nd_region->dev;
1061 	dev_set_name(dev, "region%d", nd_region->id);
1062 	dev->parent = &nvdimm_bus->dev;
1063 	dev->type = dev_type;
1064 	dev->groups = ndr_desc->attr_groups;
1065 	dev->of_node = ndr_desc->of_node;
1066 	nd_region->ndr_size = resource_size(ndr_desc->res);
1067 	nd_region->ndr_start = ndr_desc->res->start;
1068 	nd_device_register(dev);
1069 
1070 	return nd_region;
1071 
1072  err_percpu:
1073 	ida_simple_remove(&region_ida, nd_region->id);
1074  err_id:
1075 	kfree(region_buf);
1076 	return NULL;
1077 }
1078 
1079 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1080 		struct nd_region_desc *ndr_desc)
1081 {
1082 	ndr_desc->num_lanes = ND_MAX_LANES;
1083 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1084 			__func__);
1085 }
1086 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1087 
1088 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1089 		struct nd_region_desc *ndr_desc)
1090 {
1091 	if (ndr_desc->num_mappings > 1)
1092 		return NULL;
1093 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1094 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1095 			__func__);
1096 }
1097 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1098 
1099 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1100 		struct nd_region_desc *ndr_desc)
1101 {
1102 	ndr_desc->num_lanes = ND_MAX_LANES;
1103 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1104 			__func__);
1105 }
1106 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1107 
1108 /**
1109  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1110  * @nd_region: blk or interleaved pmem region
1111  */
1112 void nvdimm_flush(struct nd_region *nd_region)
1113 {
1114 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1115 	int i, idx;
1116 
1117 	/*
1118 	 * Try to encourage some diversity in flush hint addresses
1119 	 * across cpus assuming a limited number of flush hints.
1120 	 */
1121 	idx = this_cpu_read(flush_idx);
1122 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1123 
1124 	/*
1125 	 * The first wmb() is needed to 'sfence' all previous writes
1126 	 * such that they are architecturally visible for the platform
1127 	 * buffer flush.  Note that we've already arranged for pmem
1128 	 * writes to avoid the cache via memcpy_flushcache().  The final
1129 	 * wmb() ensures ordering for the NVDIMM flush write.
1130 	 */
1131 	wmb();
1132 	for (i = 0; i < nd_region->ndr_mappings; i++)
1133 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1134 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1135 	wmb();
1136 }
1137 EXPORT_SYMBOL_GPL(nvdimm_flush);
1138 
1139 /**
1140  * nvdimm_has_flush - determine write flushing requirements
1141  * @nd_region: blk or interleaved pmem region
1142  *
1143  * Returns 1 if writes require flushing
1144  * Returns 0 if writes do not require flushing
1145  * Returns -ENXIO if flushing capability can not be determined
1146  */
1147 int nvdimm_has_flush(struct nd_region *nd_region)
1148 {
1149 	int i;
1150 
1151 	/* no nvdimm or pmem api == flushing capability unknown */
1152 	if (nd_region->ndr_mappings == 0
1153 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1154 		return -ENXIO;
1155 
1156 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1157 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1158 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1159 
1160 		/* flush hints present / available */
1161 		if (nvdimm->num_flush)
1162 			return 1;
1163 	}
1164 
1165 	/*
1166 	 * The platform defines dimm devices without hints, assume
1167 	 * platform persistence mechanism like ADR
1168 	 */
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1172 
1173 int nvdimm_has_cache(struct nd_region *nd_region)
1174 {
1175 	return is_nd_pmem(&nd_region->dev) &&
1176 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1177 }
1178 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1179 
1180 void __exit nd_region_devs_exit(void)
1181 {
1182 	ida_destroy(&region_ida);
1183 }
1184