xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16 
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22 
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	memregion_free(nd_region->id);
137 	if (is_nd_blk(dev))
138 		kfree(to_nd_blk_region(dev));
139 	else
140 		kfree(nd_region);
141 }
142 
143 struct nd_region *to_nd_region(struct device *dev)
144 {
145 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146 
147 	WARN_ON(dev->type->release != nd_region_release);
148 	return nd_region;
149 }
150 EXPORT_SYMBOL_GPL(to_nd_region);
151 
152 struct device *nd_region_dev(struct nd_region *nd_region)
153 {
154 	if (!nd_region)
155 		return NULL;
156 	return &nd_region->dev;
157 }
158 EXPORT_SYMBOL_GPL(nd_region_dev);
159 
160 struct nd_blk_region *to_nd_blk_region(struct device *dev)
161 {
162 	struct nd_region *nd_region = to_nd_region(dev);
163 
164 	WARN_ON(!is_nd_blk(dev));
165 	return container_of(nd_region, struct nd_blk_region, nd_region);
166 }
167 EXPORT_SYMBOL_GPL(to_nd_blk_region);
168 
169 void *nd_region_provider_data(struct nd_region *nd_region)
170 {
171 	return nd_region->provider_data;
172 }
173 EXPORT_SYMBOL_GPL(nd_region_provider_data);
174 
175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176 {
177 	return ndbr->blk_provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180 
181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182 {
183 	ndbr->blk_provider_data = data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186 
187 /**
188  * nd_region_to_nstype() - region to an integer namespace type
189  * @nd_region: region-device to interrogate
190  *
191  * This is the 'nstype' attribute of a region as well, an input to the
192  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193  * namespace devices with namespace drivers.
194  */
195 int nd_region_to_nstype(struct nd_region *nd_region)
196 {
197 	if (is_memory(&nd_region->dev)) {
198 		u16 i, alias;
199 
200 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
201 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
203 
204 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
205 				alias++;
206 		}
207 		if (alias)
208 			return ND_DEVICE_NAMESPACE_PMEM;
209 		else
210 			return ND_DEVICE_NAMESPACE_IO;
211 	} else if (is_nd_blk(&nd_region->dev)) {
212 		return ND_DEVICE_NAMESPACE_BLK;
213 	}
214 
215 	return 0;
216 }
217 EXPORT_SYMBOL(nd_region_to_nstype);
218 
219 static ssize_t size_show(struct device *dev,
220 		struct device_attribute *attr, char *buf)
221 {
222 	struct nd_region *nd_region = to_nd_region(dev);
223 	unsigned long long size = 0;
224 
225 	if (is_memory(dev)) {
226 		size = nd_region->ndr_size;
227 	} else if (nd_region->ndr_mappings == 1) {
228 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
229 
230 		size = nd_mapping->size;
231 	}
232 
233 	return sprintf(buf, "%llu\n", size);
234 }
235 static DEVICE_ATTR_RO(size);
236 
237 static ssize_t deep_flush_show(struct device *dev,
238 		struct device_attribute *attr, char *buf)
239 {
240 	struct nd_region *nd_region = to_nd_region(dev);
241 
242 	/*
243 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
244 	 * not visible.
245 	 */
246 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
247 }
248 
249 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
250 		const char *buf, size_t len)
251 {
252 	bool flush;
253 	int rc = strtobool(buf, &flush);
254 	struct nd_region *nd_region = to_nd_region(dev);
255 
256 	if (rc)
257 		return rc;
258 	if (!flush)
259 		return -EINVAL;
260 	rc = nvdimm_flush(nd_region, NULL);
261 	if (rc)
262 		return rc;
263 
264 	return len;
265 }
266 static DEVICE_ATTR_RW(deep_flush);
267 
268 static ssize_t mappings_show(struct device *dev,
269 		struct device_attribute *attr, char *buf)
270 {
271 	struct nd_region *nd_region = to_nd_region(dev);
272 
273 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
274 }
275 static DEVICE_ATTR_RO(mappings);
276 
277 static ssize_t nstype_show(struct device *dev,
278 		struct device_attribute *attr, char *buf)
279 {
280 	struct nd_region *nd_region = to_nd_region(dev);
281 
282 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
283 }
284 static DEVICE_ATTR_RO(nstype);
285 
286 static ssize_t set_cookie_show(struct device *dev,
287 		struct device_attribute *attr, char *buf)
288 {
289 	struct nd_region *nd_region = to_nd_region(dev);
290 	struct nd_interleave_set *nd_set = nd_region->nd_set;
291 	ssize_t rc = 0;
292 
293 	if (is_memory(dev) && nd_set)
294 		/* pass, should be precluded by region_visible */;
295 	else
296 		return -ENXIO;
297 
298 	/*
299 	 * The cookie to show depends on which specification of the
300 	 * labels we are using. If there are not labels then default to
301 	 * the v1.1 namespace label cookie definition. To read all this
302 	 * data we need to wait for probing to settle.
303 	 */
304 	nd_device_lock(dev);
305 	nvdimm_bus_lock(dev);
306 	wait_nvdimm_bus_probe_idle(dev);
307 	if (nd_region->ndr_mappings) {
308 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
309 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
310 
311 		if (ndd) {
312 			struct nd_namespace_index *nsindex;
313 
314 			nsindex = to_namespace_index(ndd, ndd->ns_current);
315 			rc = sprintf(buf, "%#llx\n",
316 					nd_region_interleave_set_cookie(nd_region,
317 						nsindex));
318 		}
319 	}
320 	nvdimm_bus_unlock(dev);
321 	nd_device_unlock(dev);
322 
323 	if (rc)
324 		return rc;
325 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
326 }
327 static DEVICE_ATTR_RO(set_cookie);
328 
329 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
330 {
331 	resource_size_t blk_max_overlap = 0, available, overlap;
332 	int i;
333 
334 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
335 
336  retry:
337 	available = 0;
338 	overlap = blk_max_overlap;
339 	for (i = 0; i < nd_region->ndr_mappings; i++) {
340 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
341 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
342 
343 		/* if a dimm is disabled the available capacity is zero */
344 		if (!ndd)
345 			return 0;
346 
347 		if (is_memory(&nd_region->dev)) {
348 			available += nd_pmem_available_dpa(nd_region,
349 					nd_mapping, &overlap);
350 			if (overlap > blk_max_overlap) {
351 				blk_max_overlap = overlap;
352 				goto retry;
353 			}
354 		} else if (is_nd_blk(&nd_region->dev))
355 			available += nd_blk_available_dpa(nd_region);
356 	}
357 
358 	return available;
359 }
360 
361 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
362 {
363 	resource_size_t available = 0;
364 	int i;
365 
366 	if (is_memory(&nd_region->dev))
367 		available = PHYS_ADDR_MAX;
368 
369 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
370 	for (i = 0; i < nd_region->ndr_mappings; i++) {
371 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372 
373 		if (is_memory(&nd_region->dev))
374 			available = min(available,
375 					nd_pmem_max_contiguous_dpa(nd_region,
376 								   nd_mapping));
377 		else if (is_nd_blk(&nd_region->dev))
378 			available += nd_blk_available_dpa(nd_region);
379 	}
380 	if (is_memory(&nd_region->dev))
381 		return available * nd_region->ndr_mappings;
382 	return available;
383 }
384 
385 static ssize_t available_size_show(struct device *dev,
386 		struct device_attribute *attr, char *buf)
387 {
388 	struct nd_region *nd_region = to_nd_region(dev);
389 	unsigned long long available = 0;
390 
391 	/*
392 	 * Flush in-flight updates and grab a snapshot of the available
393 	 * size.  Of course, this value is potentially invalidated the
394 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
395 	 * problem to not race itself.
396 	 */
397 	nd_device_lock(dev);
398 	nvdimm_bus_lock(dev);
399 	wait_nvdimm_bus_probe_idle(dev);
400 	available = nd_region_available_dpa(nd_region);
401 	nvdimm_bus_unlock(dev);
402 	nd_device_unlock(dev);
403 
404 	return sprintf(buf, "%llu\n", available);
405 }
406 static DEVICE_ATTR_RO(available_size);
407 
408 static ssize_t max_available_extent_show(struct device *dev,
409 		struct device_attribute *attr, char *buf)
410 {
411 	struct nd_region *nd_region = to_nd_region(dev);
412 	unsigned long long available = 0;
413 
414 	nd_device_lock(dev);
415 	nvdimm_bus_lock(dev);
416 	wait_nvdimm_bus_probe_idle(dev);
417 	available = nd_region_allocatable_dpa(nd_region);
418 	nvdimm_bus_unlock(dev);
419 	nd_device_unlock(dev);
420 
421 	return sprintf(buf, "%llu\n", available);
422 }
423 static DEVICE_ATTR_RO(max_available_extent);
424 
425 static ssize_t init_namespaces_show(struct device *dev,
426 		struct device_attribute *attr, char *buf)
427 {
428 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
429 	ssize_t rc;
430 
431 	nvdimm_bus_lock(dev);
432 	if (ndrd)
433 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
434 	else
435 		rc = -ENXIO;
436 	nvdimm_bus_unlock(dev);
437 
438 	return rc;
439 }
440 static DEVICE_ATTR_RO(init_namespaces);
441 
442 static ssize_t namespace_seed_show(struct device *dev,
443 		struct device_attribute *attr, char *buf)
444 {
445 	struct nd_region *nd_region = to_nd_region(dev);
446 	ssize_t rc;
447 
448 	nvdimm_bus_lock(dev);
449 	if (nd_region->ns_seed)
450 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
451 	else
452 		rc = sprintf(buf, "\n");
453 	nvdimm_bus_unlock(dev);
454 	return rc;
455 }
456 static DEVICE_ATTR_RO(namespace_seed);
457 
458 static ssize_t btt_seed_show(struct device *dev,
459 		struct device_attribute *attr, char *buf)
460 {
461 	struct nd_region *nd_region = to_nd_region(dev);
462 	ssize_t rc;
463 
464 	nvdimm_bus_lock(dev);
465 	if (nd_region->btt_seed)
466 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
467 	else
468 		rc = sprintf(buf, "\n");
469 	nvdimm_bus_unlock(dev);
470 
471 	return rc;
472 }
473 static DEVICE_ATTR_RO(btt_seed);
474 
475 static ssize_t pfn_seed_show(struct device *dev,
476 		struct device_attribute *attr, char *buf)
477 {
478 	struct nd_region *nd_region = to_nd_region(dev);
479 	ssize_t rc;
480 
481 	nvdimm_bus_lock(dev);
482 	if (nd_region->pfn_seed)
483 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
484 	else
485 		rc = sprintf(buf, "\n");
486 	nvdimm_bus_unlock(dev);
487 
488 	return rc;
489 }
490 static DEVICE_ATTR_RO(pfn_seed);
491 
492 static ssize_t dax_seed_show(struct device *dev,
493 		struct device_attribute *attr, char *buf)
494 {
495 	struct nd_region *nd_region = to_nd_region(dev);
496 	ssize_t rc;
497 
498 	nvdimm_bus_lock(dev);
499 	if (nd_region->dax_seed)
500 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
501 	else
502 		rc = sprintf(buf, "\n");
503 	nvdimm_bus_unlock(dev);
504 
505 	return rc;
506 }
507 static DEVICE_ATTR_RO(dax_seed);
508 
509 static ssize_t read_only_show(struct device *dev,
510 		struct device_attribute *attr, char *buf)
511 {
512 	struct nd_region *nd_region = to_nd_region(dev);
513 
514 	return sprintf(buf, "%d\n", nd_region->ro);
515 }
516 
517 static ssize_t read_only_store(struct device *dev,
518 		struct device_attribute *attr, const char *buf, size_t len)
519 {
520 	bool ro;
521 	int rc = strtobool(buf, &ro);
522 	struct nd_region *nd_region = to_nd_region(dev);
523 
524 	if (rc)
525 		return rc;
526 
527 	nd_region->ro = ro;
528 	return len;
529 }
530 static DEVICE_ATTR_RW(read_only);
531 
532 static ssize_t region_badblocks_show(struct device *dev,
533 		struct device_attribute *attr, char *buf)
534 {
535 	struct nd_region *nd_region = to_nd_region(dev);
536 	ssize_t rc;
537 
538 	nd_device_lock(dev);
539 	if (dev->driver)
540 		rc = badblocks_show(&nd_region->bb, buf, 0);
541 	else
542 		rc = -ENXIO;
543 	nd_device_unlock(dev);
544 
545 	return rc;
546 }
547 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
548 
549 static ssize_t resource_show(struct device *dev,
550 		struct device_attribute *attr, char *buf)
551 {
552 	struct nd_region *nd_region = to_nd_region(dev);
553 
554 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
555 }
556 static DEVICE_ATTR(resource, 0400, resource_show, NULL);
557 
558 static ssize_t persistence_domain_show(struct device *dev,
559 		struct device_attribute *attr, char *buf)
560 {
561 	struct nd_region *nd_region = to_nd_region(dev);
562 
563 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
564 		return sprintf(buf, "cpu_cache\n");
565 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
566 		return sprintf(buf, "memory_controller\n");
567 	else
568 		return sprintf(buf, "\n");
569 }
570 static DEVICE_ATTR_RO(persistence_domain);
571 
572 static struct attribute *nd_region_attributes[] = {
573 	&dev_attr_size.attr,
574 	&dev_attr_nstype.attr,
575 	&dev_attr_mappings.attr,
576 	&dev_attr_btt_seed.attr,
577 	&dev_attr_pfn_seed.attr,
578 	&dev_attr_dax_seed.attr,
579 	&dev_attr_deep_flush.attr,
580 	&dev_attr_read_only.attr,
581 	&dev_attr_set_cookie.attr,
582 	&dev_attr_available_size.attr,
583 	&dev_attr_max_available_extent.attr,
584 	&dev_attr_namespace_seed.attr,
585 	&dev_attr_init_namespaces.attr,
586 	&dev_attr_badblocks.attr,
587 	&dev_attr_resource.attr,
588 	&dev_attr_persistence_domain.attr,
589 	NULL,
590 };
591 
592 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
593 {
594 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
595 	struct nd_region *nd_region = to_nd_region(dev);
596 	struct nd_interleave_set *nd_set = nd_region->nd_set;
597 	int type = nd_region_to_nstype(nd_region);
598 
599 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
600 		return 0;
601 
602 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
603 		return 0;
604 
605 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
606 		return 0;
607 
608 	if (a == &dev_attr_resource.attr && !is_memory(dev))
609 		return 0;
610 
611 	if (a == &dev_attr_deep_flush.attr) {
612 		int has_flush = nvdimm_has_flush(nd_region);
613 
614 		if (has_flush == 1)
615 			return a->mode;
616 		else if (has_flush == 0)
617 			return 0444;
618 		else
619 			return 0;
620 	}
621 
622 	if (a == &dev_attr_persistence_domain.attr) {
623 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
624 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
625 			return 0;
626 		return a->mode;
627 	}
628 
629 	if (a != &dev_attr_set_cookie.attr
630 			&& a != &dev_attr_available_size.attr)
631 		return a->mode;
632 
633 	if ((type == ND_DEVICE_NAMESPACE_PMEM
634 				|| type == ND_DEVICE_NAMESPACE_BLK)
635 			&& a == &dev_attr_available_size.attr)
636 		return a->mode;
637 	else if (is_memory(dev) && nd_set)
638 		return a->mode;
639 
640 	return 0;
641 }
642 
643 static ssize_t mappingN(struct device *dev, char *buf, int n)
644 {
645 	struct nd_region *nd_region = to_nd_region(dev);
646 	struct nd_mapping *nd_mapping;
647 	struct nvdimm *nvdimm;
648 
649 	if (n >= nd_region->ndr_mappings)
650 		return -ENXIO;
651 	nd_mapping = &nd_region->mapping[n];
652 	nvdimm = nd_mapping->nvdimm;
653 
654 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
655 			nd_mapping->start, nd_mapping->size,
656 			nd_mapping->position);
657 }
658 
659 #define REGION_MAPPING(idx) \
660 static ssize_t mapping##idx##_show(struct device *dev,		\
661 		struct device_attribute *attr, char *buf)	\
662 {								\
663 	return mappingN(dev, buf, idx);				\
664 }								\
665 static DEVICE_ATTR_RO(mapping##idx)
666 
667 /*
668  * 32 should be enough for a while, even in the presence of socket
669  * interleave a 32-way interleave set is a degenerate case.
670  */
671 REGION_MAPPING(0);
672 REGION_MAPPING(1);
673 REGION_MAPPING(2);
674 REGION_MAPPING(3);
675 REGION_MAPPING(4);
676 REGION_MAPPING(5);
677 REGION_MAPPING(6);
678 REGION_MAPPING(7);
679 REGION_MAPPING(8);
680 REGION_MAPPING(9);
681 REGION_MAPPING(10);
682 REGION_MAPPING(11);
683 REGION_MAPPING(12);
684 REGION_MAPPING(13);
685 REGION_MAPPING(14);
686 REGION_MAPPING(15);
687 REGION_MAPPING(16);
688 REGION_MAPPING(17);
689 REGION_MAPPING(18);
690 REGION_MAPPING(19);
691 REGION_MAPPING(20);
692 REGION_MAPPING(21);
693 REGION_MAPPING(22);
694 REGION_MAPPING(23);
695 REGION_MAPPING(24);
696 REGION_MAPPING(25);
697 REGION_MAPPING(26);
698 REGION_MAPPING(27);
699 REGION_MAPPING(28);
700 REGION_MAPPING(29);
701 REGION_MAPPING(30);
702 REGION_MAPPING(31);
703 
704 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
705 {
706 	struct device *dev = container_of(kobj, struct device, kobj);
707 	struct nd_region *nd_region = to_nd_region(dev);
708 
709 	if (n < nd_region->ndr_mappings)
710 		return a->mode;
711 	return 0;
712 }
713 
714 static struct attribute *mapping_attributes[] = {
715 	&dev_attr_mapping0.attr,
716 	&dev_attr_mapping1.attr,
717 	&dev_attr_mapping2.attr,
718 	&dev_attr_mapping3.attr,
719 	&dev_attr_mapping4.attr,
720 	&dev_attr_mapping5.attr,
721 	&dev_attr_mapping6.attr,
722 	&dev_attr_mapping7.attr,
723 	&dev_attr_mapping8.attr,
724 	&dev_attr_mapping9.attr,
725 	&dev_attr_mapping10.attr,
726 	&dev_attr_mapping11.attr,
727 	&dev_attr_mapping12.attr,
728 	&dev_attr_mapping13.attr,
729 	&dev_attr_mapping14.attr,
730 	&dev_attr_mapping15.attr,
731 	&dev_attr_mapping16.attr,
732 	&dev_attr_mapping17.attr,
733 	&dev_attr_mapping18.attr,
734 	&dev_attr_mapping19.attr,
735 	&dev_attr_mapping20.attr,
736 	&dev_attr_mapping21.attr,
737 	&dev_attr_mapping22.attr,
738 	&dev_attr_mapping23.attr,
739 	&dev_attr_mapping24.attr,
740 	&dev_attr_mapping25.attr,
741 	&dev_attr_mapping26.attr,
742 	&dev_attr_mapping27.attr,
743 	&dev_attr_mapping28.attr,
744 	&dev_attr_mapping29.attr,
745 	&dev_attr_mapping30.attr,
746 	&dev_attr_mapping31.attr,
747 	NULL,
748 };
749 
750 static const struct attribute_group nd_mapping_attribute_group = {
751 	.is_visible = mapping_visible,
752 	.attrs = mapping_attributes,
753 };
754 
755 static const struct attribute_group nd_region_attribute_group = {
756 	.attrs = nd_region_attributes,
757 	.is_visible = region_visible,
758 };
759 
760 static const struct attribute_group *nd_region_attribute_groups[] = {
761 	&nd_device_attribute_group,
762 	&nd_region_attribute_group,
763 	&nd_numa_attribute_group,
764 	&nd_mapping_attribute_group,
765 	NULL,
766 };
767 
768 static const struct device_type nd_blk_device_type = {
769 	.name = "nd_blk",
770 	.release = nd_region_release,
771 	.groups = nd_region_attribute_groups,
772 };
773 
774 static const struct device_type nd_pmem_device_type = {
775 	.name = "nd_pmem",
776 	.release = nd_region_release,
777 	.groups = nd_region_attribute_groups,
778 };
779 
780 static const struct device_type nd_volatile_device_type = {
781 	.name = "nd_volatile",
782 	.release = nd_region_release,
783 	.groups = nd_region_attribute_groups,
784 };
785 
786 bool is_nd_pmem(struct device *dev)
787 {
788 	return dev ? dev->type == &nd_pmem_device_type : false;
789 }
790 
791 bool is_nd_blk(struct device *dev)
792 {
793 	return dev ? dev->type == &nd_blk_device_type : false;
794 }
795 
796 bool is_nd_volatile(struct device *dev)
797 {
798 	return dev ? dev->type == &nd_volatile_device_type : false;
799 }
800 
801 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
802 		struct nd_namespace_index *nsindex)
803 {
804 	struct nd_interleave_set *nd_set = nd_region->nd_set;
805 
806 	if (!nd_set)
807 		return 0;
808 
809 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
810 			&& __le16_to_cpu(nsindex->minor) == 1)
811 		return nd_set->cookie1;
812 	return nd_set->cookie2;
813 }
814 
815 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
816 {
817 	struct nd_interleave_set *nd_set = nd_region->nd_set;
818 
819 	if (nd_set)
820 		return nd_set->altcookie;
821 	return 0;
822 }
823 
824 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
825 {
826 	struct nd_label_ent *label_ent, *e;
827 
828 	lockdep_assert_held(&nd_mapping->lock);
829 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
830 		list_del(&label_ent->list);
831 		kfree(label_ent);
832 	}
833 }
834 
835 /*
836  * When a namespace is activated create new seeds for the next
837  * namespace, or namespace-personality to be configured.
838  */
839 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
840 {
841 	nvdimm_bus_lock(dev);
842 	if (nd_region->ns_seed == dev) {
843 		nd_region_create_ns_seed(nd_region);
844 	} else if (is_nd_btt(dev)) {
845 		struct nd_btt *nd_btt = to_nd_btt(dev);
846 
847 		if (nd_region->btt_seed == dev)
848 			nd_region_create_btt_seed(nd_region);
849 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
850 			nd_region_create_ns_seed(nd_region);
851 	} else if (is_nd_pfn(dev)) {
852 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
853 
854 		if (nd_region->pfn_seed == dev)
855 			nd_region_create_pfn_seed(nd_region);
856 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
857 			nd_region_create_ns_seed(nd_region);
858 	} else if (is_nd_dax(dev)) {
859 		struct nd_dax *nd_dax = to_nd_dax(dev);
860 
861 		if (nd_region->dax_seed == dev)
862 			nd_region_create_dax_seed(nd_region);
863 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
864 			nd_region_create_ns_seed(nd_region);
865 	}
866 	nvdimm_bus_unlock(dev);
867 }
868 
869 int nd_blk_region_init(struct nd_region *nd_region)
870 {
871 	struct device *dev = &nd_region->dev;
872 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
873 
874 	if (!is_nd_blk(dev))
875 		return 0;
876 
877 	if (nd_region->ndr_mappings < 1) {
878 		dev_dbg(dev, "invalid BLK region\n");
879 		return -ENXIO;
880 	}
881 
882 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
883 }
884 
885 /**
886  * nd_region_acquire_lane - allocate and lock a lane
887  * @nd_region: region id and number of lanes possible
888  *
889  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
890  * We optimize for the common case where there are 256 lanes, one
891  * per-cpu.  For larger systems we need to lock to share lanes.  For now
892  * this implementation assumes the cost of maintaining an allocator for
893  * free lanes is on the order of the lock hold time, so it implements a
894  * static lane = cpu % num_lanes mapping.
895  *
896  * In the case of a BTT instance on top of a BLK namespace a lane may be
897  * acquired recursively.  We lock on the first instance.
898  *
899  * In the case of a BTT instance on top of PMEM, we only acquire a lane
900  * for the BTT metadata updates.
901  */
902 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
903 {
904 	unsigned int cpu, lane;
905 
906 	cpu = get_cpu();
907 	if (nd_region->num_lanes < nr_cpu_ids) {
908 		struct nd_percpu_lane *ndl_lock, *ndl_count;
909 
910 		lane = cpu % nd_region->num_lanes;
911 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
912 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
913 		if (ndl_count->count++ == 0)
914 			spin_lock(&ndl_lock->lock);
915 	} else
916 		lane = cpu;
917 
918 	return lane;
919 }
920 EXPORT_SYMBOL(nd_region_acquire_lane);
921 
922 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
923 {
924 	if (nd_region->num_lanes < nr_cpu_ids) {
925 		unsigned int cpu = get_cpu();
926 		struct nd_percpu_lane *ndl_lock, *ndl_count;
927 
928 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
929 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
930 		if (--ndl_count->count == 0)
931 			spin_unlock(&ndl_lock->lock);
932 		put_cpu();
933 	}
934 	put_cpu();
935 }
936 EXPORT_SYMBOL(nd_region_release_lane);
937 
938 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
939 		struct nd_region_desc *ndr_desc,
940 		const struct device_type *dev_type, const char *caller)
941 {
942 	struct nd_region *nd_region;
943 	struct device *dev;
944 	void *region_buf;
945 	unsigned int i;
946 	int ro = 0;
947 
948 	for (i = 0; i < ndr_desc->num_mappings; i++) {
949 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
950 		struct nvdimm *nvdimm = mapping->nvdimm;
951 
952 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
953 			dev_err(&nvdimm_bus->dev,
954 				"%s: %s mapping%d is not %ld aligned\n",
955 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
956 			return NULL;
957 		}
958 
959 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
960 			ro = 1;
961 
962 		if (test_bit(NDD_NOBLK, &nvdimm->flags)
963 				&& dev_type == &nd_blk_device_type) {
964 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
965 					caller, dev_name(&nvdimm->dev), i);
966 			return NULL;
967 		}
968 	}
969 
970 	if (dev_type == &nd_blk_device_type) {
971 		struct nd_blk_region_desc *ndbr_desc;
972 		struct nd_blk_region *ndbr;
973 
974 		ndbr_desc = to_blk_region_desc(ndr_desc);
975 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
976 				* ndr_desc->num_mappings,
977 				GFP_KERNEL);
978 		if (ndbr) {
979 			nd_region = &ndbr->nd_region;
980 			ndbr->enable = ndbr_desc->enable;
981 			ndbr->do_io = ndbr_desc->do_io;
982 		}
983 		region_buf = ndbr;
984 	} else {
985 		nd_region = kzalloc(struct_size(nd_region, mapping,
986 						ndr_desc->num_mappings),
987 				    GFP_KERNEL);
988 		region_buf = nd_region;
989 	}
990 
991 	if (!region_buf)
992 		return NULL;
993 	nd_region->id = memregion_alloc(GFP_KERNEL);
994 	if (nd_region->id < 0)
995 		goto err_id;
996 
997 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
998 	if (!nd_region->lane)
999 		goto err_percpu;
1000 
1001         for (i = 0; i < nr_cpu_ids; i++) {
1002 		struct nd_percpu_lane *ndl;
1003 
1004 		ndl = per_cpu_ptr(nd_region->lane, i);
1005 		spin_lock_init(&ndl->lock);
1006 		ndl->count = 0;
1007 	}
1008 
1009 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1010 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1011 		struct nvdimm *nvdimm = mapping->nvdimm;
1012 
1013 		nd_region->mapping[i].nvdimm = nvdimm;
1014 		nd_region->mapping[i].start = mapping->start;
1015 		nd_region->mapping[i].size = mapping->size;
1016 		nd_region->mapping[i].position = mapping->position;
1017 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1018 		mutex_init(&nd_region->mapping[i].lock);
1019 
1020 		get_device(&nvdimm->dev);
1021 	}
1022 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1023 	nd_region->provider_data = ndr_desc->provider_data;
1024 	nd_region->nd_set = ndr_desc->nd_set;
1025 	nd_region->num_lanes = ndr_desc->num_lanes;
1026 	nd_region->flags = ndr_desc->flags;
1027 	nd_region->ro = ro;
1028 	nd_region->numa_node = ndr_desc->numa_node;
1029 	nd_region->target_node = ndr_desc->target_node;
1030 	ida_init(&nd_region->ns_ida);
1031 	ida_init(&nd_region->btt_ida);
1032 	ida_init(&nd_region->pfn_ida);
1033 	ida_init(&nd_region->dax_ida);
1034 	dev = &nd_region->dev;
1035 	dev_set_name(dev, "region%d", nd_region->id);
1036 	dev->parent = &nvdimm_bus->dev;
1037 	dev->type = dev_type;
1038 	dev->groups = ndr_desc->attr_groups;
1039 	dev->of_node = ndr_desc->of_node;
1040 	nd_region->ndr_size = resource_size(ndr_desc->res);
1041 	nd_region->ndr_start = ndr_desc->res->start;
1042 	if (ndr_desc->flush)
1043 		nd_region->flush = ndr_desc->flush;
1044 	else
1045 		nd_region->flush = NULL;
1046 
1047 	nd_device_register(dev);
1048 
1049 	return nd_region;
1050 
1051  err_percpu:
1052 	memregion_free(nd_region->id);
1053  err_id:
1054 	kfree(region_buf);
1055 	return NULL;
1056 }
1057 
1058 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1059 		struct nd_region_desc *ndr_desc)
1060 {
1061 	ndr_desc->num_lanes = ND_MAX_LANES;
1062 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1063 			__func__);
1064 }
1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1066 
1067 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1068 		struct nd_region_desc *ndr_desc)
1069 {
1070 	if (ndr_desc->num_mappings > 1)
1071 		return NULL;
1072 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1073 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1074 			__func__);
1075 }
1076 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1077 
1078 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1079 		struct nd_region_desc *ndr_desc)
1080 {
1081 	ndr_desc->num_lanes = ND_MAX_LANES;
1082 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1083 			__func__);
1084 }
1085 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1086 
1087 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1088 {
1089 	int rc = 0;
1090 
1091 	if (!nd_region->flush)
1092 		rc = generic_nvdimm_flush(nd_region);
1093 	else {
1094 		if (nd_region->flush(nd_region, bio))
1095 			rc = -EIO;
1096 	}
1097 
1098 	return rc;
1099 }
1100 /**
1101  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1102  * @nd_region: blk or interleaved pmem region
1103  */
1104 int generic_nvdimm_flush(struct nd_region *nd_region)
1105 {
1106 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1107 	int i, idx;
1108 
1109 	/*
1110 	 * Try to encourage some diversity in flush hint addresses
1111 	 * across cpus assuming a limited number of flush hints.
1112 	 */
1113 	idx = this_cpu_read(flush_idx);
1114 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1115 
1116 	/*
1117 	 * The first wmb() is needed to 'sfence' all previous writes
1118 	 * such that they are architecturally visible for the platform
1119 	 * buffer flush.  Note that we've already arranged for pmem
1120 	 * writes to avoid the cache via memcpy_flushcache().  The final
1121 	 * wmb() ensures ordering for the NVDIMM flush write.
1122 	 */
1123 	wmb();
1124 	for (i = 0; i < nd_region->ndr_mappings; i++)
1125 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1126 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1127 	wmb();
1128 
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(nvdimm_flush);
1132 
1133 /**
1134  * nvdimm_has_flush - determine write flushing requirements
1135  * @nd_region: blk or interleaved pmem region
1136  *
1137  * Returns 1 if writes require flushing
1138  * Returns 0 if writes do not require flushing
1139  * Returns -ENXIO if flushing capability can not be determined
1140  */
1141 int nvdimm_has_flush(struct nd_region *nd_region)
1142 {
1143 	int i;
1144 
1145 	/* no nvdimm or pmem api == flushing capability unknown */
1146 	if (nd_region->ndr_mappings == 0
1147 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1148 		return -ENXIO;
1149 
1150 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1151 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1152 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1153 
1154 		/* flush hints present / available */
1155 		if (nvdimm->num_flush)
1156 			return 1;
1157 	}
1158 
1159 	/*
1160 	 * The platform defines dimm devices without hints, assume
1161 	 * platform persistence mechanism like ADR
1162 	 */
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1166 
1167 int nvdimm_has_cache(struct nd_region *nd_region)
1168 {
1169 	return is_nd_pmem(&nd_region->dev) &&
1170 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1171 }
1172 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1173 
1174 bool is_nvdimm_sync(struct nd_region *nd_region)
1175 {
1176 	if (is_nd_volatile(&nd_region->dev))
1177 		return true;
1178 
1179 	return is_nd_pmem(&nd_region->dev) &&
1180 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1181 }
1182 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1183 
1184 struct conflict_context {
1185 	struct nd_region *nd_region;
1186 	resource_size_t start, size;
1187 };
1188 
1189 static int region_conflict(struct device *dev, void *data)
1190 {
1191 	struct nd_region *nd_region;
1192 	struct conflict_context *ctx = data;
1193 	resource_size_t res_end, region_end, region_start;
1194 
1195 	if (!is_memory(dev))
1196 		return 0;
1197 
1198 	nd_region = to_nd_region(dev);
1199 	if (nd_region == ctx->nd_region)
1200 		return 0;
1201 
1202 	res_end = ctx->start + ctx->size;
1203 	region_start = nd_region->ndr_start;
1204 	region_end = region_start + nd_region->ndr_size;
1205 	if (ctx->start >= region_start && ctx->start < region_end)
1206 		return -EBUSY;
1207 	if (res_end > region_start && res_end <= region_end)
1208 		return -EBUSY;
1209 	return 0;
1210 }
1211 
1212 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1213 		resource_size_t size)
1214 {
1215 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1216 	struct conflict_context ctx = {
1217 		.nd_region = nd_region,
1218 		.start = start,
1219 		.size = size,
1220 	};
1221 
1222 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1223 }
1224