1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/highmem.h> 7 #include <linux/sched.h> 8 #include <linux/slab.h> 9 #include <linux/hash.h> 10 #include <linux/sort.h> 11 #include <linux/io.h> 12 #include <linux/nd.h> 13 #include "nd-core.h" 14 #include "nd.h" 15 16 /* 17 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 18 * irrelevant. 19 */ 20 #include <linux/io-64-nonatomic-hi-lo.h> 21 22 static DEFINE_IDA(region_ida); 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 ida_simple_remove(®ion_ida, nd_region->id); 137 if (is_nd_blk(dev)) 138 kfree(to_nd_blk_region(dev)); 139 else 140 kfree(nd_region); 141 } 142 143 static struct device_type nd_blk_device_type = { 144 .name = "nd_blk", 145 .release = nd_region_release, 146 }; 147 148 static struct device_type nd_pmem_device_type = { 149 .name = "nd_pmem", 150 .release = nd_region_release, 151 }; 152 153 static struct device_type nd_volatile_device_type = { 154 .name = "nd_volatile", 155 .release = nd_region_release, 156 }; 157 158 bool is_nd_pmem(struct device *dev) 159 { 160 return dev ? dev->type == &nd_pmem_device_type : false; 161 } 162 163 bool is_nd_blk(struct device *dev) 164 { 165 return dev ? dev->type == &nd_blk_device_type : false; 166 } 167 168 bool is_nd_volatile(struct device *dev) 169 { 170 return dev ? dev->type == &nd_volatile_device_type : false; 171 } 172 173 struct nd_region *to_nd_region(struct device *dev) 174 { 175 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 176 177 WARN_ON(dev->type->release != nd_region_release); 178 return nd_region; 179 } 180 EXPORT_SYMBOL_GPL(to_nd_region); 181 182 struct device *nd_region_dev(struct nd_region *nd_region) 183 { 184 if (!nd_region) 185 return NULL; 186 return &nd_region->dev; 187 } 188 EXPORT_SYMBOL_GPL(nd_region_dev); 189 190 struct nd_blk_region *to_nd_blk_region(struct device *dev) 191 { 192 struct nd_region *nd_region = to_nd_region(dev); 193 194 WARN_ON(!is_nd_blk(dev)); 195 return container_of(nd_region, struct nd_blk_region, nd_region); 196 } 197 EXPORT_SYMBOL_GPL(to_nd_blk_region); 198 199 void *nd_region_provider_data(struct nd_region *nd_region) 200 { 201 return nd_region->provider_data; 202 } 203 EXPORT_SYMBOL_GPL(nd_region_provider_data); 204 205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 206 { 207 return ndbr->blk_provider_data; 208 } 209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 210 211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 212 { 213 ndbr->blk_provider_data = data; 214 } 215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 216 217 /** 218 * nd_region_to_nstype() - region to an integer namespace type 219 * @nd_region: region-device to interrogate 220 * 221 * This is the 'nstype' attribute of a region as well, an input to the 222 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 223 * namespace devices with namespace drivers. 224 */ 225 int nd_region_to_nstype(struct nd_region *nd_region) 226 { 227 if (is_memory(&nd_region->dev)) { 228 u16 i, alias; 229 230 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 231 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 232 struct nvdimm *nvdimm = nd_mapping->nvdimm; 233 234 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 235 alias++; 236 } 237 if (alias) 238 return ND_DEVICE_NAMESPACE_PMEM; 239 else 240 return ND_DEVICE_NAMESPACE_IO; 241 } else if (is_nd_blk(&nd_region->dev)) { 242 return ND_DEVICE_NAMESPACE_BLK; 243 } 244 245 return 0; 246 } 247 EXPORT_SYMBOL(nd_region_to_nstype); 248 249 static ssize_t size_show(struct device *dev, 250 struct device_attribute *attr, char *buf) 251 { 252 struct nd_region *nd_region = to_nd_region(dev); 253 unsigned long long size = 0; 254 255 if (is_memory(dev)) { 256 size = nd_region->ndr_size; 257 } else if (nd_region->ndr_mappings == 1) { 258 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 259 260 size = nd_mapping->size; 261 } 262 263 return sprintf(buf, "%llu\n", size); 264 } 265 static DEVICE_ATTR_RO(size); 266 267 static ssize_t deep_flush_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct nd_region *nd_region = to_nd_region(dev); 271 272 /* 273 * NOTE: in the nvdimm_has_flush() error case this attribute is 274 * not visible. 275 */ 276 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 277 } 278 279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 280 const char *buf, size_t len) 281 { 282 bool flush; 283 int rc = strtobool(buf, &flush); 284 struct nd_region *nd_region = to_nd_region(dev); 285 286 if (rc) 287 return rc; 288 if (!flush) 289 return -EINVAL; 290 rc = nvdimm_flush(nd_region, NULL); 291 if (rc) 292 return rc; 293 294 return len; 295 } 296 static DEVICE_ATTR_RW(deep_flush); 297 298 static ssize_t mappings_show(struct device *dev, 299 struct device_attribute *attr, char *buf) 300 { 301 struct nd_region *nd_region = to_nd_region(dev); 302 303 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 304 } 305 static DEVICE_ATTR_RO(mappings); 306 307 static ssize_t nstype_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct nd_region *nd_region = to_nd_region(dev); 311 312 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 313 } 314 static DEVICE_ATTR_RO(nstype); 315 316 static ssize_t set_cookie_show(struct device *dev, 317 struct device_attribute *attr, char *buf) 318 { 319 struct nd_region *nd_region = to_nd_region(dev); 320 struct nd_interleave_set *nd_set = nd_region->nd_set; 321 ssize_t rc = 0; 322 323 if (is_memory(dev) && nd_set) 324 /* pass, should be precluded by region_visible */; 325 else 326 return -ENXIO; 327 328 /* 329 * The cookie to show depends on which specification of the 330 * labels we are using. If there are not labels then default to 331 * the v1.1 namespace label cookie definition. To read all this 332 * data we need to wait for probing to settle. 333 */ 334 nd_device_lock(dev); 335 nvdimm_bus_lock(dev); 336 wait_nvdimm_bus_probe_idle(dev); 337 if (nd_region->ndr_mappings) { 338 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 339 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 340 341 if (ndd) { 342 struct nd_namespace_index *nsindex; 343 344 nsindex = to_namespace_index(ndd, ndd->ns_current); 345 rc = sprintf(buf, "%#llx\n", 346 nd_region_interleave_set_cookie(nd_region, 347 nsindex)); 348 } 349 } 350 nvdimm_bus_unlock(dev); 351 nd_device_unlock(dev); 352 353 if (rc) 354 return rc; 355 return sprintf(buf, "%#llx\n", nd_set->cookie1); 356 } 357 static DEVICE_ATTR_RO(set_cookie); 358 359 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 360 { 361 resource_size_t blk_max_overlap = 0, available, overlap; 362 int i; 363 364 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 365 366 retry: 367 available = 0; 368 overlap = blk_max_overlap; 369 for (i = 0; i < nd_region->ndr_mappings; i++) { 370 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 371 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 372 373 /* if a dimm is disabled the available capacity is zero */ 374 if (!ndd) 375 return 0; 376 377 if (is_memory(&nd_region->dev)) { 378 available += nd_pmem_available_dpa(nd_region, 379 nd_mapping, &overlap); 380 if (overlap > blk_max_overlap) { 381 blk_max_overlap = overlap; 382 goto retry; 383 } 384 } else if (is_nd_blk(&nd_region->dev)) 385 available += nd_blk_available_dpa(nd_region); 386 } 387 388 return available; 389 } 390 391 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 392 { 393 resource_size_t available = 0; 394 int i; 395 396 if (is_memory(&nd_region->dev)) 397 available = PHYS_ADDR_MAX; 398 399 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 400 for (i = 0; i < nd_region->ndr_mappings; i++) { 401 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 402 403 if (is_memory(&nd_region->dev)) 404 available = min(available, 405 nd_pmem_max_contiguous_dpa(nd_region, 406 nd_mapping)); 407 else if (is_nd_blk(&nd_region->dev)) 408 available += nd_blk_available_dpa(nd_region); 409 } 410 if (is_memory(&nd_region->dev)) 411 return available * nd_region->ndr_mappings; 412 return available; 413 } 414 415 static ssize_t available_size_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct nd_region *nd_region = to_nd_region(dev); 419 unsigned long long available = 0; 420 421 /* 422 * Flush in-flight updates and grab a snapshot of the available 423 * size. Of course, this value is potentially invalidated the 424 * memory nvdimm_bus_lock() is dropped, but that's userspace's 425 * problem to not race itself. 426 */ 427 nd_device_lock(dev); 428 nvdimm_bus_lock(dev); 429 wait_nvdimm_bus_probe_idle(dev); 430 available = nd_region_available_dpa(nd_region); 431 nvdimm_bus_unlock(dev); 432 nd_device_unlock(dev); 433 434 return sprintf(buf, "%llu\n", available); 435 } 436 static DEVICE_ATTR_RO(available_size); 437 438 static ssize_t max_available_extent_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct nd_region *nd_region = to_nd_region(dev); 442 unsigned long long available = 0; 443 444 nd_device_lock(dev); 445 nvdimm_bus_lock(dev); 446 wait_nvdimm_bus_probe_idle(dev); 447 available = nd_region_allocatable_dpa(nd_region); 448 nvdimm_bus_unlock(dev); 449 nd_device_unlock(dev); 450 451 return sprintf(buf, "%llu\n", available); 452 } 453 static DEVICE_ATTR_RO(max_available_extent); 454 455 static ssize_t init_namespaces_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct nd_region_data *ndrd = dev_get_drvdata(dev); 459 ssize_t rc; 460 461 nvdimm_bus_lock(dev); 462 if (ndrd) 463 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 464 else 465 rc = -ENXIO; 466 nvdimm_bus_unlock(dev); 467 468 return rc; 469 } 470 static DEVICE_ATTR_RO(init_namespaces); 471 472 static ssize_t namespace_seed_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct nd_region *nd_region = to_nd_region(dev); 476 ssize_t rc; 477 478 nvdimm_bus_lock(dev); 479 if (nd_region->ns_seed) 480 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 481 else 482 rc = sprintf(buf, "\n"); 483 nvdimm_bus_unlock(dev); 484 return rc; 485 } 486 static DEVICE_ATTR_RO(namespace_seed); 487 488 static ssize_t btt_seed_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct nd_region *nd_region = to_nd_region(dev); 492 ssize_t rc; 493 494 nvdimm_bus_lock(dev); 495 if (nd_region->btt_seed) 496 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 497 else 498 rc = sprintf(buf, "\n"); 499 nvdimm_bus_unlock(dev); 500 501 return rc; 502 } 503 static DEVICE_ATTR_RO(btt_seed); 504 505 static ssize_t pfn_seed_show(struct device *dev, 506 struct device_attribute *attr, char *buf) 507 { 508 struct nd_region *nd_region = to_nd_region(dev); 509 ssize_t rc; 510 511 nvdimm_bus_lock(dev); 512 if (nd_region->pfn_seed) 513 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 514 else 515 rc = sprintf(buf, "\n"); 516 nvdimm_bus_unlock(dev); 517 518 return rc; 519 } 520 static DEVICE_ATTR_RO(pfn_seed); 521 522 static ssize_t dax_seed_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct nd_region *nd_region = to_nd_region(dev); 526 ssize_t rc; 527 528 nvdimm_bus_lock(dev); 529 if (nd_region->dax_seed) 530 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 531 else 532 rc = sprintf(buf, "\n"); 533 nvdimm_bus_unlock(dev); 534 535 return rc; 536 } 537 static DEVICE_ATTR_RO(dax_seed); 538 539 static ssize_t read_only_show(struct device *dev, 540 struct device_attribute *attr, char *buf) 541 { 542 struct nd_region *nd_region = to_nd_region(dev); 543 544 return sprintf(buf, "%d\n", nd_region->ro); 545 } 546 547 static ssize_t read_only_store(struct device *dev, 548 struct device_attribute *attr, const char *buf, size_t len) 549 { 550 bool ro; 551 int rc = strtobool(buf, &ro); 552 struct nd_region *nd_region = to_nd_region(dev); 553 554 if (rc) 555 return rc; 556 557 nd_region->ro = ro; 558 return len; 559 } 560 static DEVICE_ATTR_RW(read_only); 561 562 static ssize_t region_badblocks_show(struct device *dev, 563 struct device_attribute *attr, char *buf) 564 { 565 struct nd_region *nd_region = to_nd_region(dev); 566 ssize_t rc; 567 568 nd_device_lock(dev); 569 if (dev->driver) 570 rc = badblocks_show(&nd_region->bb, buf, 0); 571 else 572 rc = -ENXIO; 573 nd_device_unlock(dev); 574 575 return rc; 576 } 577 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 578 579 static ssize_t resource_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct nd_region *nd_region = to_nd_region(dev); 583 584 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 585 } 586 static DEVICE_ATTR_RO(resource); 587 588 static ssize_t persistence_domain_show(struct device *dev, 589 struct device_attribute *attr, char *buf) 590 { 591 struct nd_region *nd_region = to_nd_region(dev); 592 593 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 594 return sprintf(buf, "cpu_cache\n"); 595 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 596 return sprintf(buf, "memory_controller\n"); 597 else 598 return sprintf(buf, "\n"); 599 } 600 static DEVICE_ATTR_RO(persistence_domain); 601 602 static struct attribute *nd_region_attributes[] = { 603 &dev_attr_size.attr, 604 &dev_attr_nstype.attr, 605 &dev_attr_mappings.attr, 606 &dev_attr_btt_seed.attr, 607 &dev_attr_pfn_seed.attr, 608 &dev_attr_dax_seed.attr, 609 &dev_attr_deep_flush.attr, 610 &dev_attr_read_only.attr, 611 &dev_attr_set_cookie.attr, 612 &dev_attr_available_size.attr, 613 &dev_attr_max_available_extent.attr, 614 &dev_attr_namespace_seed.attr, 615 &dev_attr_init_namespaces.attr, 616 &dev_attr_badblocks.attr, 617 &dev_attr_resource.attr, 618 &dev_attr_persistence_domain.attr, 619 NULL, 620 }; 621 622 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 623 { 624 struct device *dev = container_of(kobj, typeof(*dev), kobj); 625 struct nd_region *nd_region = to_nd_region(dev); 626 struct nd_interleave_set *nd_set = nd_region->nd_set; 627 int type = nd_region_to_nstype(nd_region); 628 629 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 630 return 0; 631 632 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 633 return 0; 634 635 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 636 return 0; 637 638 if (a == &dev_attr_resource.attr) { 639 if (is_nd_pmem(dev)) 640 return 0400; 641 else 642 return 0; 643 } 644 645 if (a == &dev_attr_deep_flush.attr) { 646 int has_flush = nvdimm_has_flush(nd_region); 647 648 if (has_flush == 1) 649 return a->mode; 650 else if (has_flush == 0) 651 return 0444; 652 else 653 return 0; 654 } 655 656 if (a == &dev_attr_persistence_domain.attr) { 657 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 658 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 659 return 0; 660 return a->mode; 661 } 662 663 if (a != &dev_attr_set_cookie.attr 664 && a != &dev_attr_available_size.attr) 665 return a->mode; 666 667 if ((type == ND_DEVICE_NAMESPACE_PMEM 668 || type == ND_DEVICE_NAMESPACE_BLK) 669 && a == &dev_attr_available_size.attr) 670 return a->mode; 671 else if (is_memory(dev) && nd_set) 672 return a->mode; 673 674 return 0; 675 } 676 677 struct attribute_group nd_region_attribute_group = { 678 .attrs = nd_region_attributes, 679 .is_visible = region_visible, 680 }; 681 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 682 683 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 684 struct nd_namespace_index *nsindex) 685 { 686 struct nd_interleave_set *nd_set = nd_region->nd_set; 687 688 if (!nd_set) 689 return 0; 690 691 if (nsindex && __le16_to_cpu(nsindex->major) == 1 692 && __le16_to_cpu(nsindex->minor) == 1) 693 return nd_set->cookie1; 694 return nd_set->cookie2; 695 } 696 697 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 698 { 699 struct nd_interleave_set *nd_set = nd_region->nd_set; 700 701 if (nd_set) 702 return nd_set->altcookie; 703 return 0; 704 } 705 706 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 707 { 708 struct nd_label_ent *label_ent, *e; 709 710 lockdep_assert_held(&nd_mapping->lock); 711 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 712 list_del(&label_ent->list); 713 kfree(label_ent); 714 } 715 } 716 717 /* 718 * Upon successful probe/remove, take/release a reference on the 719 * associated interleave set (if present), and plant new btt + namespace 720 * seeds. Also, on the removal of a BLK region, notify the provider to 721 * disable the region. 722 */ 723 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 724 struct device *dev, bool probe) 725 { 726 struct nd_region *nd_region; 727 728 if (!probe && is_nd_region(dev)) { 729 int i; 730 731 nd_region = to_nd_region(dev); 732 for (i = 0; i < nd_region->ndr_mappings; i++) { 733 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 734 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 735 struct nvdimm *nvdimm = nd_mapping->nvdimm; 736 737 mutex_lock(&nd_mapping->lock); 738 nd_mapping_free_labels(nd_mapping); 739 mutex_unlock(&nd_mapping->lock); 740 741 put_ndd(ndd); 742 nd_mapping->ndd = NULL; 743 if (ndd) 744 atomic_dec(&nvdimm->busy); 745 } 746 } 747 if (dev->parent && is_nd_region(dev->parent) && probe) { 748 nd_region = to_nd_region(dev->parent); 749 nvdimm_bus_lock(dev); 750 if (nd_region->ns_seed == dev) 751 nd_region_create_ns_seed(nd_region); 752 nvdimm_bus_unlock(dev); 753 } 754 if (is_nd_btt(dev) && probe) { 755 struct nd_btt *nd_btt = to_nd_btt(dev); 756 757 nd_region = to_nd_region(dev->parent); 758 nvdimm_bus_lock(dev); 759 if (nd_region->btt_seed == dev) 760 nd_region_create_btt_seed(nd_region); 761 if (nd_region->ns_seed == &nd_btt->ndns->dev) 762 nd_region_create_ns_seed(nd_region); 763 nvdimm_bus_unlock(dev); 764 } 765 if (is_nd_pfn(dev) && probe) { 766 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 767 768 nd_region = to_nd_region(dev->parent); 769 nvdimm_bus_lock(dev); 770 if (nd_region->pfn_seed == dev) 771 nd_region_create_pfn_seed(nd_region); 772 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 773 nd_region_create_ns_seed(nd_region); 774 nvdimm_bus_unlock(dev); 775 } 776 if (is_nd_dax(dev) && probe) { 777 struct nd_dax *nd_dax = to_nd_dax(dev); 778 779 nd_region = to_nd_region(dev->parent); 780 nvdimm_bus_lock(dev); 781 if (nd_region->dax_seed == dev) 782 nd_region_create_dax_seed(nd_region); 783 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 784 nd_region_create_ns_seed(nd_region); 785 nvdimm_bus_unlock(dev); 786 } 787 } 788 789 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 790 { 791 nd_region_notify_driver_action(nvdimm_bus, dev, true); 792 } 793 794 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 795 { 796 nd_region_notify_driver_action(nvdimm_bus, dev, false); 797 } 798 799 static ssize_t mappingN(struct device *dev, char *buf, int n) 800 { 801 struct nd_region *nd_region = to_nd_region(dev); 802 struct nd_mapping *nd_mapping; 803 struct nvdimm *nvdimm; 804 805 if (n >= nd_region->ndr_mappings) 806 return -ENXIO; 807 nd_mapping = &nd_region->mapping[n]; 808 nvdimm = nd_mapping->nvdimm; 809 810 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 811 nd_mapping->start, nd_mapping->size, 812 nd_mapping->position); 813 } 814 815 #define REGION_MAPPING(idx) \ 816 static ssize_t mapping##idx##_show(struct device *dev, \ 817 struct device_attribute *attr, char *buf) \ 818 { \ 819 return mappingN(dev, buf, idx); \ 820 } \ 821 static DEVICE_ATTR_RO(mapping##idx) 822 823 /* 824 * 32 should be enough for a while, even in the presence of socket 825 * interleave a 32-way interleave set is a degenerate case. 826 */ 827 REGION_MAPPING(0); 828 REGION_MAPPING(1); 829 REGION_MAPPING(2); 830 REGION_MAPPING(3); 831 REGION_MAPPING(4); 832 REGION_MAPPING(5); 833 REGION_MAPPING(6); 834 REGION_MAPPING(7); 835 REGION_MAPPING(8); 836 REGION_MAPPING(9); 837 REGION_MAPPING(10); 838 REGION_MAPPING(11); 839 REGION_MAPPING(12); 840 REGION_MAPPING(13); 841 REGION_MAPPING(14); 842 REGION_MAPPING(15); 843 REGION_MAPPING(16); 844 REGION_MAPPING(17); 845 REGION_MAPPING(18); 846 REGION_MAPPING(19); 847 REGION_MAPPING(20); 848 REGION_MAPPING(21); 849 REGION_MAPPING(22); 850 REGION_MAPPING(23); 851 REGION_MAPPING(24); 852 REGION_MAPPING(25); 853 REGION_MAPPING(26); 854 REGION_MAPPING(27); 855 REGION_MAPPING(28); 856 REGION_MAPPING(29); 857 REGION_MAPPING(30); 858 REGION_MAPPING(31); 859 860 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 861 { 862 struct device *dev = container_of(kobj, struct device, kobj); 863 struct nd_region *nd_region = to_nd_region(dev); 864 865 if (n < nd_region->ndr_mappings) 866 return a->mode; 867 return 0; 868 } 869 870 static struct attribute *mapping_attributes[] = { 871 &dev_attr_mapping0.attr, 872 &dev_attr_mapping1.attr, 873 &dev_attr_mapping2.attr, 874 &dev_attr_mapping3.attr, 875 &dev_attr_mapping4.attr, 876 &dev_attr_mapping5.attr, 877 &dev_attr_mapping6.attr, 878 &dev_attr_mapping7.attr, 879 &dev_attr_mapping8.attr, 880 &dev_attr_mapping9.attr, 881 &dev_attr_mapping10.attr, 882 &dev_attr_mapping11.attr, 883 &dev_attr_mapping12.attr, 884 &dev_attr_mapping13.attr, 885 &dev_attr_mapping14.attr, 886 &dev_attr_mapping15.attr, 887 &dev_attr_mapping16.attr, 888 &dev_attr_mapping17.attr, 889 &dev_attr_mapping18.attr, 890 &dev_attr_mapping19.attr, 891 &dev_attr_mapping20.attr, 892 &dev_attr_mapping21.attr, 893 &dev_attr_mapping22.attr, 894 &dev_attr_mapping23.attr, 895 &dev_attr_mapping24.attr, 896 &dev_attr_mapping25.attr, 897 &dev_attr_mapping26.attr, 898 &dev_attr_mapping27.attr, 899 &dev_attr_mapping28.attr, 900 &dev_attr_mapping29.attr, 901 &dev_attr_mapping30.attr, 902 &dev_attr_mapping31.attr, 903 NULL, 904 }; 905 906 struct attribute_group nd_mapping_attribute_group = { 907 .is_visible = mapping_visible, 908 .attrs = mapping_attributes, 909 }; 910 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 911 912 int nd_blk_region_init(struct nd_region *nd_region) 913 { 914 struct device *dev = &nd_region->dev; 915 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 916 917 if (!is_nd_blk(dev)) 918 return 0; 919 920 if (nd_region->ndr_mappings < 1) { 921 dev_dbg(dev, "invalid BLK region\n"); 922 return -ENXIO; 923 } 924 925 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 926 } 927 928 /** 929 * nd_region_acquire_lane - allocate and lock a lane 930 * @nd_region: region id and number of lanes possible 931 * 932 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 933 * We optimize for the common case where there are 256 lanes, one 934 * per-cpu. For larger systems we need to lock to share lanes. For now 935 * this implementation assumes the cost of maintaining an allocator for 936 * free lanes is on the order of the lock hold time, so it implements a 937 * static lane = cpu % num_lanes mapping. 938 * 939 * In the case of a BTT instance on top of a BLK namespace a lane may be 940 * acquired recursively. We lock on the first instance. 941 * 942 * In the case of a BTT instance on top of PMEM, we only acquire a lane 943 * for the BTT metadata updates. 944 */ 945 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 946 { 947 unsigned int cpu, lane; 948 949 cpu = get_cpu(); 950 if (nd_region->num_lanes < nr_cpu_ids) { 951 struct nd_percpu_lane *ndl_lock, *ndl_count; 952 953 lane = cpu % nd_region->num_lanes; 954 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 955 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 956 if (ndl_count->count++ == 0) 957 spin_lock(&ndl_lock->lock); 958 } else 959 lane = cpu; 960 961 return lane; 962 } 963 EXPORT_SYMBOL(nd_region_acquire_lane); 964 965 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 966 { 967 if (nd_region->num_lanes < nr_cpu_ids) { 968 unsigned int cpu = get_cpu(); 969 struct nd_percpu_lane *ndl_lock, *ndl_count; 970 971 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 972 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 973 if (--ndl_count->count == 0) 974 spin_unlock(&ndl_lock->lock); 975 put_cpu(); 976 } 977 put_cpu(); 978 } 979 EXPORT_SYMBOL(nd_region_release_lane); 980 981 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 982 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 983 const char *caller) 984 { 985 struct nd_region *nd_region; 986 struct device *dev; 987 void *region_buf; 988 unsigned int i; 989 int ro = 0; 990 991 for (i = 0; i < ndr_desc->num_mappings; i++) { 992 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 993 struct nvdimm *nvdimm = mapping->nvdimm; 994 995 if ((mapping->start | mapping->size) % SZ_4K) { 996 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 997 caller, dev_name(&nvdimm->dev), i); 998 999 return NULL; 1000 } 1001 1002 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 1003 ro = 1; 1004 1005 if (test_bit(NDD_NOBLK, &nvdimm->flags) 1006 && dev_type == &nd_blk_device_type) { 1007 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", 1008 caller, dev_name(&nvdimm->dev), i); 1009 return NULL; 1010 } 1011 } 1012 1013 if (dev_type == &nd_blk_device_type) { 1014 struct nd_blk_region_desc *ndbr_desc; 1015 struct nd_blk_region *ndbr; 1016 1017 ndbr_desc = to_blk_region_desc(ndr_desc); 1018 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 1019 * ndr_desc->num_mappings, 1020 GFP_KERNEL); 1021 if (ndbr) { 1022 nd_region = &ndbr->nd_region; 1023 ndbr->enable = ndbr_desc->enable; 1024 ndbr->do_io = ndbr_desc->do_io; 1025 } 1026 region_buf = ndbr; 1027 } else { 1028 nd_region = kzalloc(sizeof(struct nd_region) 1029 + sizeof(struct nd_mapping) 1030 * ndr_desc->num_mappings, 1031 GFP_KERNEL); 1032 region_buf = nd_region; 1033 } 1034 1035 if (!region_buf) 1036 return NULL; 1037 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 1038 if (nd_region->id < 0) 1039 goto err_id; 1040 1041 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1042 if (!nd_region->lane) 1043 goto err_percpu; 1044 1045 for (i = 0; i < nr_cpu_ids; i++) { 1046 struct nd_percpu_lane *ndl; 1047 1048 ndl = per_cpu_ptr(nd_region->lane, i); 1049 spin_lock_init(&ndl->lock); 1050 ndl->count = 0; 1051 } 1052 1053 for (i = 0; i < ndr_desc->num_mappings; i++) { 1054 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1055 struct nvdimm *nvdimm = mapping->nvdimm; 1056 1057 nd_region->mapping[i].nvdimm = nvdimm; 1058 nd_region->mapping[i].start = mapping->start; 1059 nd_region->mapping[i].size = mapping->size; 1060 nd_region->mapping[i].position = mapping->position; 1061 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1062 mutex_init(&nd_region->mapping[i].lock); 1063 1064 get_device(&nvdimm->dev); 1065 } 1066 nd_region->ndr_mappings = ndr_desc->num_mappings; 1067 nd_region->provider_data = ndr_desc->provider_data; 1068 nd_region->nd_set = ndr_desc->nd_set; 1069 nd_region->num_lanes = ndr_desc->num_lanes; 1070 nd_region->flags = ndr_desc->flags; 1071 nd_region->ro = ro; 1072 nd_region->numa_node = ndr_desc->numa_node; 1073 nd_region->target_node = ndr_desc->target_node; 1074 ida_init(&nd_region->ns_ida); 1075 ida_init(&nd_region->btt_ida); 1076 ida_init(&nd_region->pfn_ida); 1077 ida_init(&nd_region->dax_ida); 1078 dev = &nd_region->dev; 1079 dev_set_name(dev, "region%d", nd_region->id); 1080 dev->parent = &nvdimm_bus->dev; 1081 dev->type = dev_type; 1082 dev->groups = ndr_desc->attr_groups; 1083 dev->of_node = ndr_desc->of_node; 1084 nd_region->ndr_size = resource_size(ndr_desc->res); 1085 nd_region->ndr_start = ndr_desc->res->start; 1086 if (ndr_desc->flush) 1087 nd_region->flush = ndr_desc->flush; 1088 else 1089 nd_region->flush = NULL; 1090 1091 nd_device_register(dev); 1092 1093 return nd_region; 1094 1095 err_percpu: 1096 ida_simple_remove(®ion_ida, nd_region->id); 1097 err_id: 1098 kfree(region_buf); 1099 return NULL; 1100 } 1101 1102 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1103 struct nd_region_desc *ndr_desc) 1104 { 1105 ndr_desc->num_lanes = ND_MAX_LANES; 1106 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1107 __func__); 1108 } 1109 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1110 1111 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1112 struct nd_region_desc *ndr_desc) 1113 { 1114 if (ndr_desc->num_mappings > 1) 1115 return NULL; 1116 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1117 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1118 __func__); 1119 } 1120 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1121 1122 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1123 struct nd_region_desc *ndr_desc) 1124 { 1125 ndr_desc->num_lanes = ND_MAX_LANES; 1126 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1127 __func__); 1128 } 1129 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1130 1131 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1132 { 1133 int rc = 0; 1134 1135 if (!nd_region->flush) 1136 rc = generic_nvdimm_flush(nd_region); 1137 else { 1138 if (nd_region->flush(nd_region, bio)) 1139 rc = -EIO; 1140 } 1141 1142 return rc; 1143 } 1144 /** 1145 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1146 * @nd_region: blk or interleaved pmem region 1147 */ 1148 int generic_nvdimm_flush(struct nd_region *nd_region) 1149 { 1150 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1151 int i, idx; 1152 1153 /* 1154 * Try to encourage some diversity in flush hint addresses 1155 * across cpus assuming a limited number of flush hints. 1156 */ 1157 idx = this_cpu_read(flush_idx); 1158 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1159 1160 /* 1161 * The first wmb() is needed to 'sfence' all previous writes 1162 * such that they are architecturally visible for the platform 1163 * buffer flush. Note that we've already arranged for pmem 1164 * writes to avoid the cache via memcpy_flushcache(). The final 1165 * wmb() ensures ordering for the NVDIMM flush write. 1166 */ 1167 wmb(); 1168 for (i = 0; i < nd_region->ndr_mappings; i++) 1169 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1170 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1171 wmb(); 1172 1173 return 0; 1174 } 1175 EXPORT_SYMBOL_GPL(nvdimm_flush); 1176 1177 /** 1178 * nvdimm_has_flush - determine write flushing requirements 1179 * @nd_region: blk or interleaved pmem region 1180 * 1181 * Returns 1 if writes require flushing 1182 * Returns 0 if writes do not require flushing 1183 * Returns -ENXIO if flushing capability can not be determined 1184 */ 1185 int nvdimm_has_flush(struct nd_region *nd_region) 1186 { 1187 int i; 1188 1189 /* no nvdimm or pmem api == flushing capability unknown */ 1190 if (nd_region->ndr_mappings == 0 1191 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1192 return -ENXIO; 1193 1194 for (i = 0; i < nd_region->ndr_mappings; i++) { 1195 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1196 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1197 1198 /* flush hints present / available */ 1199 if (nvdimm->num_flush) 1200 return 1; 1201 } 1202 1203 /* 1204 * The platform defines dimm devices without hints, assume 1205 * platform persistence mechanism like ADR 1206 */ 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1210 1211 int nvdimm_has_cache(struct nd_region *nd_region) 1212 { 1213 return is_nd_pmem(&nd_region->dev) && 1214 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1215 } 1216 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1217 1218 bool is_nvdimm_sync(struct nd_region *nd_region) 1219 { 1220 return is_nd_pmem(&nd_region->dev) && 1221 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1222 } 1223 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1224 1225 struct conflict_context { 1226 struct nd_region *nd_region; 1227 resource_size_t start, size; 1228 }; 1229 1230 static int region_conflict(struct device *dev, void *data) 1231 { 1232 struct nd_region *nd_region; 1233 struct conflict_context *ctx = data; 1234 resource_size_t res_end, region_end, region_start; 1235 1236 if (!is_memory(dev)) 1237 return 0; 1238 1239 nd_region = to_nd_region(dev); 1240 if (nd_region == ctx->nd_region) 1241 return 0; 1242 1243 res_end = ctx->start + ctx->size; 1244 region_start = nd_region->ndr_start; 1245 region_end = region_start + nd_region->ndr_size; 1246 if (ctx->start >= region_start && ctx->start < region_end) 1247 return -EBUSY; 1248 if (res_end > region_start && res_end <= region_end) 1249 return -EBUSY; 1250 return 0; 1251 } 1252 1253 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1254 resource_size_t size) 1255 { 1256 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1257 struct conflict_context ctx = { 1258 .nd_region = nd_region, 1259 .start = start, 1260 .size = size, 1261 }; 1262 1263 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1264 } 1265 1266 void __exit nd_region_devs_exit(void) 1267 { 1268 ida_destroy(®ion_ida); 1269 } 1270