xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision bdeeed09)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23 
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32 
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34 		struct nd_region_data *ndrd)
35 {
36 	int i, j;
37 
38 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41 		struct resource *res = &nvdimm->flush_wpq[i];
42 		unsigned long pfn = PHYS_PFN(res->start);
43 		void __iomem *flush_page;
44 
45 		/* check if flush hints share a page */
46 		for (j = 0; j < i; j++) {
47 			struct resource *res_j = &nvdimm->flush_wpq[j];
48 			unsigned long pfn_j = PHYS_PFN(res_j->start);
49 
50 			if (pfn == pfn_j)
51 				break;
52 		}
53 
54 		if (j < i)
55 			flush_page = (void __iomem *) ((unsigned long)
56 					ndrd_get_flush_wpq(ndrd, dimm, j)
57 					& PAGE_MASK);
58 		else
59 			flush_page = devm_nvdimm_ioremap(dev,
60 					PFN_PHYS(pfn), PAGE_SIZE);
61 		if (!flush_page)
62 			return -ENXIO;
63 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64 				+ (res->start & ~PAGE_MASK));
65 	}
66 
67 	return 0;
68 }
69 
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 	int i, j, num_flush = 0;
73 	struct nd_region_data *ndrd;
74 	struct device *dev = &nd_region->dev;
75 	size_t flush_data_size = sizeof(void *);
76 
77 	nvdimm_bus_lock(&nd_region->dev);
78 	for (i = 0; i < nd_region->ndr_mappings; i++) {
79 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
81 
82 		/* at least one null hint slot per-dimm for the "no-hint" case */
83 		flush_data_size += sizeof(void *);
84 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 		if (!nvdimm->num_flush)
86 			continue;
87 		flush_data_size += nvdimm->num_flush * sizeof(void *);
88 	}
89 	nvdimm_bus_unlock(&nd_region->dev);
90 
91 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 	if (!ndrd)
93 		return -ENOMEM;
94 	dev_set_drvdata(dev, ndrd);
95 
96 	if (!num_flush)
97 		return 0;
98 
99 	ndrd->hints_shift = ilog2(num_flush);
100 	for (i = 0; i < nd_region->ndr_mappings; i++) {
101 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
102 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
103 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
104 
105 		if (rc)
106 			return rc;
107 	}
108 
109 	/*
110 	 * Clear out entries that are duplicates. This should prevent the
111 	 * extra flushings.
112 	 */
113 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
114 		/* ignore if NULL already */
115 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
116 			continue;
117 
118 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
119 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
120 			    ndrd_get_flush_wpq(ndrd, j, 0))
121 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
122 	}
123 
124 	return 0;
125 }
126 
127 static void nd_region_release(struct device *dev)
128 {
129 	struct nd_region *nd_region = to_nd_region(dev);
130 	u16 i;
131 
132 	for (i = 0; i < nd_region->ndr_mappings; i++) {
133 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
134 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
135 
136 		put_device(&nvdimm->dev);
137 	}
138 	free_percpu(nd_region->lane);
139 	ida_simple_remove(&region_ida, nd_region->id);
140 	if (is_nd_blk(dev))
141 		kfree(to_nd_blk_region(dev));
142 	else
143 		kfree(nd_region);
144 }
145 
146 static struct device_type nd_blk_device_type = {
147 	.name = "nd_blk",
148 	.release = nd_region_release,
149 };
150 
151 static struct device_type nd_pmem_device_type = {
152 	.name = "nd_pmem",
153 	.release = nd_region_release,
154 };
155 
156 static struct device_type nd_volatile_device_type = {
157 	.name = "nd_volatile",
158 	.release = nd_region_release,
159 };
160 
161 bool is_nd_pmem(struct device *dev)
162 {
163 	return dev ? dev->type == &nd_pmem_device_type : false;
164 }
165 
166 bool is_nd_blk(struct device *dev)
167 {
168 	return dev ? dev->type == &nd_blk_device_type : false;
169 }
170 
171 bool is_nd_volatile(struct device *dev)
172 {
173 	return dev ? dev->type == &nd_volatile_device_type : false;
174 }
175 
176 struct nd_region *to_nd_region(struct device *dev)
177 {
178 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
179 
180 	WARN_ON(dev->type->release != nd_region_release);
181 	return nd_region;
182 }
183 EXPORT_SYMBOL_GPL(to_nd_region);
184 
185 struct device *nd_region_dev(struct nd_region *nd_region)
186 {
187 	if (!nd_region)
188 		return NULL;
189 	return &nd_region->dev;
190 }
191 EXPORT_SYMBOL_GPL(nd_region_dev);
192 
193 struct nd_blk_region *to_nd_blk_region(struct device *dev)
194 {
195 	struct nd_region *nd_region = to_nd_region(dev);
196 
197 	WARN_ON(!is_nd_blk(dev));
198 	return container_of(nd_region, struct nd_blk_region, nd_region);
199 }
200 EXPORT_SYMBOL_GPL(to_nd_blk_region);
201 
202 void *nd_region_provider_data(struct nd_region *nd_region)
203 {
204 	return nd_region->provider_data;
205 }
206 EXPORT_SYMBOL_GPL(nd_region_provider_data);
207 
208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
209 {
210 	return ndbr->blk_provider_data;
211 }
212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
213 
214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
215 {
216 	ndbr->blk_provider_data = data;
217 }
218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
219 
220 /**
221  * nd_region_to_nstype() - region to an integer namespace type
222  * @nd_region: region-device to interrogate
223  *
224  * This is the 'nstype' attribute of a region as well, an input to the
225  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
226  * namespace devices with namespace drivers.
227  */
228 int nd_region_to_nstype(struct nd_region *nd_region)
229 {
230 	if (is_memory(&nd_region->dev)) {
231 		u16 i, alias;
232 
233 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
234 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
235 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
236 
237 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
238 				alias++;
239 		}
240 		if (alias)
241 			return ND_DEVICE_NAMESPACE_PMEM;
242 		else
243 			return ND_DEVICE_NAMESPACE_IO;
244 	} else if (is_nd_blk(&nd_region->dev)) {
245 		return ND_DEVICE_NAMESPACE_BLK;
246 	}
247 
248 	return 0;
249 }
250 EXPORT_SYMBOL(nd_region_to_nstype);
251 
252 static ssize_t size_show(struct device *dev,
253 		struct device_attribute *attr, char *buf)
254 {
255 	struct nd_region *nd_region = to_nd_region(dev);
256 	unsigned long long size = 0;
257 
258 	if (is_memory(dev)) {
259 		size = nd_region->ndr_size;
260 	} else if (nd_region->ndr_mappings == 1) {
261 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
262 
263 		size = nd_mapping->size;
264 	}
265 
266 	return sprintf(buf, "%llu\n", size);
267 }
268 static DEVICE_ATTR_RO(size);
269 
270 static ssize_t deep_flush_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct nd_region *nd_region = to_nd_region(dev);
274 
275 	/*
276 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
277 	 * not visible.
278 	 */
279 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
280 }
281 
282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
283 		const char *buf, size_t len)
284 {
285 	bool flush;
286 	int rc = strtobool(buf, &flush);
287 	struct nd_region *nd_region = to_nd_region(dev);
288 
289 	if (rc)
290 		return rc;
291 	if (!flush)
292 		return -EINVAL;
293 	nvdimm_flush(nd_region);
294 
295 	return len;
296 }
297 static DEVICE_ATTR_RW(deep_flush);
298 
299 static ssize_t mappings_show(struct device *dev,
300 		struct device_attribute *attr, char *buf)
301 {
302 	struct nd_region *nd_region = to_nd_region(dev);
303 
304 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
305 }
306 static DEVICE_ATTR_RO(mappings);
307 
308 static ssize_t nstype_show(struct device *dev,
309 		struct device_attribute *attr, char *buf)
310 {
311 	struct nd_region *nd_region = to_nd_region(dev);
312 
313 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
314 }
315 static DEVICE_ATTR_RO(nstype);
316 
317 static ssize_t set_cookie_show(struct device *dev,
318 		struct device_attribute *attr, char *buf)
319 {
320 	struct nd_region *nd_region = to_nd_region(dev);
321 	struct nd_interleave_set *nd_set = nd_region->nd_set;
322 	ssize_t rc = 0;
323 
324 	if (is_memory(dev) && nd_set)
325 		/* pass, should be precluded by region_visible */;
326 	else
327 		return -ENXIO;
328 
329 	/*
330 	 * The cookie to show depends on which specification of the
331 	 * labels we are using. If there are not labels then default to
332 	 * the v1.1 namespace label cookie definition. To read all this
333 	 * data we need to wait for probing to settle.
334 	 */
335 	device_lock(dev);
336 	nvdimm_bus_lock(dev);
337 	wait_nvdimm_bus_probe_idle(dev);
338 	if (nd_region->ndr_mappings) {
339 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
340 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
341 
342 		if (ndd) {
343 			struct nd_namespace_index *nsindex;
344 
345 			nsindex = to_namespace_index(ndd, ndd->ns_current);
346 			rc = sprintf(buf, "%#llx\n",
347 					nd_region_interleave_set_cookie(nd_region,
348 						nsindex));
349 		}
350 	}
351 	nvdimm_bus_unlock(dev);
352 	device_unlock(dev);
353 
354 	if (rc)
355 		return rc;
356 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
357 }
358 static DEVICE_ATTR_RO(set_cookie);
359 
360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
361 {
362 	resource_size_t blk_max_overlap = 0, available, overlap;
363 	int i;
364 
365 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
366 
367  retry:
368 	available = 0;
369 	overlap = blk_max_overlap;
370 	for (i = 0; i < nd_region->ndr_mappings; i++) {
371 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
373 
374 		/* if a dimm is disabled the available capacity is zero */
375 		if (!ndd)
376 			return 0;
377 
378 		if (is_memory(&nd_region->dev)) {
379 			available += nd_pmem_available_dpa(nd_region,
380 					nd_mapping, &overlap);
381 			if (overlap > blk_max_overlap) {
382 				blk_max_overlap = overlap;
383 				goto retry;
384 			}
385 		} else if (is_nd_blk(&nd_region->dev))
386 			available += nd_blk_available_dpa(nd_region);
387 	}
388 
389 	return available;
390 }
391 
392 static ssize_t available_size_show(struct device *dev,
393 		struct device_attribute *attr, char *buf)
394 {
395 	struct nd_region *nd_region = to_nd_region(dev);
396 	unsigned long long available = 0;
397 
398 	/*
399 	 * Flush in-flight updates and grab a snapshot of the available
400 	 * size.  Of course, this value is potentially invalidated the
401 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
402 	 * problem to not race itself.
403 	 */
404 	nvdimm_bus_lock(dev);
405 	wait_nvdimm_bus_probe_idle(dev);
406 	available = nd_region_available_dpa(nd_region);
407 	nvdimm_bus_unlock(dev);
408 
409 	return sprintf(buf, "%llu\n", available);
410 }
411 static DEVICE_ATTR_RO(available_size);
412 
413 static ssize_t init_namespaces_show(struct device *dev,
414 		struct device_attribute *attr, char *buf)
415 {
416 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
417 	ssize_t rc;
418 
419 	nvdimm_bus_lock(dev);
420 	if (ndrd)
421 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
422 	else
423 		rc = -ENXIO;
424 	nvdimm_bus_unlock(dev);
425 
426 	return rc;
427 }
428 static DEVICE_ATTR_RO(init_namespaces);
429 
430 static ssize_t namespace_seed_show(struct device *dev,
431 		struct device_attribute *attr, char *buf)
432 {
433 	struct nd_region *nd_region = to_nd_region(dev);
434 	ssize_t rc;
435 
436 	nvdimm_bus_lock(dev);
437 	if (nd_region->ns_seed)
438 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
439 	else
440 		rc = sprintf(buf, "\n");
441 	nvdimm_bus_unlock(dev);
442 	return rc;
443 }
444 static DEVICE_ATTR_RO(namespace_seed);
445 
446 static ssize_t btt_seed_show(struct device *dev,
447 		struct device_attribute *attr, char *buf)
448 {
449 	struct nd_region *nd_region = to_nd_region(dev);
450 	ssize_t rc;
451 
452 	nvdimm_bus_lock(dev);
453 	if (nd_region->btt_seed)
454 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
455 	else
456 		rc = sprintf(buf, "\n");
457 	nvdimm_bus_unlock(dev);
458 
459 	return rc;
460 }
461 static DEVICE_ATTR_RO(btt_seed);
462 
463 static ssize_t pfn_seed_show(struct device *dev,
464 		struct device_attribute *attr, char *buf)
465 {
466 	struct nd_region *nd_region = to_nd_region(dev);
467 	ssize_t rc;
468 
469 	nvdimm_bus_lock(dev);
470 	if (nd_region->pfn_seed)
471 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
472 	else
473 		rc = sprintf(buf, "\n");
474 	nvdimm_bus_unlock(dev);
475 
476 	return rc;
477 }
478 static DEVICE_ATTR_RO(pfn_seed);
479 
480 static ssize_t dax_seed_show(struct device *dev,
481 		struct device_attribute *attr, char *buf)
482 {
483 	struct nd_region *nd_region = to_nd_region(dev);
484 	ssize_t rc;
485 
486 	nvdimm_bus_lock(dev);
487 	if (nd_region->dax_seed)
488 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
489 	else
490 		rc = sprintf(buf, "\n");
491 	nvdimm_bus_unlock(dev);
492 
493 	return rc;
494 }
495 static DEVICE_ATTR_RO(dax_seed);
496 
497 static ssize_t read_only_show(struct device *dev,
498 		struct device_attribute *attr, char *buf)
499 {
500 	struct nd_region *nd_region = to_nd_region(dev);
501 
502 	return sprintf(buf, "%d\n", nd_region->ro);
503 }
504 
505 static ssize_t read_only_store(struct device *dev,
506 		struct device_attribute *attr, const char *buf, size_t len)
507 {
508 	bool ro;
509 	int rc = strtobool(buf, &ro);
510 	struct nd_region *nd_region = to_nd_region(dev);
511 
512 	if (rc)
513 		return rc;
514 
515 	nd_region->ro = ro;
516 	return len;
517 }
518 static DEVICE_ATTR_RW(read_only);
519 
520 static ssize_t region_badblocks_show(struct device *dev,
521 		struct device_attribute *attr, char *buf)
522 {
523 	struct nd_region *nd_region = to_nd_region(dev);
524 
525 	return badblocks_show(&nd_region->bb, buf, 0);
526 }
527 
528 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
529 
530 static ssize_t resource_show(struct device *dev,
531 		struct device_attribute *attr, char *buf)
532 {
533 	struct nd_region *nd_region = to_nd_region(dev);
534 
535 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
536 }
537 static DEVICE_ATTR_RO(resource);
538 
539 static ssize_t persistence_domain_show(struct device *dev,
540 		struct device_attribute *attr, char *buf)
541 {
542 	struct nd_region *nd_region = to_nd_region(dev);
543 
544 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
545 		return sprintf(buf, "cpu_cache\n");
546 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
547 		return sprintf(buf, "memory_controller\n");
548 	else
549 		return sprintf(buf, "\n");
550 }
551 static DEVICE_ATTR_RO(persistence_domain);
552 
553 static struct attribute *nd_region_attributes[] = {
554 	&dev_attr_size.attr,
555 	&dev_attr_nstype.attr,
556 	&dev_attr_mappings.attr,
557 	&dev_attr_btt_seed.attr,
558 	&dev_attr_pfn_seed.attr,
559 	&dev_attr_dax_seed.attr,
560 	&dev_attr_deep_flush.attr,
561 	&dev_attr_read_only.attr,
562 	&dev_attr_set_cookie.attr,
563 	&dev_attr_available_size.attr,
564 	&dev_attr_namespace_seed.attr,
565 	&dev_attr_init_namespaces.attr,
566 	&dev_attr_badblocks.attr,
567 	&dev_attr_resource.attr,
568 	&dev_attr_persistence_domain.attr,
569 	NULL,
570 };
571 
572 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
573 {
574 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
575 	struct nd_region *nd_region = to_nd_region(dev);
576 	struct nd_interleave_set *nd_set = nd_region->nd_set;
577 	int type = nd_region_to_nstype(nd_region);
578 
579 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
580 		return 0;
581 
582 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
583 		return 0;
584 
585 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
586 		return 0;
587 
588 	if (a == &dev_attr_resource.attr) {
589 		if (is_nd_pmem(dev))
590 			return 0400;
591 		else
592 			return 0;
593 	}
594 
595 	if (a == &dev_attr_deep_flush.attr) {
596 		int has_flush = nvdimm_has_flush(nd_region);
597 
598 		if (has_flush == 1)
599 			return a->mode;
600 		else if (has_flush == 0)
601 			return 0444;
602 		else
603 			return 0;
604 	}
605 
606 	if (a == &dev_attr_persistence_domain.attr) {
607 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
608 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
609 			return 0;
610 		return a->mode;
611 	}
612 
613 	if (a != &dev_attr_set_cookie.attr
614 			&& a != &dev_attr_available_size.attr)
615 		return a->mode;
616 
617 	if ((type == ND_DEVICE_NAMESPACE_PMEM
618 				|| type == ND_DEVICE_NAMESPACE_BLK)
619 			&& a == &dev_attr_available_size.attr)
620 		return a->mode;
621 	else if (is_memory(dev) && nd_set)
622 		return a->mode;
623 
624 	return 0;
625 }
626 
627 struct attribute_group nd_region_attribute_group = {
628 	.attrs = nd_region_attributes,
629 	.is_visible = region_visible,
630 };
631 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
632 
633 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
634 		struct nd_namespace_index *nsindex)
635 {
636 	struct nd_interleave_set *nd_set = nd_region->nd_set;
637 
638 	if (!nd_set)
639 		return 0;
640 
641 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
642 			&& __le16_to_cpu(nsindex->minor) == 1)
643 		return nd_set->cookie1;
644 	return nd_set->cookie2;
645 }
646 
647 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
648 {
649 	struct nd_interleave_set *nd_set = nd_region->nd_set;
650 
651 	if (nd_set)
652 		return nd_set->altcookie;
653 	return 0;
654 }
655 
656 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
657 {
658 	struct nd_label_ent *label_ent, *e;
659 
660 	lockdep_assert_held(&nd_mapping->lock);
661 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
662 		list_del(&label_ent->list);
663 		kfree(label_ent);
664 	}
665 }
666 
667 /*
668  * Upon successful probe/remove, take/release a reference on the
669  * associated interleave set (if present), and plant new btt + namespace
670  * seeds.  Also, on the removal of a BLK region, notify the provider to
671  * disable the region.
672  */
673 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
674 		struct device *dev, bool probe)
675 {
676 	struct nd_region *nd_region;
677 
678 	if (!probe && is_nd_region(dev)) {
679 		int i;
680 
681 		nd_region = to_nd_region(dev);
682 		for (i = 0; i < nd_region->ndr_mappings; i++) {
683 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
684 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
685 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
686 
687 			mutex_lock(&nd_mapping->lock);
688 			nd_mapping_free_labels(nd_mapping);
689 			mutex_unlock(&nd_mapping->lock);
690 
691 			put_ndd(ndd);
692 			nd_mapping->ndd = NULL;
693 			if (ndd)
694 				atomic_dec(&nvdimm->busy);
695 		}
696 	}
697 	if (dev->parent && is_nd_region(dev->parent) && probe) {
698 		nd_region = to_nd_region(dev->parent);
699 		nvdimm_bus_lock(dev);
700 		if (nd_region->ns_seed == dev)
701 			nd_region_create_ns_seed(nd_region);
702 		nvdimm_bus_unlock(dev);
703 	}
704 	if (is_nd_btt(dev) && probe) {
705 		struct nd_btt *nd_btt = to_nd_btt(dev);
706 
707 		nd_region = to_nd_region(dev->parent);
708 		nvdimm_bus_lock(dev);
709 		if (nd_region->btt_seed == dev)
710 			nd_region_create_btt_seed(nd_region);
711 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
712 			nd_region_create_ns_seed(nd_region);
713 		nvdimm_bus_unlock(dev);
714 	}
715 	if (is_nd_pfn(dev) && probe) {
716 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
717 
718 		nd_region = to_nd_region(dev->parent);
719 		nvdimm_bus_lock(dev);
720 		if (nd_region->pfn_seed == dev)
721 			nd_region_create_pfn_seed(nd_region);
722 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
723 			nd_region_create_ns_seed(nd_region);
724 		nvdimm_bus_unlock(dev);
725 	}
726 	if (is_nd_dax(dev) && probe) {
727 		struct nd_dax *nd_dax = to_nd_dax(dev);
728 
729 		nd_region = to_nd_region(dev->parent);
730 		nvdimm_bus_lock(dev);
731 		if (nd_region->dax_seed == dev)
732 			nd_region_create_dax_seed(nd_region);
733 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
734 			nd_region_create_ns_seed(nd_region);
735 		nvdimm_bus_unlock(dev);
736 	}
737 }
738 
739 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
740 {
741 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
742 }
743 
744 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
745 {
746 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
747 }
748 
749 static ssize_t mappingN(struct device *dev, char *buf, int n)
750 {
751 	struct nd_region *nd_region = to_nd_region(dev);
752 	struct nd_mapping *nd_mapping;
753 	struct nvdimm *nvdimm;
754 
755 	if (n >= nd_region->ndr_mappings)
756 		return -ENXIO;
757 	nd_mapping = &nd_region->mapping[n];
758 	nvdimm = nd_mapping->nvdimm;
759 
760 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
761 			nd_mapping->start, nd_mapping->size,
762 			nd_mapping->position);
763 }
764 
765 #define REGION_MAPPING(idx) \
766 static ssize_t mapping##idx##_show(struct device *dev,		\
767 		struct device_attribute *attr, char *buf)	\
768 {								\
769 	return mappingN(dev, buf, idx);				\
770 }								\
771 static DEVICE_ATTR_RO(mapping##idx)
772 
773 /*
774  * 32 should be enough for a while, even in the presence of socket
775  * interleave a 32-way interleave set is a degenerate case.
776  */
777 REGION_MAPPING(0);
778 REGION_MAPPING(1);
779 REGION_MAPPING(2);
780 REGION_MAPPING(3);
781 REGION_MAPPING(4);
782 REGION_MAPPING(5);
783 REGION_MAPPING(6);
784 REGION_MAPPING(7);
785 REGION_MAPPING(8);
786 REGION_MAPPING(9);
787 REGION_MAPPING(10);
788 REGION_MAPPING(11);
789 REGION_MAPPING(12);
790 REGION_MAPPING(13);
791 REGION_MAPPING(14);
792 REGION_MAPPING(15);
793 REGION_MAPPING(16);
794 REGION_MAPPING(17);
795 REGION_MAPPING(18);
796 REGION_MAPPING(19);
797 REGION_MAPPING(20);
798 REGION_MAPPING(21);
799 REGION_MAPPING(22);
800 REGION_MAPPING(23);
801 REGION_MAPPING(24);
802 REGION_MAPPING(25);
803 REGION_MAPPING(26);
804 REGION_MAPPING(27);
805 REGION_MAPPING(28);
806 REGION_MAPPING(29);
807 REGION_MAPPING(30);
808 REGION_MAPPING(31);
809 
810 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
811 {
812 	struct device *dev = container_of(kobj, struct device, kobj);
813 	struct nd_region *nd_region = to_nd_region(dev);
814 
815 	if (n < nd_region->ndr_mappings)
816 		return a->mode;
817 	return 0;
818 }
819 
820 static struct attribute *mapping_attributes[] = {
821 	&dev_attr_mapping0.attr,
822 	&dev_attr_mapping1.attr,
823 	&dev_attr_mapping2.attr,
824 	&dev_attr_mapping3.attr,
825 	&dev_attr_mapping4.attr,
826 	&dev_attr_mapping5.attr,
827 	&dev_attr_mapping6.attr,
828 	&dev_attr_mapping7.attr,
829 	&dev_attr_mapping8.attr,
830 	&dev_attr_mapping9.attr,
831 	&dev_attr_mapping10.attr,
832 	&dev_attr_mapping11.attr,
833 	&dev_attr_mapping12.attr,
834 	&dev_attr_mapping13.attr,
835 	&dev_attr_mapping14.attr,
836 	&dev_attr_mapping15.attr,
837 	&dev_attr_mapping16.attr,
838 	&dev_attr_mapping17.attr,
839 	&dev_attr_mapping18.attr,
840 	&dev_attr_mapping19.attr,
841 	&dev_attr_mapping20.attr,
842 	&dev_attr_mapping21.attr,
843 	&dev_attr_mapping22.attr,
844 	&dev_attr_mapping23.attr,
845 	&dev_attr_mapping24.attr,
846 	&dev_attr_mapping25.attr,
847 	&dev_attr_mapping26.attr,
848 	&dev_attr_mapping27.attr,
849 	&dev_attr_mapping28.attr,
850 	&dev_attr_mapping29.attr,
851 	&dev_attr_mapping30.attr,
852 	&dev_attr_mapping31.attr,
853 	NULL,
854 };
855 
856 struct attribute_group nd_mapping_attribute_group = {
857 	.is_visible = mapping_visible,
858 	.attrs = mapping_attributes,
859 };
860 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
861 
862 int nd_blk_region_init(struct nd_region *nd_region)
863 {
864 	struct device *dev = &nd_region->dev;
865 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
866 
867 	if (!is_nd_blk(dev))
868 		return 0;
869 
870 	if (nd_region->ndr_mappings < 1) {
871 		dev_dbg(dev, "invalid BLK region\n");
872 		return -ENXIO;
873 	}
874 
875 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
876 }
877 
878 /**
879  * nd_region_acquire_lane - allocate and lock a lane
880  * @nd_region: region id and number of lanes possible
881  *
882  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
883  * We optimize for the common case where there are 256 lanes, one
884  * per-cpu.  For larger systems we need to lock to share lanes.  For now
885  * this implementation assumes the cost of maintaining an allocator for
886  * free lanes is on the order of the lock hold time, so it implements a
887  * static lane = cpu % num_lanes mapping.
888  *
889  * In the case of a BTT instance on top of a BLK namespace a lane may be
890  * acquired recursively.  We lock on the first instance.
891  *
892  * In the case of a BTT instance on top of PMEM, we only acquire a lane
893  * for the BTT metadata updates.
894  */
895 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
896 {
897 	unsigned int cpu, lane;
898 
899 	cpu = get_cpu();
900 	if (nd_region->num_lanes < nr_cpu_ids) {
901 		struct nd_percpu_lane *ndl_lock, *ndl_count;
902 
903 		lane = cpu % nd_region->num_lanes;
904 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
905 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
906 		if (ndl_count->count++ == 0)
907 			spin_lock(&ndl_lock->lock);
908 	} else
909 		lane = cpu;
910 
911 	return lane;
912 }
913 EXPORT_SYMBOL(nd_region_acquire_lane);
914 
915 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
916 {
917 	if (nd_region->num_lanes < nr_cpu_ids) {
918 		unsigned int cpu = get_cpu();
919 		struct nd_percpu_lane *ndl_lock, *ndl_count;
920 
921 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
922 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
923 		if (--ndl_count->count == 0)
924 			spin_unlock(&ndl_lock->lock);
925 		put_cpu();
926 	}
927 	put_cpu();
928 }
929 EXPORT_SYMBOL(nd_region_release_lane);
930 
931 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
932 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
933 		const char *caller)
934 {
935 	struct nd_region *nd_region;
936 	struct device *dev;
937 	void *region_buf;
938 	unsigned int i;
939 	int ro = 0;
940 
941 	for (i = 0; i < ndr_desc->num_mappings; i++) {
942 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
943 		struct nvdimm *nvdimm = mapping->nvdimm;
944 
945 		if ((mapping->start | mapping->size) % SZ_4K) {
946 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
947 					caller, dev_name(&nvdimm->dev), i);
948 
949 			return NULL;
950 		}
951 
952 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
953 			ro = 1;
954 	}
955 
956 	if (dev_type == &nd_blk_device_type) {
957 		struct nd_blk_region_desc *ndbr_desc;
958 		struct nd_blk_region *ndbr;
959 
960 		ndbr_desc = to_blk_region_desc(ndr_desc);
961 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
962 				* ndr_desc->num_mappings,
963 				GFP_KERNEL);
964 		if (ndbr) {
965 			nd_region = &ndbr->nd_region;
966 			ndbr->enable = ndbr_desc->enable;
967 			ndbr->do_io = ndbr_desc->do_io;
968 		}
969 		region_buf = ndbr;
970 	} else {
971 		nd_region = kzalloc(sizeof(struct nd_region)
972 				+ sizeof(struct nd_mapping)
973 				* ndr_desc->num_mappings,
974 				GFP_KERNEL);
975 		region_buf = nd_region;
976 	}
977 
978 	if (!region_buf)
979 		return NULL;
980 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
981 	if (nd_region->id < 0)
982 		goto err_id;
983 
984 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
985 	if (!nd_region->lane)
986 		goto err_percpu;
987 
988         for (i = 0; i < nr_cpu_ids; i++) {
989 		struct nd_percpu_lane *ndl;
990 
991 		ndl = per_cpu_ptr(nd_region->lane, i);
992 		spin_lock_init(&ndl->lock);
993 		ndl->count = 0;
994 	}
995 
996 	for (i = 0; i < ndr_desc->num_mappings; i++) {
997 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
998 		struct nvdimm *nvdimm = mapping->nvdimm;
999 
1000 		nd_region->mapping[i].nvdimm = nvdimm;
1001 		nd_region->mapping[i].start = mapping->start;
1002 		nd_region->mapping[i].size = mapping->size;
1003 		nd_region->mapping[i].position = mapping->position;
1004 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1005 		mutex_init(&nd_region->mapping[i].lock);
1006 
1007 		get_device(&nvdimm->dev);
1008 	}
1009 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1010 	nd_region->provider_data = ndr_desc->provider_data;
1011 	nd_region->nd_set = ndr_desc->nd_set;
1012 	nd_region->num_lanes = ndr_desc->num_lanes;
1013 	nd_region->flags = ndr_desc->flags;
1014 	nd_region->ro = ro;
1015 	nd_region->numa_node = ndr_desc->numa_node;
1016 	ida_init(&nd_region->ns_ida);
1017 	ida_init(&nd_region->btt_ida);
1018 	ida_init(&nd_region->pfn_ida);
1019 	ida_init(&nd_region->dax_ida);
1020 	dev = &nd_region->dev;
1021 	dev_set_name(dev, "region%d", nd_region->id);
1022 	dev->parent = &nvdimm_bus->dev;
1023 	dev->type = dev_type;
1024 	dev->groups = ndr_desc->attr_groups;
1025 	dev->of_node = ndr_desc->of_node;
1026 	nd_region->ndr_size = resource_size(ndr_desc->res);
1027 	nd_region->ndr_start = ndr_desc->res->start;
1028 	nd_device_register(dev);
1029 
1030 	return nd_region;
1031 
1032  err_percpu:
1033 	ida_simple_remove(&region_ida, nd_region->id);
1034  err_id:
1035 	kfree(region_buf);
1036 	return NULL;
1037 }
1038 
1039 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1040 		struct nd_region_desc *ndr_desc)
1041 {
1042 	ndr_desc->num_lanes = ND_MAX_LANES;
1043 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1044 			__func__);
1045 }
1046 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1047 
1048 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1049 		struct nd_region_desc *ndr_desc)
1050 {
1051 	if (ndr_desc->num_mappings > 1)
1052 		return NULL;
1053 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1054 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1055 			__func__);
1056 }
1057 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1058 
1059 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1060 		struct nd_region_desc *ndr_desc)
1061 {
1062 	ndr_desc->num_lanes = ND_MAX_LANES;
1063 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1064 			__func__);
1065 }
1066 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1067 
1068 /**
1069  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1070  * @nd_region: blk or interleaved pmem region
1071  */
1072 void nvdimm_flush(struct nd_region *nd_region)
1073 {
1074 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1075 	int i, idx;
1076 
1077 	/*
1078 	 * Try to encourage some diversity in flush hint addresses
1079 	 * across cpus assuming a limited number of flush hints.
1080 	 */
1081 	idx = this_cpu_read(flush_idx);
1082 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1083 
1084 	/*
1085 	 * The first wmb() is needed to 'sfence' all previous writes
1086 	 * such that they are architecturally visible for the platform
1087 	 * buffer flush.  Note that we've already arranged for pmem
1088 	 * writes to avoid the cache via memcpy_flushcache().  The final
1089 	 * wmb() ensures ordering for the NVDIMM flush write.
1090 	 */
1091 	wmb();
1092 	for (i = 0; i < nd_region->ndr_mappings; i++)
1093 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1094 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1095 	wmb();
1096 }
1097 EXPORT_SYMBOL_GPL(nvdimm_flush);
1098 
1099 /**
1100  * nvdimm_has_flush - determine write flushing requirements
1101  * @nd_region: blk or interleaved pmem region
1102  *
1103  * Returns 1 if writes require flushing
1104  * Returns 0 if writes do not require flushing
1105  * Returns -ENXIO if flushing capability can not be determined
1106  */
1107 int nvdimm_has_flush(struct nd_region *nd_region)
1108 {
1109 	int i;
1110 
1111 	/* no nvdimm or pmem api == flushing capability unknown */
1112 	if (nd_region->ndr_mappings == 0
1113 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1114 		return -ENXIO;
1115 
1116 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1117 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1118 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1119 
1120 		/* flush hints present / available */
1121 		if (nvdimm->num_flush)
1122 			return 1;
1123 	}
1124 
1125 	/*
1126 	 * The platform defines dimm devices without hints, assume
1127 	 * platform persistence mechanism like ADR
1128 	 */
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1132 
1133 int nvdimm_has_cache(struct nd_region *nd_region)
1134 {
1135 	return is_nd_pmem(&nd_region->dev);
1136 }
1137 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1138 
1139 void __exit nd_region_devs_exit(void)
1140 {
1141 	ida_destroy(&region_ida);
1142 }
1143