1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/pmem.h> 19 #include <linux/sort.h> 20 #include <linux/io.h> 21 #include <linux/nd.h> 22 #include "nd-core.h" 23 #include "nd.h" 24 25 /* 26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 27 * irrelevant. 28 */ 29 #include <linux/io-64-nonatomic-hi-lo.h> 30 31 static DEFINE_IDA(region_ida); 32 static DEFINE_PER_CPU(int, flush_idx); 33 34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 35 struct nd_region_data *ndrd) 36 { 37 int i, j; 38 39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 41 for (i = 0; i < nvdimm->num_flush; i++) { 42 struct resource *res = &nvdimm->flush_wpq[i]; 43 unsigned long pfn = PHYS_PFN(res->start); 44 void __iomem *flush_page; 45 46 /* check if flush hints share a page */ 47 for (j = 0; j < i; j++) { 48 struct resource *res_j = &nvdimm->flush_wpq[j]; 49 unsigned long pfn_j = PHYS_PFN(res_j->start); 50 51 if (pfn == pfn_j) 52 break; 53 } 54 55 if (j < i) 56 flush_page = (void __iomem *) ((unsigned long) 57 ndrd->flush_wpq[dimm][j] & PAGE_MASK); 58 else 59 flush_page = devm_nvdimm_ioremap(dev, 60 PHYS_PFN(pfn), PAGE_SIZE); 61 if (!flush_page) 62 return -ENXIO; 63 ndrd->flush_wpq[dimm][i] = flush_page 64 + (res->start & ~PAGE_MASK); 65 } 66 67 return 0; 68 } 69 70 int nd_region_activate(struct nd_region *nd_region) 71 { 72 int i, num_flush = 0; 73 struct nd_region_data *ndrd; 74 struct device *dev = &nd_region->dev; 75 size_t flush_data_size = sizeof(void *); 76 77 nvdimm_bus_lock(&nd_region->dev); 78 for (i = 0; i < nd_region->ndr_mappings; i++) { 79 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 80 struct nvdimm *nvdimm = nd_mapping->nvdimm; 81 82 /* at least one null hint slot per-dimm for the "no-hint" case */ 83 flush_data_size += sizeof(void *); 84 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 85 if (!nvdimm->num_flush) 86 continue; 87 flush_data_size += nvdimm->num_flush * sizeof(void *); 88 } 89 nvdimm_bus_unlock(&nd_region->dev); 90 91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 92 if (!ndrd) 93 return -ENOMEM; 94 dev_set_drvdata(dev, ndrd); 95 96 ndrd->flush_mask = (1 << ilog2(num_flush)) - 1; 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 return 0; 107 } 108 109 static void nd_region_release(struct device *dev) 110 { 111 struct nd_region *nd_region = to_nd_region(dev); 112 u16 i; 113 114 for (i = 0; i < nd_region->ndr_mappings; i++) { 115 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 116 struct nvdimm *nvdimm = nd_mapping->nvdimm; 117 118 put_device(&nvdimm->dev); 119 } 120 free_percpu(nd_region->lane); 121 ida_simple_remove(®ion_ida, nd_region->id); 122 if (is_nd_blk(dev)) 123 kfree(to_nd_blk_region(dev)); 124 else 125 kfree(nd_region); 126 } 127 128 static struct device_type nd_blk_device_type = { 129 .name = "nd_blk", 130 .release = nd_region_release, 131 }; 132 133 static struct device_type nd_pmem_device_type = { 134 .name = "nd_pmem", 135 .release = nd_region_release, 136 }; 137 138 static struct device_type nd_volatile_device_type = { 139 .name = "nd_volatile", 140 .release = nd_region_release, 141 }; 142 143 bool is_nd_pmem(struct device *dev) 144 { 145 return dev ? dev->type == &nd_pmem_device_type : false; 146 } 147 148 bool is_nd_blk(struct device *dev) 149 { 150 return dev ? dev->type == &nd_blk_device_type : false; 151 } 152 153 struct nd_region *to_nd_region(struct device *dev) 154 { 155 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 156 157 WARN_ON(dev->type->release != nd_region_release); 158 return nd_region; 159 } 160 EXPORT_SYMBOL_GPL(to_nd_region); 161 162 struct nd_blk_region *to_nd_blk_region(struct device *dev) 163 { 164 struct nd_region *nd_region = to_nd_region(dev); 165 166 WARN_ON(!is_nd_blk(dev)); 167 return container_of(nd_region, struct nd_blk_region, nd_region); 168 } 169 EXPORT_SYMBOL_GPL(to_nd_blk_region); 170 171 void *nd_region_provider_data(struct nd_region *nd_region) 172 { 173 return nd_region->provider_data; 174 } 175 EXPORT_SYMBOL_GPL(nd_region_provider_data); 176 177 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 178 { 179 return ndbr->blk_provider_data; 180 } 181 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 182 183 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 184 { 185 ndbr->blk_provider_data = data; 186 } 187 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 188 189 /** 190 * nd_region_to_nstype() - region to an integer namespace type 191 * @nd_region: region-device to interrogate 192 * 193 * This is the 'nstype' attribute of a region as well, an input to the 194 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 195 * namespace devices with namespace drivers. 196 */ 197 int nd_region_to_nstype(struct nd_region *nd_region) 198 { 199 if (is_nd_pmem(&nd_region->dev)) { 200 u16 i, alias; 201 202 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 203 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 204 struct nvdimm *nvdimm = nd_mapping->nvdimm; 205 206 if (nvdimm->flags & NDD_ALIASING) 207 alias++; 208 } 209 if (alias) 210 return ND_DEVICE_NAMESPACE_PMEM; 211 else 212 return ND_DEVICE_NAMESPACE_IO; 213 } else if (is_nd_blk(&nd_region->dev)) { 214 return ND_DEVICE_NAMESPACE_BLK; 215 } 216 217 return 0; 218 } 219 EXPORT_SYMBOL(nd_region_to_nstype); 220 221 static ssize_t size_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 struct nd_region *nd_region = to_nd_region(dev); 225 unsigned long long size = 0; 226 227 if (is_nd_pmem(dev)) { 228 size = nd_region->ndr_size; 229 } else if (nd_region->ndr_mappings == 1) { 230 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 231 232 size = nd_mapping->size; 233 } 234 235 return sprintf(buf, "%llu\n", size); 236 } 237 static DEVICE_ATTR_RO(size); 238 239 static ssize_t mappings_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct nd_region *nd_region = to_nd_region(dev); 243 244 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 245 } 246 static DEVICE_ATTR_RO(mappings); 247 248 static ssize_t nstype_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 struct nd_region *nd_region = to_nd_region(dev); 252 253 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 254 } 255 static DEVICE_ATTR_RO(nstype); 256 257 static ssize_t set_cookie_show(struct device *dev, 258 struct device_attribute *attr, char *buf) 259 { 260 struct nd_region *nd_region = to_nd_region(dev); 261 struct nd_interleave_set *nd_set = nd_region->nd_set; 262 263 if (is_nd_pmem(dev) && nd_set) 264 /* pass, should be precluded by region_visible */; 265 else 266 return -ENXIO; 267 268 return sprintf(buf, "%#llx\n", nd_set->cookie); 269 } 270 static DEVICE_ATTR_RO(set_cookie); 271 272 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 273 { 274 resource_size_t blk_max_overlap = 0, available, overlap; 275 int i; 276 277 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 278 279 retry: 280 available = 0; 281 overlap = blk_max_overlap; 282 for (i = 0; i < nd_region->ndr_mappings; i++) { 283 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 284 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 285 286 /* if a dimm is disabled the available capacity is zero */ 287 if (!ndd) 288 return 0; 289 290 if (is_nd_pmem(&nd_region->dev)) { 291 available += nd_pmem_available_dpa(nd_region, 292 nd_mapping, &overlap); 293 if (overlap > blk_max_overlap) { 294 blk_max_overlap = overlap; 295 goto retry; 296 } 297 } else if (is_nd_blk(&nd_region->dev)) { 298 available += nd_blk_available_dpa(nd_mapping); 299 } 300 } 301 302 return available; 303 } 304 305 static ssize_t available_size_show(struct device *dev, 306 struct device_attribute *attr, char *buf) 307 { 308 struct nd_region *nd_region = to_nd_region(dev); 309 unsigned long long available = 0; 310 311 /* 312 * Flush in-flight updates and grab a snapshot of the available 313 * size. Of course, this value is potentially invalidated the 314 * memory nvdimm_bus_lock() is dropped, but that's userspace's 315 * problem to not race itself. 316 */ 317 nvdimm_bus_lock(dev); 318 wait_nvdimm_bus_probe_idle(dev); 319 available = nd_region_available_dpa(nd_region); 320 nvdimm_bus_unlock(dev); 321 322 return sprintf(buf, "%llu\n", available); 323 } 324 static DEVICE_ATTR_RO(available_size); 325 326 static ssize_t init_namespaces_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct nd_region_data *ndrd = dev_get_drvdata(dev); 330 ssize_t rc; 331 332 nvdimm_bus_lock(dev); 333 if (ndrd) 334 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 335 else 336 rc = -ENXIO; 337 nvdimm_bus_unlock(dev); 338 339 return rc; 340 } 341 static DEVICE_ATTR_RO(init_namespaces); 342 343 static ssize_t namespace_seed_show(struct device *dev, 344 struct device_attribute *attr, char *buf) 345 { 346 struct nd_region *nd_region = to_nd_region(dev); 347 ssize_t rc; 348 349 nvdimm_bus_lock(dev); 350 if (nd_region->ns_seed) 351 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 352 else 353 rc = sprintf(buf, "\n"); 354 nvdimm_bus_unlock(dev); 355 return rc; 356 } 357 static DEVICE_ATTR_RO(namespace_seed); 358 359 static ssize_t btt_seed_show(struct device *dev, 360 struct device_attribute *attr, char *buf) 361 { 362 struct nd_region *nd_region = to_nd_region(dev); 363 ssize_t rc; 364 365 nvdimm_bus_lock(dev); 366 if (nd_region->btt_seed) 367 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 368 else 369 rc = sprintf(buf, "\n"); 370 nvdimm_bus_unlock(dev); 371 372 return rc; 373 } 374 static DEVICE_ATTR_RO(btt_seed); 375 376 static ssize_t pfn_seed_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 struct nd_region *nd_region = to_nd_region(dev); 380 ssize_t rc; 381 382 nvdimm_bus_lock(dev); 383 if (nd_region->pfn_seed) 384 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 385 else 386 rc = sprintf(buf, "\n"); 387 nvdimm_bus_unlock(dev); 388 389 return rc; 390 } 391 static DEVICE_ATTR_RO(pfn_seed); 392 393 static ssize_t dax_seed_show(struct device *dev, 394 struct device_attribute *attr, char *buf) 395 { 396 struct nd_region *nd_region = to_nd_region(dev); 397 ssize_t rc; 398 399 nvdimm_bus_lock(dev); 400 if (nd_region->dax_seed) 401 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 402 else 403 rc = sprintf(buf, "\n"); 404 nvdimm_bus_unlock(dev); 405 406 return rc; 407 } 408 static DEVICE_ATTR_RO(dax_seed); 409 410 static ssize_t read_only_show(struct device *dev, 411 struct device_attribute *attr, char *buf) 412 { 413 struct nd_region *nd_region = to_nd_region(dev); 414 415 return sprintf(buf, "%d\n", nd_region->ro); 416 } 417 418 static ssize_t read_only_store(struct device *dev, 419 struct device_attribute *attr, const char *buf, size_t len) 420 { 421 bool ro; 422 int rc = strtobool(buf, &ro); 423 struct nd_region *nd_region = to_nd_region(dev); 424 425 if (rc) 426 return rc; 427 428 nd_region->ro = ro; 429 return len; 430 } 431 static DEVICE_ATTR_RW(read_only); 432 433 static struct attribute *nd_region_attributes[] = { 434 &dev_attr_size.attr, 435 &dev_attr_nstype.attr, 436 &dev_attr_mappings.attr, 437 &dev_attr_btt_seed.attr, 438 &dev_attr_pfn_seed.attr, 439 &dev_attr_dax_seed.attr, 440 &dev_attr_read_only.attr, 441 &dev_attr_set_cookie.attr, 442 &dev_attr_available_size.attr, 443 &dev_attr_namespace_seed.attr, 444 &dev_attr_init_namespaces.attr, 445 NULL, 446 }; 447 448 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 449 { 450 struct device *dev = container_of(kobj, typeof(*dev), kobj); 451 struct nd_region *nd_region = to_nd_region(dev); 452 struct nd_interleave_set *nd_set = nd_region->nd_set; 453 int type = nd_region_to_nstype(nd_region); 454 455 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr) 456 return 0; 457 458 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr) 459 return 0; 460 461 if (a != &dev_attr_set_cookie.attr 462 && a != &dev_attr_available_size.attr) 463 return a->mode; 464 465 if ((type == ND_DEVICE_NAMESPACE_PMEM 466 || type == ND_DEVICE_NAMESPACE_BLK) 467 && a == &dev_attr_available_size.attr) 468 return a->mode; 469 else if (is_nd_pmem(dev) && nd_set) 470 return a->mode; 471 472 return 0; 473 } 474 475 struct attribute_group nd_region_attribute_group = { 476 .attrs = nd_region_attributes, 477 .is_visible = region_visible, 478 }; 479 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 480 481 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region) 482 { 483 struct nd_interleave_set *nd_set = nd_region->nd_set; 484 485 if (nd_set) 486 return nd_set->cookie; 487 return 0; 488 } 489 490 /* 491 * Upon successful probe/remove, take/release a reference on the 492 * associated interleave set (if present), and plant new btt + namespace 493 * seeds. Also, on the removal of a BLK region, notify the provider to 494 * disable the region. 495 */ 496 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 497 struct device *dev, bool probe) 498 { 499 struct nd_region *nd_region; 500 501 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) { 502 int i; 503 504 nd_region = to_nd_region(dev); 505 for (i = 0; i < nd_region->ndr_mappings; i++) { 506 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 507 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 508 struct nvdimm *nvdimm = nd_mapping->nvdimm; 509 510 kfree(nd_mapping->labels); 511 nd_mapping->labels = NULL; 512 put_ndd(ndd); 513 nd_mapping->ndd = NULL; 514 if (ndd) 515 atomic_dec(&nvdimm->busy); 516 } 517 518 if (is_nd_pmem(dev)) 519 return; 520 } 521 if (dev->parent && is_nd_blk(dev->parent) && probe) { 522 nd_region = to_nd_region(dev->parent); 523 nvdimm_bus_lock(dev); 524 if (nd_region->ns_seed == dev) 525 nd_region_create_blk_seed(nd_region); 526 nvdimm_bus_unlock(dev); 527 } 528 if (is_nd_btt(dev) && probe) { 529 struct nd_btt *nd_btt = to_nd_btt(dev); 530 531 nd_region = to_nd_region(dev->parent); 532 nvdimm_bus_lock(dev); 533 if (nd_region->btt_seed == dev) 534 nd_region_create_btt_seed(nd_region); 535 if (nd_region->ns_seed == &nd_btt->ndns->dev && 536 is_nd_blk(dev->parent)) 537 nd_region_create_blk_seed(nd_region); 538 nvdimm_bus_unlock(dev); 539 } 540 if (is_nd_pfn(dev) && probe) { 541 nd_region = to_nd_region(dev->parent); 542 nvdimm_bus_lock(dev); 543 if (nd_region->pfn_seed == dev) 544 nd_region_create_pfn_seed(nd_region); 545 nvdimm_bus_unlock(dev); 546 } 547 if (is_nd_dax(dev) && probe) { 548 nd_region = to_nd_region(dev->parent); 549 nvdimm_bus_lock(dev); 550 if (nd_region->dax_seed == dev) 551 nd_region_create_dax_seed(nd_region); 552 nvdimm_bus_unlock(dev); 553 } 554 } 555 556 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 557 { 558 nd_region_notify_driver_action(nvdimm_bus, dev, true); 559 } 560 561 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 562 { 563 nd_region_notify_driver_action(nvdimm_bus, dev, false); 564 } 565 566 static ssize_t mappingN(struct device *dev, char *buf, int n) 567 { 568 struct nd_region *nd_region = to_nd_region(dev); 569 struct nd_mapping *nd_mapping; 570 struct nvdimm *nvdimm; 571 572 if (n >= nd_region->ndr_mappings) 573 return -ENXIO; 574 nd_mapping = &nd_region->mapping[n]; 575 nvdimm = nd_mapping->nvdimm; 576 577 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev), 578 nd_mapping->start, nd_mapping->size); 579 } 580 581 #define REGION_MAPPING(idx) \ 582 static ssize_t mapping##idx##_show(struct device *dev, \ 583 struct device_attribute *attr, char *buf) \ 584 { \ 585 return mappingN(dev, buf, idx); \ 586 } \ 587 static DEVICE_ATTR_RO(mapping##idx) 588 589 /* 590 * 32 should be enough for a while, even in the presence of socket 591 * interleave a 32-way interleave set is a degenerate case. 592 */ 593 REGION_MAPPING(0); 594 REGION_MAPPING(1); 595 REGION_MAPPING(2); 596 REGION_MAPPING(3); 597 REGION_MAPPING(4); 598 REGION_MAPPING(5); 599 REGION_MAPPING(6); 600 REGION_MAPPING(7); 601 REGION_MAPPING(8); 602 REGION_MAPPING(9); 603 REGION_MAPPING(10); 604 REGION_MAPPING(11); 605 REGION_MAPPING(12); 606 REGION_MAPPING(13); 607 REGION_MAPPING(14); 608 REGION_MAPPING(15); 609 REGION_MAPPING(16); 610 REGION_MAPPING(17); 611 REGION_MAPPING(18); 612 REGION_MAPPING(19); 613 REGION_MAPPING(20); 614 REGION_MAPPING(21); 615 REGION_MAPPING(22); 616 REGION_MAPPING(23); 617 REGION_MAPPING(24); 618 REGION_MAPPING(25); 619 REGION_MAPPING(26); 620 REGION_MAPPING(27); 621 REGION_MAPPING(28); 622 REGION_MAPPING(29); 623 REGION_MAPPING(30); 624 REGION_MAPPING(31); 625 626 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 627 { 628 struct device *dev = container_of(kobj, struct device, kobj); 629 struct nd_region *nd_region = to_nd_region(dev); 630 631 if (n < nd_region->ndr_mappings) 632 return a->mode; 633 return 0; 634 } 635 636 static struct attribute *mapping_attributes[] = { 637 &dev_attr_mapping0.attr, 638 &dev_attr_mapping1.attr, 639 &dev_attr_mapping2.attr, 640 &dev_attr_mapping3.attr, 641 &dev_attr_mapping4.attr, 642 &dev_attr_mapping5.attr, 643 &dev_attr_mapping6.attr, 644 &dev_attr_mapping7.attr, 645 &dev_attr_mapping8.attr, 646 &dev_attr_mapping9.attr, 647 &dev_attr_mapping10.attr, 648 &dev_attr_mapping11.attr, 649 &dev_attr_mapping12.attr, 650 &dev_attr_mapping13.attr, 651 &dev_attr_mapping14.attr, 652 &dev_attr_mapping15.attr, 653 &dev_attr_mapping16.attr, 654 &dev_attr_mapping17.attr, 655 &dev_attr_mapping18.attr, 656 &dev_attr_mapping19.attr, 657 &dev_attr_mapping20.attr, 658 &dev_attr_mapping21.attr, 659 &dev_attr_mapping22.attr, 660 &dev_attr_mapping23.attr, 661 &dev_attr_mapping24.attr, 662 &dev_attr_mapping25.attr, 663 &dev_attr_mapping26.attr, 664 &dev_attr_mapping27.attr, 665 &dev_attr_mapping28.attr, 666 &dev_attr_mapping29.attr, 667 &dev_attr_mapping30.attr, 668 &dev_attr_mapping31.attr, 669 NULL, 670 }; 671 672 struct attribute_group nd_mapping_attribute_group = { 673 .is_visible = mapping_visible, 674 .attrs = mapping_attributes, 675 }; 676 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 677 678 int nd_blk_region_init(struct nd_region *nd_region) 679 { 680 struct device *dev = &nd_region->dev; 681 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 682 683 if (!is_nd_blk(dev)) 684 return 0; 685 686 if (nd_region->ndr_mappings < 1) { 687 dev_err(dev, "invalid BLK region\n"); 688 return -ENXIO; 689 } 690 691 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 692 } 693 694 /** 695 * nd_region_acquire_lane - allocate and lock a lane 696 * @nd_region: region id and number of lanes possible 697 * 698 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 699 * We optimize for the common case where there are 256 lanes, one 700 * per-cpu. For larger systems we need to lock to share lanes. For now 701 * this implementation assumes the cost of maintaining an allocator for 702 * free lanes is on the order of the lock hold time, so it implements a 703 * static lane = cpu % num_lanes mapping. 704 * 705 * In the case of a BTT instance on top of a BLK namespace a lane may be 706 * acquired recursively. We lock on the first instance. 707 * 708 * In the case of a BTT instance on top of PMEM, we only acquire a lane 709 * for the BTT metadata updates. 710 */ 711 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 712 { 713 unsigned int cpu, lane; 714 715 cpu = get_cpu(); 716 if (nd_region->num_lanes < nr_cpu_ids) { 717 struct nd_percpu_lane *ndl_lock, *ndl_count; 718 719 lane = cpu % nd_region->num_lanes; 720 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 721 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 722 if (ndl_count->count++ == 0) 723 spin_lock(&ndl_lock->lock); 724 } else 725 lane = cpu; 726 727 return lane; 728 } 729 EXPORT_SYMBOL(nd_region_acquire_lane); 730 731 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 732 { 733 if (nd_region->num_lanes < nr_cpu_ids) { 734 unsigned int cpu = get_cpu(); 735 struct nd_percpu_lane *ndl_lock, *ndl_count; 736 737 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 738 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 739 if (--ndl_count->count == 0) 740 spin_unlock(&ndl_lock->lock); 741 put_cpu(); 742 } 743 put_cpu(); 744 } 745 EXPORT_SYMBOL(nd_region_release_lane); 746 747 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 748 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 749 const char *caller) 750 { 751 struct nd_region *nd_region; 752 struct device *dev; 753 void *region_buf; 754 unsigned int i; 755 int ro = 0; 756 757 for (i = 0; i < ndr_desc->num_mappings; i++) { 758 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i]; 759 struct nvdimm *nvdimm = nd_mapping->nvdimm; 760 761 if ((nd_mapping->start | nd_mapping->size) % SZ_4K) { 762 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 763 caller, dev_name(&nvdimm->dev), i); 764 765 return NULL; 766 } 767 768 if (nvdimm->flags & NDD_UNARMED) 769 ro = 1; 770 } 771 772 if (dev_type == &nd_blk_device_type) { 773 struct nd_blk_region_desc *ndbr_desc; 774 struct nd_blk_region *ndbr; 775 776 ndbr_desc = to_blk_region_desc(ndr_desc); 777 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 778 * ndr_desc->num_mappings, 779 GFP_KERNEL); 780 if (ndbr) { 781 nd_region = &ndbr->nd_region; 782 ndbr->enable = ndbr_desc->enable; 783 ndbr->do_io = ndbr_desc->do_io; 784 } 785 region_buf = ndbr; 786 } else { 787 nd_region = kzalloc(sizeof(struct nd_region) 788 + sizeof(struct nd_mapping) 789 * ndr_desc->num_mappings, 790 GFP_KERNEL); 791 region_buf = nd_region; 792 } 793 794 if (!region_buf) 795 return NULL; 796 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 797 if (nd_region->id < 0) 798 goto err_id; 799 800 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 801 if (!nd_region->lane) 802 goto err_percpu; 803 804 for (i = 0; i < nr_cpu_ids; i++) { 805 struct nd_percpu_lane *ndl; 806 807 ndl = per_cpu_ptr(nd_region->lane, i); 808 spin_lock_init(&ndl->lock); 809 ndl->count = 0; 810 } 811 812 memcpy(nd_region->mapping, ndr_desc->nd_mapping, 813 sizeof(struct nd_mapping) * ndr_desc->num_mappings); 814 for (i = 0; i < ndr_desc->num_mappings; i++) { 815 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i]; 816 struct nvdimm *nvdimm = nd_mapping->nvdimm; 817 818 get_device(&nvdimm->dev); 819 } 820 nd_region->ndr_mappings = ndr_desc->num_mappings; 821 nd_region->provider_data = ndr_desc->provider_data; 822 nd_region->nd_set = ndr_desc->nd_set; 823 nd_region->num_lanes = ndr_desc->num_lanes; 824 nd_region->flags = ndr_desc->flags; 825 nd_region->ro = ro; 826 nd_region->numa_node = ndr_desc->numa_node; 827 ida_init(&nd_region->ns_ida); 828 ida_init(&nd_region->btt_ida); 829 ida_init(&nd_region->pfn_ida); 830 ida_init(&nd_region->dax_ida); 831 dev = &nd_region->dev; 832 dev_set_name(dev, "region%d", nd_region->id); 833 dev->parent = &nvdimm_bus->dev; 834 dev->type = dev_type; 835 dev->groups = ndr_desc->attr_groups; 836 nd_region->ndr_size = resource_size(ndr_desc->res); 837 nd_region->ndr_start = ndr_desc->res->start; 838 nd_device_register(dev); 839 840 return nd_region; 841 842 err_percpu: 843 ida_simple_remove(®ion_ida, nd_region->id); 844 err_id: 845 kfree(region_buf); 846 return NULL; 847 } 848 849 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 850 struct nd_region_desc *ndr_desc) 851 { 852 ndr_desc->num_lanes = ND_MAX_LANES; 853 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 854 __func__); 855 } 856 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 857 858 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 859 struct nd_region_desc *ndr_desc) 860 { 861 if (ndr_desc->num_mappings > 1) 862 return NULL; 863 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 864 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 865 __func__); 866 } 867 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 868 869 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 870 struct nd_region_desc *ndr_desc) 871 { 872 ndr_desc->num_lanes = ND_MAX_LANES; 873 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 874 __func__); 875 } 876 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 877 878 /** 879 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 880 * @nd_region: blk or interleaved pmem region 881 */ 882 void nvdimm_flush(struct nd_region *nd_region) 883 { 884 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 885 int i, idx; 886 887 /* 888 * Try to encourage some diversity in flush hint addresses 889 * across cpus assuming a limited number of flush hints. 890 */ 891 idx = this_cpu_read(flush_idx); 892 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 893 894 /* 895 * The first wmb() is needed to 'sfence' all previous writes 896 * such that they are architecturally visible for the platform 897 * buffer flush. Note that we've already arranged for pmem 898 * writes to avoid the cache via arch_memcpy_to_pmem(). The 899 * final wmb() ensures ordering for the NVDIMM flush write. 900 */ 901 wmb(); 902 for (i = 0; i < nd_region->ndr_mappings; i++) 903 if (ndrd->flush_wpq[i][0]) 904 writeq(1, ndrd->flush_wpq[i][idx & ndrd->flush_mask]); 905 wmb(); 906 } 907 EXPORT_SYMBOL_GPL(nvdimm_flush); 908 909 /** 910 * nvdimm_has_flush - determine write flushing requirements 911 * @nd_region: blk or interleaved pmem region 912 * 913 * Returns 1 if writes require flushing 914 * Returns 0 if writes do not require flushing 915 * Returns -ENXIO if flushing capability can not be determined 916 */ 917 int nvdimm_has_flush(struct nd_region *nd_region) 918 { 919 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 920 int i; 921 922 /* no nvdimm == flushing capability unknown */ 923 if (nd_region->ndr_mappings == 0) 924 return -ENXIO; 925 926 for (i = 0; i < nd_region->ndr_mappings; i++) 927 /* flush hints present, flushing required */ 928 if (ndrd->flush_wpq[i][0]) 929 return 1; 930 931 /* 932 * The platform defines dimm devices without hints, assume 933 * platform persistence mechanism like ADR 934 */ 935 return 0; 936 } 937 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 938 939 void __exit nd_region_devs_exit(void) 940 { 941 ida_destroy(®ion_ida); 942 } 943