xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/highmem.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/hash.h>
10 #include <linux/sort.h>
11 #include <linux/io.h>
12 #include <linux/nd.h>
13 #include "nd-core.h"
14 #include "nd.h"
15 
16 /*
17  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
18  * irrelevant.
19  */
20 #include <linux/io-64-nonatomic-hi-lo.h>
21 
22 static DEFINE_IDA(region_ida);
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	ida_simple_remove(&region_ida, nd_region->id);
137 	if (is_nd_blk(dev))
138 		kfree(to_nd_blk_region(dev));
139 	else
140 		kfree(nd_region);
141 }
142 
143 static struct device_type nd_blk_device_type = {
144 	.name = "nd_blk",
145 	.release = nd_region_release,
146 };
147 
148 static struct device_type nd_pmem_device_type = {
149 	.name = "nd_pmem",
150 	.release = nd_region_release,
151 };
152 
153 static struct device_type nd_volatile_device_type = {
154 	.name = "nd_volatile",
155 	.release = nd_region_release,
156 };
157 
158 bool is_nd_pmem(struct device *dev)
159 {
160 	return dev ? dev->type == &nd_pmem_device_type : false;
161 }
162 
163 bool is_nd_blk(struct device *dev)
164 {
165 	return dev ? dev->type == &nd_blk_device_type : false;
166 }
167 
168 bool is_nd_volatile(struct device *dev)
169 {
170 	return dev ? dev->type == &nd_volatile_device_type : false;
171 }
172 
173 struct nd_region *to_nd_region(struct device *dev)
174 {
175 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176 
177 	WARN_ON(dev->type->release != nd_region_release);
178 	return nd_region;
179 }
180 EXPORT_SYMBOL_GPL(to_nd_region);
181 
182 struct device *nd_region_dev(struct nd_region *nd_region)
183 {
184 	if (!nd_region)
185 		return NULL;
186 	return &nd_region->dev;
187 }
188 EXPORT_SYMBOL_GPL(nd_region_dev);
189 
190 struct nd_blk_region *to_nd_blk_region(struct device *dev)
191 {
192 	struct nd_region *nd_region = to_nd_region(dev);
193 
194 	WARN_ON(!is_nd_blk(dev));
195 	return container_of(nd_region, struct nd_blk_region, nd_region);
196 }
197 EXPORT_SYMBOL_GPL(to_nd_blk_region);
198 
199 void *nd_region_provider_data(struct nd_region *nd_region)
200 {
201 	return nd_region->provider_data;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_provider_data);
204 
205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
206 {
207 	return ndbr->blk_provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
210 
211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
212 {
213 	ndbr->blk_provider_data = data;
214 }
215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
216 
217 /**
218  * nd_region_to_nstype() - region to an integer namespace type
219  * @nd_region: region-device to interrogate
220  *
221  * This is the 'nstype' attribute of a region as well, an input to the
222  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
223  * namespace devices with namespace drivers.
224  */
225 int nd_region_to_nstype(struct nd_region *nd_region)
226 {
227 	if (is_memory(&nd_region->dev)) {
228 		u16 i, alias;
229 
230 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
231 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
232 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
233 
234 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
235 				alias++;
236 		}
237 		if (alias)
238 			return ND_DEVICE_NAMESPACE_PMEM;
239 		else
240 			return ND_DEVICE_NAMESPACE_IO;
241 	} else if (is_nd_blk(&nd_region->dev)) {
242 		return ND_DEVICE_NAMESPACE_BLK;
243 	}
244 
245 	return 0;
246 }
247 EXPORT_SYMBOL(nd_region_to_nstype);
248 
249 static ssize_t size_show(struct device *dev,
250 		struct device_attribute *attr, char *buf)
251 {
252 	struct nd_region *nd_region = to_nd_region(dev);
253 	unsigned long long size = 0;
254 
255 	if (is_memory(dev)) {
256 		size = nd_region->ndr_size;
257 	} else if (nd_region->ndr_mappings == 1) {
258 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
259 
260 		size = nd_mapping->size;
261 	}
262 
263 	return sprintf(buf, "%llu\n", size);
264 }
265 static DEVICE_ATTR_RO(size);
266 
267 static ssize_t deep_flush_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	/*
273 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
274 	 * not visible.
275 	 */
276 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
277 }
278 
279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
280 		const char *buf, size_t len)
281 {
282 	bool flush;
283 	int rc = strtobool(buf, &flush);
284 	struct nd_region *nd_region = to_nd_region(dev);
285 
286 	if (rc)
287 		return rc;
288 	if (!flush)
289 		return -EINVAL;
290 	rc = nvdimm_flush(nd_region, NULL);
291 	if (rc)
292 		return rc;
293 
294 	return len;
295 }
296 static DEVICE_ATTR_RW(deep_flush);
297 
298 static ssize_t mappings_show(struct device *dev,
299 		struct device_attribute *attr, char *buf)
300 {
301 	struct nd_region *nd_region = to_nd_region(dev);
302 
303 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
304 }
305 static DEVICE_ATTR_RO(mappings);
306 
307 static ssize_t nstype_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct nd_region *nd_region = to_nd_region(dev);
311 
312 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
313 }
314 static DEVICE_ATTR_RO(nstype);
315 
316 static ssize_t set_cookie_show(struct device *dev,
317 		struct device_attribute *attr, char *buf)
318 {
319 	struct nd_region *nd_region = to_nd_region(dev);
320 	struct nd_interleave_set *nd_set = nd_region->nd_set;
321 	ssize_t rc = 0;
322 
323 	if (is_memory(dev) && nd_set)
324 		/* pass, should be precluded by region_visible */;
325 	else
326 		return -ENXIO;
327 
328 	/*
329 	 * The cookie to show depends on which specification of the
330 	 * labels we are using. If there are not labels then default to
331 	 * the v1.1 namespace label cookie definition. To read all this
332 	 * data we need to wait for probing to settle.
333 	 */
334 	nd_device_lock(dev);
335 	nvdimm_bus_lock(dev);
336 	wait_nvdimm_bus_probe_idle(dev);
337 	if (nd_region->ndr_mappings) {
338 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
339 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
340 
341 		if (ndd) {
342 			struct nd_namespace_index *nsindex;
343 
344 			nsindex = to_namespace_index(ndd, ndd->ns_current);
345 			rc = sprintf(buf, "%#llx\n",
346 					nd_region_interleave_set_cookie(nd_region,
347 						nsindex));
348 		}
349 	}
350 	nvdimm_bus_unlock(dev);
351 	nd_device_unlock(dev);
352 
353 	if (rc)
354 		return rc;
355 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
356 }
357 static DEVICE_ATTR_RO(set_cookie);
358 
359 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
360 {
361 	resource_size_t blk_max_overlap = 0, available, overlap;
362 	int i;
363 
364 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
365 
366  retry:
367 	available = 0;
368 	overlap = blk_max_overlap;
369 	for (i = 0; i < nd_region->ndr_mappings; i++) {
370 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
371 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
372 
373 		/* if a dimm is disabled the available capacity is zero */
374 		if (!ndd)
375 			return 0;
376 
377 		if (is_memory(&nd_region->dev)) {
378 			available += nd_pmem_available_dpa(nd_region,
379 					nd_mapping, &overlap);
380 			if (overlap > blk_max_overlap) {
381 				blk_max_overlap = overlap;
382 				goto retry;
383 			}
384 		} else if (is_nd_blk(&nd_region->dev))
385 			available += nd_blk_available_dpa(nd_region);
386 	}
387 
388 	return available;
389 }
390 
391 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
392 {
393 	resource_size_t available = 0;
394 	int i;
395 
396 	if (is_memory(&nd_region->dev))
397 		available = PHYS_ADDR_MAX;
398 
399 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
400 	for (i = 0; i < nd_region->ndr_mappings; i++) {
401 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
402 
403 		if (is_memory(&nd_region->dev))
404 			available = min(available,
405 					nd_pmem_max_contiguous_dpa(nd_region,
406 								   nd_mapping));
407 		else if (is_nd_blk(&nd_region->dev))
408 			available += nd_blk_available_dpa(nd_region);
409 	}
410 	if (is_memory(&nd_region->dev))
411 		return available * nd_region->ndr_mappings;
412 	return available;
413 }
414 
415 static ssize_t available_size_show(struct device *dev,
416 		struct device_attribute *attr, char *buf)
417 {
418 	struct nd_region *nd_region = to_nd_region(dev);
419 	unsigned long long available = 0;
420 
421 	/*
422 	 * Flush in-flight updates and grab a snapshot of the available
423 	 * size.  Of course, this value is potentially invalidated the
424 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
425 	 * problem to not race itself.
426 	 */
427 	nd_device_lock(dev);
428 	nvdimm_bus_lock(dev);
429 	wait_nvdimm_bus_probe_idle(dev);
430 	available = nd_region_available_dpa(nd_region);
431 	nvdimm_bus_unlock(dev);
432 	nd_device_unlock(dev);
433 
434 	return sprintf(buf, "%llu\n", available);
435 }
436 static DEVICE_ATTR_RO(available_size);
437 
438 static ssize_t max_available_extent_show(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	struct nd_region *nd_region = to_nd_region(dev);
442 	unsigned long long available = 0;
443 
444 	nd_device_lock(dev);
445 	nvdimm_bus_lock(dev);
446 	wait_nvdimm_bus_probe_idle(dev);
447 	available = nd_region_allocatable_dpa(nd_region);
448 	nvdimm_bus_unlock(dev);
449 	nd_device_unlock(dev);
450 
451 	return sprintf(buf, "%llu\n", available);
452 }
453 static DEVICE_ATTR_RO(max_available_extent);
454 
455 static ssize_t init_namespaces_show(struct device *dev,
456 		struct device_attribute *attr, char *buf)
457 {
458 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
459 	ssize_t rc;
460 
461 	nvdimm_bus_lock(dev);
462 	if (ndrd)
463 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
464 	else
465 		rc = -ENXIO;
466 	nvdimm_bus_unlock(dev);
467 
468 	return rc;
469 }
470 static DEVICE_ATTR_RO(init_namespaces);
471 
472 static ssize_t namespace_seed_show(struct device *dev,
473 		struct device_attribute *attr, char *buf)
474 {
475 	struct nd_region *nd_region = to_nd_region(dev);
476 	ssize_t rc;
477 
478 	nvdimm_bus_lock(dev);
479 	if (nd_region->ns_seed)
480 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
481 	else
482 		rc = sprintf(buf, "\n");
483 	nvdimm_bus_unlock(dev);
484 	return rc;
485 }
486 static DEVICE_ATTR_RO(namespace_seed);
487 
488 static ssize_t btt_seed_show(struct device *dev,
489 		struct device_attribute *attr, char *buf)
490 {
491 	struct nd_region *nd_region = to_nd_region(dev);
492 	ssize_t rc;
493 
494 	nvdimm_bus_lock(dev);
495 	if (nd_region->btt_seed)
496 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
497 	else
498 		rc = sprintf(buf, "\n");
499 	nvdimm_bus_unlock(dev);
500 
501 	return rc;
502 }
503 static DEVICE_ATTR_RO(btt_seed);
504 
505 static ssize_t pfn_seed_show(struct device *dev,
506 		struct device_attribute *attr, char *buf)
507 {
508 	struct nd_region *nd_region = to_nd_region(dev);
509 	ssize_t rc;
510 
511 	nvdimm_bus_lock(dev);
512 	if (nd_region->pfn_seed)
513 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
514 	else
515 		rc = sprintf(buf, "\n");
516 	nvdimm_bus_unlock(dev);
517 
518 	return rc;
519 }
520 static DEVICE_ATTR_RO(pfn_seed);
521 
522 static ssize_t dax_seed_show(struct device *dev,
523 		struct device_attribute *attr, char *buf)
524 {
525 	struct nd_region *nd_region = to_nd_region(dev);
526 	ssize_t rc;
527 
528 	nvdimm_bus_lock(dev);
529 	if (nd_region->dax_seed)
530 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
531 	else
532 		rc = sprintf(buf, "\n");
533 	nvdimm_bus_unlock(dev);
534 
535 	return rc;
536 }
537 static DEVICE_ATTR_RO(dax_seed);
538 
539 static ssize_t read_only_show(struct device *dev,
540 		struct device_attribute *attr, char *buf)
541 {
542 	struct nd_region *nd_region = to_nd_region(dev);
543 
544 	return sprintf(buf, "%d\n", nd_region->ro);
545 }
546 
547 static ssize_t read_only_store(struct device *dev,
548 		struct device_attribute *attr, const char *buf, size_t len)
549 {
550 	bool ro;
551 	int rc = strtobool(buf, &ro);
552 	struct nd_region *nd_region = to_nd_region(dev);
553 
554 	if (rc)
555 		return rc;
556 
557 	nd_region->ro = ro;
558 	return len;
559 }
560 static DEVICE_ATTR_RW(read_only);
561 
562 static ssize_t region_badblocks_show(struct device *dev,
563 		struct device_attribute *attr, char *buf)
564 {
565 	struct nd_region *nd_region = to_nd_region(dev);
566 	ssize_t rc;
567 
568 	nd_device_lock(dev);
569 	if (dev->driver)
570 		rc = badblocks_show(&nd_region->bb, buf, 0);
571 	else
572 		rc = -ENXIO;
573 	nd_device_unlock(dev);
574 
575 	return rc;
576 }
577 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
578 
579 static ssize_t resource_show(struct device *dev,
580 		struct device_attribute *attr, char *buf)
581 {
582 	struct nd_region *nd_region = to_nd_region(dev);
583 
584 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
585 }
586 static DEVICE_ATTR_RO(resource);
587 
588 static ssize_t persistence_domain_show(struct device *dev,
589 		struct device_attribute *attr, char *buf)
590 {
591 	struct nd_region *nd_region = to_nd_region(dev);
592 
593 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
594 		return sprintf(buf, "cpu_cache\n");
595 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
596 		return sprintf(buf, "memory_controller\n");
597 	else
598 		return sprintf(buf, "\n");
599 }
600 static DEVICE_ATTR_RO(persistence_domain);
601 
602 static struct attribute *nd_region_attributes[] = {
603 	&dev_attr_size.attr,
604 	&dev_attr_nstype.attr,
605 	&dev_attr_mappings.attr,
606 	&dev_attr_btt_seed.attr,
607 	&dev_attr_pfn_seed.attr,
608 	&dev_attr_dax_seed.attr,
609 	&dev_attr_deep_flush.attr,
610 	&dev_attr_read_only.attr,
611 	&dev_attr_set_cookie.attr,
612 	&dev_attr_available_size.attr,
613 	&dev_attr_max_available_extent.attr,
614 	&dev_attr_namespace_seed.attr,
615 	&dev_attr_init_namespaces.attr,
616 	&dev_attr_badblocks.attr,
617 	&dev_attr_resource.attr,
618 	&dev_attr_persistence_domain.attr,
619 	NULL,
620 };
621 
622 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
623 {
624 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
625 	struct nd_region *nd_region = to_nd_region(dev);
626 	struct nd_interleave_set *nd_set = nd_region->nd_set;
627 	int type = nd_region_to_nstype(nd_region);
628 
629 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
630 		return 0;
631 
632 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
633 		return 0;
634 
635 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
636 		return 0;
637 
638 	if (a == &dev_attr_resource.attr) {
639 		if (is_nd_pmem(dev))
640 			return 0400;
641 		else
642 			return 0;
643 	}
644 
645 	if (a == &dev_attr_deep_flush.attr) {
646 		int has_flush = nvdimm_has_flush(nd_region);
647 
648 		if (has_flush == 1)
649 			return a->mode;
650 		else if (has_flush == 0)
651 			return 0444;
652 		else
653 			return 0;
654 	}
655 
656 	if (a == &dev_attr_persistence_domain.attr) {
657 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
658 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
659 			return 0;
660 		return a->mode;
661 	}
662 
663 	if (a != &dev_attr_set_cookie.attr
664 			&& a != &dev_attr_available_size.attr)
665 		return a->mode;
666 
667 	if ((type == ND_DEVICE_NAMESPACE_PMEM
668 				|| type == ND_DEVICE_NAMESPACE_BLK)
669 			&& a == &dev_attr_available_size.attr)
670 		return a->mode;
671 	else if (is_memory(dev) && nd_set)
672 		return a->mode;
673 
674 	return 0;
675 }
676 
677 struct attribute_group nd_region_attribute_group = {
678 	.attrs = nd_region_attributes,
679 	.is_visible = region_visible,
680 };
681 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
682 
683 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
684 		struct nd_namespace_index *nsindex)
685 {
686 	struct nd_interleave_set *nd_set = nd_region->nd_set;
687 
688 	if (!nd_set)
689 		return 0;
690 
691 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
692 			&& __le16_to_cpu(nsindex->minor) == 1)
693 		return nd_set->cookie1;
694 	return nd_set->cookie2;
695 }
696 
697 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
698 {
699 	struct nd_interleave_set *nd_set = nd_region->nd_set;
700 
701 	if (nd_set)
702 		return nd_set->altcookie;
703 	return 0;
704 }
705 
706 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
707 {
708 	struct nd_label_ent *label_ent, *e;
709 
710 	lockdep_assert_held(&nd_mapping->lock);
711 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
712 		list_del(&label_ent->list);
713 		kfree(label_ent);
714 	}
715 }
716 
717 /*
718  * Upon successful probe/remove, take/release a reference on the
719  * associated interleave set (if present), and plant new btt + namespace
720  * seeds.  Also, on the removal of a BLK region, notify the provider to
721  * disable the region.
722  */
723 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
724 		struct device *dev, bool probe)
725 {
726 	struct nd_region *nd_region;
727 
728 	if (!probe && is_nd_region(dev)) {
729 		int i;
730 
731 		nd_region = to_nd_region(dev);
732 		for (i = 0; i < nd_region->ndr_mappings; i++) {
733 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
734 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
735 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
736 
737 			mutex_lock(&nd_mapping->lock);
738 			nd_mapping_free_labels(nd_mapping);
739 			mutex_unlock(&nd_mapping->lock);
740 
741 			put_ndd(ndd);
742 			nd_mapping->ndd = NULL;
743 			if (ndd)
744 				atomic_dec(&nvdimm->busy);
745 		}
746 	}
747 	if (dev->parent && is_nd_region(dev->parent) && probe) {
748 		nd_region = to_nd_region(dev->parent);
749 		nvdimm_bus_lock(dev);
750 		if (nd_region->ns_seed == dev)
751 			nd_region_create_ns_seed(nd_region);
752 		nvdimm_bus_unlock(dev);
753 	}
754 	if (is_nd_btt(dev) && probe) {
755 		struct nd_btt *nd_btt = to_nd_btt(dev);
756 
757 		nd_region = to_nd_region(dev->parent);
758 		nvdimm_bus_lock(dev);
759 		if (nd_region->btt_seed == dev)
760 			nd_region_create_btt_seed(nd_region);
761 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
762 			nd_region_create_ns_seed(nd_region);
763 		nvdimm_bus_unlock(dev);
764 	}
765 	if (is_nd_pfn(dev) && probe) {
766 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
767 
768 		nd_region = to_nd_region(dev->parent);
769 		nvdimm_bus_lock(dev);
770 		if (nd_region->pfn_seed == dev)
771 			nd_region_create_pfn_seed(nd_region);
772 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
773 			nd_region_create_ns_seed(nd_region);
774 		nvdimm_bus_unlock(dev);
775 	}
776 	if (is_nd_dax(dev) && probe) {
777 		struct nd_dax *nd_dax = to_nd_dax(dev);
778 
779 		nd_region = to_nd_region(dev->parent);
780 		nvdimm_bus_lock(dev);
781 		if (nd_region->dax_seed == dev)
782 			nd_region_create_dax_seed(nd_region);
783 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
784 			nd_region_create_ns_seed(nd_region);
785 		nvdimm_bus_unlock(dev);
786 	}
787 }
788 
789 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
790 {
791 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
792 }
793 
794 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
795 {
796 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
797 }
798 
799 static ssize_t mappingN(struct device *dev, char *buf, int n)
800 {
801 	struct nd_region *nd_region = to_nd_region(dev);
802 	struct nd_mapping *nd_mapping;
803 	struct nvdimm *nvdimm;
804 
805 	if (n >= nd_region->ndr_mappings)
806 		return -ENXIO;
807 	nd_mapping = &nd_region->mapping[n];
808 	nvdimm = nd_mapping->nvdimm;
809 
810 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
811 			nd_mapping->start, nd_mapping->size,
812 			nd_mapping->position);
813 }
814 
815 #define REGION_MAPPING(idx) \
816 static ssize_t mapping##idx##_show(struct device *dev,		\
817 		struct device_attribute *attr, char *buf)	\
818 {								\
819 	return mappingN(dev, buf, idx);				\
820 }								\
821 static DEVICE_ATTR_RO(mapping##idx)
822 
823 /*
824  * 32 should be enough for a while, even in the presence of socket
825  * interleave a 32-way interleave set is a degenerate case.
826  */
827 REGION_MAPPING(0);
828 REGION_MAPPING(1);
829 REGION_MAPPING(2);
830 REGION_MAPPING(3);
831 REGION_MAPPING(4);
832 REGION_MAPPING(5);
833 REGION_MAPPING(6);
834 REGION_MAPPING(7);
835 REGION_MAPPING(8);
836 REGION_MAPPING(9);
837 REGION_MAPPING(10);
838 REGION_MAPPING(11);
839 REGION_MAPPING(12);
840 REGION_MAPPING(13);
841 REGION_MAPPING(14);
842 REGION_MAPPING(15);
843 REGION_MAPPING(16);
844 REGION_MAPPING(17);
845 REGION_MAPPING(18);
846 REGION_MAPPING(19);
847 REGION_MAPPING(20);
848 REGION_MAPPING(21);
849 REGION_MAPPING(22);
850 REGION_MAPPING(23);
851 REGION_MAPPING(24);
852 REGION_MAPPING(25);
853 REGION_MAPPING(26);
854 REGION_MAPPING(27);
855 REGION_MAPPING(28);
856 REGION_MAPPING(29);
857 REGION_MAPPING(30);
858 REGION_MAPPING(31);
859 
860 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
861 {
862 	struct device *dev = container_of(kobj, struct device, kobj);
863 	struct nd_region *nd_region = to_nd_region(dev);
864 
865 	if (n < nd_region->ndr_mappings)
866 		return a->mode;
867 	return 0;
868 }
869 
870 static struct attribute *mapping_attributes[] = {
871 	&dev_attr_mapping0.attr,
872 	&dev_attr_mapping1.attr,
873 	&dev_attr_mapping2.attr,
874 	&dev_attr_mapping3.attr,
875 	&dev_attr_mapping4.attr,
876 	&dev_attr_mapping5.attr,
877 	&dev_attr_mapping6.attr,
878 	&dev_attr_mapping7.attr,
879 	&dev_attr_mapping8.attr,
880 	&dev_attr_mapping9.attr,
881 	&dev_attr_mapping10.attr,
882 	&dev_attr_mapping11.attr,
883 	&dev_attr_mapping12.attr,
884 	&dev_attr_mapping13.attr,
885 	&dev_attr_mapping14.attr,
886 	&dev_attr_mapping15.attr,
887 	&dev_attr_mapping16.attr,
888 	&dev_attr_mapping17.attr,
889 	&dev_attr_mapping18.attr,
890 	&dev_attr_mapping19.attr,
891 	&dev_attr_mapping20.attr,
892 	&dev_attr_mapping21.attr,
893 	&dev_attr_mapping22.attr,
894 	&dev_attr_mapping23.attr,
895 	&dev_attr_mapping24.attr,
896 	&dev_attr_mapping25.attr,
897 	&dev_attr_mapping26.attr,
898 	&dev_attr_mapping27.attr,
899 	&dev_attr_mapping28.attr,
900 	&dev_attr_mapping29.attr,
901 	&dev_attr_mapping30.attr,
902 	&dev_attr_mapping31.attr,
903 	NULL,
904 };
905 
906 struct attribute_group nd_mapping_attribute_group = {
907 	.is_visible = mapping_visible,
908 	.attrs = mapping_attributes,
909 };
910 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
911 
912 int nd_blk_region_init(struct nd_region *nd_region)
913 {
914 	struct device *dev = &nd_region->dev;
915 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
916 
917 	if (!is_nd_blk(dev))
918 		return 0;
919 
920 	if (nd_region->ndr_mappings < 1) {
921 		dev_dbg(dev, "invalid BLK region\n");
922 		return -ENXIO;
923 	}
924 
925 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
926 }
927 
928 /**
929  * nd_region_acquire_lane - allocate and lock a lane
930  * @nd_region: region id and number of lanes possible
931  *
932  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
933  * We optimize for the common case where there are 256 lanes, one
934  * per-cpu.  For larger systems we need to lock to share lanes.  For now
935  * this implementation assumes the cost of maintaining an allocator for
936  * free lanes is on the order of the lock hold time, so it implements a
937  * static lane = cpu % num_lanes mapping.
938  *
939  * In the case of a BTT instance on top of a BLK namespace a lane may be
940  * acquired recursively.  We lock on the first instance.
941  *
942  * In the case of a BTT instance on top of PMEM, we only acquire a lane
943  * for the BTT metadata updates.
944  */
945 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
946 {
947 	unsigned int cpu, lane;
948 
949 	cpu = get_cpu();
950 	if (nd_region->num_lanes < nr_cpu_ids) {
951 		struct nd_percpu_lane *ndl_lock, *ndl_count;
952 
953 		lane = cpu % nd_region->num_lanes;
954 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
955 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
956 		if (ndl_count->count++ == 0)
957 			spin_lock(&ndl_lock->lock);
958 	} else
959 		lane = cpu;
960 
961 	return lane;
962 }
963 EXPORT_SYMBOL(nd_region_acquire_lane);
964 
965 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
966 {
967 	if (nd_region->num_lanes < nr_cpu_ids) {
968 		unsigned int cpu = get_cpu();
969 		struct nd_percpu_lane *ndl_lock, *ndl_count;
970 
971 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
972 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
973 		if (--ndl_count->count == 0)
974 			spin_unlock(&ndl_lock->lock);
975 		put_cpu();
976 	}
977 	put_cpu();
978 }
979 EXPORT_SYMBOL(nd_region_release_lane);
980 
981 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
982 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
983 		const char *caller)
984 {
985 	struct nd_region *nd_region;
986 	struct device *dev;
987 	void *region_buf;
988 	unsigned int i;
989 	int ro = 0;
990 
991 	for (i = 0; i < ndr_desc->num_mappings; i++) {
992 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
993 		struct nvdimm *nvdimm = mapping->nvdimm;
994 
995 		if ((mapping->start | mapping->size) % SZ_4K) {
996 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
997 					caller, dev_name(&nvdimm->dev), i);
998 
999 			return NULL;
1000 		}
1001 
1002 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1003 			ro = 1;
1004 
1005 		if (test_bit(NDD_NOBLK, &nvdimm->flags)
1006 				&& dev_type == &nd_blk_device_type) {
1007 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1008 					caller, dev_name(&nvdimm->dev), i);
1009 			return NULL;
1010 		}
1011 	}
1012 
1013 	if (dev_type == &nd_blk_device_type) {
1014 		struct nd_blk_region_desc *ndbr_desc;
1015 		struct nd_blk_region *ndbr;
1016 
1017 		ndbr_desc = to_blk_region_desc(ndr_desc);
1018 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1019 				* ndr_desc->num_mappings,
1020 				GFP_KERNEL);
1021 		if (ndbr) {
1022 			nd_region = &ndbr->nd_region;
1023 			ndbr->enable = ndbr_desc->enable;
1024 			ndbr->do_io = ndbr_desc->do_io;
1025 		}
1026 		region_buf = ndbr;
1027 	} else {
1028 		nd_region = kzalloc(sizeof(struct nd_region)
1029 				+ sizeof(struct nd_mapping)
1030 				* ndr_desc->num_mappings,
1031 				GFP_KERNEL);
1032 		region_buf = nd_region;
1033 	}
1034 
1035 	if (!region_buf)
1036 		return NULL;
1037 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1038 	if (nd_region->id < 0)
1039 		goto err_id;
1040 
1041 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1042 	if (!nd_region->lane)
1043 		goto err_percpu;
1044 
1045         for (i = 0; i < nr_cpu_ids; i++) {
1046 		struct nd_percpu_lane *ndl;
1047 
1048 		ndl = per_cpu_ptr(nd_region->lane, i);
1049 		spin_lock_init(&ndl->lock);
1050 		ndl->count = 0;
1051 	}
1052 
1053 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1054 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1055 		struct nvdimm *nvdimm = mapping->nvdimm;
1056 
1057 		nd_region->mapping[i].nvdimm = nvdimm;
1058 		nd_region->mapping[i].start = mapping->start;
1059 		nd_region->mapping[i].size = mapping->size;
1060 		nd_region->mapping[i].position = mapping->position;
1061 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1062 		mutex_init(&nd_region->mapping[i].lock);
1063 
1064 		get_device(&nvdimm->dev);
1065 	}
1066 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1067 	nd_region->provider_data = ndr_desc->provider_data;
1068 	nd_region->nd_set = ndr_desc->nd_set;
1069 	nd_region->num_lanes = ndr_desc->num_lanes;
1070 	nd_region->flags = ndr_desc->flags;
1071 	nd_region->ro = ro;
1072 	nd_region->numa_node = ndr_desc->numa_node;
1073 	nd_region->target_node = ndr_desc->target_node;
1074 	ida_init(&nd_region->ns_ida);
1075 	ida_init(&nd_region->btt_ida);
1076 	ida_init(&nd_region->pfn_ida);
1077 	ida_init(&nd_region->dax_ida);
1078 	dev = &nd_region->dev;
1079 	dev_set_name(dev, "region%d", nd_region->id);
1080 	dev->parent = &nvdimm_bus->dev;
1081 	dev->type = dev_type;
1082 	dev->groups = ndr_desc->attr_groups;
1083 	dev->of_node = ndr_desc->of_node;
1084 	nd_region->ndr_size = resource_size(ndr_desc->res);
1085 	nd_region->ndr_start = ndr_desc->res->start;
1086 	if (ndr_desc->flush)
1087 		nd_region->flush = ndr_desc->flush;
1088 	else
1089 		nd_region->flush = NULL;
1090 
1091 	nd_device_register(dev);
1092 
1093 	return nd_region;
1094 
1095  err_percpu:
1096 	ida_simple_remove(&region_ida, nd_region->id);
1097  err_id:
1098 	kfree(region_buf);
1099 	return NULL;
1100 }
1101 
1102 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1103 		struct nd_region_desc *ndr_desc)
1104 {
1105 	ndr_desc->num_lanes = ND_MAX_LANES;
1106 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1107 			__func__);
1108 }
1109 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1110 
1111 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1112 		struct nd_region_desc *ndr_desc)
1113 {
1114 	if (ndr_desc->num_mappings > 1)
1115 		return NULL;
1116 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1117 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1118 			__func__);
1119 }
1120 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1121 
1122 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1123 		struct nd_region_desc *ndr_desc)
1124 {
1125 	ndr_desc->num_lanes = ND_MAX_LANES;
1126 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1127 			__func__);
1128 }
1129 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1130 
1131 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1132 {
1133 	int rc = 0;
1134 
1135 	if (!nd_region->flush)
1136 		rc = generic_nvdimm_flush(nd_region);
1137 	else {
1138 		if (nd_region->flush(nd_region, bio))
1139 			rc = -EIO;
1140 	}
1141 
1142 	return rc;
1143 }
1144 /**
1145  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1146  * @nd_region: blk or interleaved pmem region
1147  */
1148 int generic_nvdimm_flush(struct nd_region *nd_region)
1149 {
1150 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1151 	int i, idx;
1152 
1153 	/*
1154 	 * Try to encourage some diversity in flush hint addresses
1155 	 * across cpus assuming a limited number of flush hints.
1156 	 */
1157 	idx = this_cpu_read(flush_idx);
1158 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1159 
1160 	/*
1161 	 * The first wmb() is needed to 'sfence' all previous writes
1162 	 * such that they are architecturally visible for the platform
1163 	 * buffer flush.  Note that we've already arranged for pmem
1164 	 * writes to avoid the cache via memcpy_flushcache().  The final
1165 	 * wmb() ensures ordering for the NVDIMM flush write.
1166 	 */
1167 	wmb();
1168 	for (i = 0; i < nd_region->ndr_mappings; i++)
1169 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1170 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1171 	wmb();
1172 
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(nvdimm_flush);
1176 
1177 /**
1178  * nvdimm_has_flush - determine write flushing requirements
1179  * @nd_region: blk or interleaved pmem region
1180  *
1181  * Returns 1 if writes require flushing
1182  * Returns 0 if writes do not require flushing
1183  * Returns -ENXIO if flushing capability can not be determined
1184  */
1185 int nvdimm_has_flush(struct nd_region *nd_region)
1186 {
1187 	int i;
1188 
1189 	/* no nvdimm or pmem api == flushing capability unknown */
1190 	if (nd_region->ndr_mappings == 0
1191 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1192 		return -ENXIO;
1193 
1194 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1195 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1196 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1197 
1198 		/* flush hints present / available */
1199 		if (nvdimm->num_flush)
1200 			return 1;
1201 	}
1202 
1203 	/*
1204 	 * The platform defines dimm devices without hints, assume
1205 	 * platform persistence mechanism like ADR
1206 	 */
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1210 
1211 int nvdimm_has_cache(struct nd_region *nd_region)
1212 {
1213 	return is_nd_pmem(&nd_region->dev) &&
1214 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1215 }
1216 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1217 
1218 bool is_nvdimm_sync(struct nd_region *nd_region)
1219 {
1220 	return is_nd_pmem(&nd_region->dev) &&
1221 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1222 }
1223 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1224 
1225 struct conflict_context {
1226 	struct nd_region *nd_region;
1227 	resource_size_t start, size;
1228 };
1229 
1230 static int region_conflict(struct device *dev, void *data)
1231 {
1232 	struct nd_region *nd_region;
1233 	struct conflict_context *ctx = data;
1234 	resource_size_t res_end, region_end, region_start;
1235 
1236 	if (!is_memory(dev))
1237 		return 0;
1238 
1239 	nd_region = to_nd_region(dev);
1240 	if (nd_region == ctx->nd_region)
1241 		return 0;
1242 
1243 	res_end = ctx->start + ctx->size;
1244 	region_start = nd_region->ndr_start;
1245 	region_end = region_start + nd_region->ndr_size;
1246 	if (ctx->start >= region_start && ctx->start < region_end)
1247 		return -EBUSY;
1248 	if (res_end > region_start && res_end <= region_end)
1249 		return -EBUSY;
1250 	return 0;
1251 }
1252 
1253 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1254 		resource_size_t size)
1255 {
1256 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1257 	struct conflict_context ctx = {
1258 		.nd_region = nd_region,
1259 		.start = start,
1260 		.size = size,
1261 	};
1262 
1263 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1264 }
1265 
1266 void __exit nd_region_devs_exit(void)
1267 {
1268 	ida_destroy(&region_ida);
1269 }
1270