xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 98a29c39)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24 
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33 
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 		struct nd_region_data *ndrd)
36 {
37 	int i, j;
38 
39 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 	for (i = 0; i < nvdimm->num_flush; i++) {
42 		struct resource *res = &nvdimm->flush_wpq[i];
43 		unsigned long pfn = PHYS_PFN(res->start);
44 		void __iomem *flush_page;
45 
46 		/* check if flush hints share a page */
47 		for (j = 0; j < i; j++) {
48 			struct resource *res_j = &nvdimm->flush_wpq[j];
49 			unsigned long pfn_j = PHYS_PFN(res_j->start);
50 
51 			if (pfn == pfn_j)
52 				break;
53 		}
54 
55 		if (j < i)
56 			flush_page = (void __iomem *) ((unsigned long)
57 					ndrd->flush_wpq[dimm][j] & PAGE_MASK);
58 		else
59 			flush_page = devm_nvdimm_ioremap(dev,
60 					PHYS_PFN(pfn), PAGE_SIZE);
61 		if (!flush_page)
62 			return -ENXIO;
63 		ndrd->flush_wpq[dimm][i] = flush_page
64 			+ (res->start & ~PAGE_MASK);
65 	}
66 
67 	return 0;
68 }
69 
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 	int i, num_flush = 0;
73 	struct nd_region_data *ndrd;
74 	struct device *dev = &nd_region->dev;
75 	size_t flush_data_size = sizeof(void *);
76 
77 	nvdimm_bus_lock(&nd_region->dev);
78 	for (i = 0; i < nd_region->ndr_mappings; i++) {
79 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
81 
82 		/* at least one null hint slot per-dimm for the "no-hint" case */
83 		flush_data_size += sizeof(void *);
84 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 		if (!nvdimm->num_flush)
86 			continue;
87 		flush_data_size += nvdimm->num_flush * sizeof(void *);
88 	}
89 	nvdimm_bus_unlock(&nd_region->dev);
90 
91 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 	if (!ndrd)
93 		return -ENOMEM;
94 	dev_set_drvdata(dev, ndrd);
95 
96 	ndrd->flush_mask = (1 << ilog2(num_flush)) - 1;
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	return 0;
107 }
108 
109 static void nd_region_release(struct device *dev)
110 {
111 	struct nd_region *nd_region = to_nd_region(dev);
112 	u16 i;
113 
114 	for (i = 0; i < nd_region->ndr_mappings; i++) {
115 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
116 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
117 
118 		put_device(&nvdimm->dev);
119 	}
120 	free_percpu(nd_region->lane);
121 	ida_simple_remove(&region_ida, nd_region->id);
122 	if (is_nd_blk(dev))
123 		kfree(to_nd_blk_region(dev));
124 	else
125 		kfree(nd_region);
126 }
127 
128 static struct device_type nd_blk_device_type = {
129 	.name = "nd_blk",
130 	.release = nd_region_release,
131 };
132 
133 static struct device_type nd_pmem_device_type = {
134 	.name = "nd_pmem",
135 	.release = nd_region_release,
136 };
137 
138 static struct device_type nd_volatile_device_type = {
139 	.name = "nd_volatile",
140 	.release = nd_region_release,
141 };
142 
143 bool is_nd_pmem(struct device *dev)
144 {
145 	return dev ? dev->type == &nd_pmem_device_type : false;
146 }
147 
148 bool is_nd_blk(struct device *dev)
149 {
150 	return dev ? dev->type == &nd_blk_device_type : false;
151 }
152 
153 struct nd_region *to_nd_region(struct device *dev)
154 {
155 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
156 
157 	WARN_ON(dev->type->release != nd_region_release);
158 	return nd_region;
159 }
160 EXPORT_SYMBOL_GPL(to_nd_region);
161 
162 struct nd_blk_region *to_nd_blk_region(struct device *dev)
163 {
164 	struct nd_region *nd_region = to_nd_region(dev);
165 
166 	WARN_ON(!is_nd_blk(dev));
167 	return container_of(nd_region, struct nd_blk_region, nd_region);
168 }
169 EXPORT_SYMBOL_GPL(to_nd_blk_region);
170 
171 void *nd_region_provider_data(struct nd_region *nd_region)
172 {
173 	return nd_region->provider_data;
174 }
175 EXPORT_SYMBOL_GPL(nd_region_provider_data);
176 
177 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
178 {
179 	return ndbr->blk_provider_data;
180 }
181 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
182 
183 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
184 {
185 	ndbr->blk_provider_data = data;
186 }
187 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
188 
189 /**
190  * nd_region_to_nstype() - region to an integer namespace type
191  * @nd_region: region-device to interrogate
192  *
193  * This is the 'nstype' attribute of a region as well, an input to the
194  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
195  * namespace devices with namespace drivers.
196  */
197 int nd_region_to_nstype(struct nd_region *nd_region)
198 {
199 	if (is_nd_pmem(&nd_region->dev)) {
200 		u16 i, alias;
201 
202 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
203 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
204 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
205 
206 			if (nvdimm->flags & NDD_ALIASING)
207 				alias++;
208 		}
209 		if (alias)
210 			return ND_DEVICE_NAMESPACE_PMEM;
211 		else
212 			return ND_DEVICE_NAMESPACE_IO;
213 	} else if (is_nd_blk(&nd_region->dev)) {
214 		return ND_DEVICE_NAMESPACE_BLK;
215 	}
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(nd_region_to_nstype);
220 
221 static ssize_t size_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct nd_region *nd_region = to_nd_region(dev);
225 	unsigned long long size = 0;
226 
227 	if (is_nd_pmem(dev)) {
228 		size = nd_region->ndr_size;
229 	} else if (nd_region->ndr_mappings == 1) {
230 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
231 
232 		size = nd_mapping->size;
233 	}
234 
235 	return sprintf(buf, "%llu\n", size);
236 }
237 static DEVICE_ATTR_RO(size);
238 
239 static ssize_t mappings_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct nd_region *nd_region = to_nd_region(dev);
243 
244 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
245 }
246 static DEVICE_ATTR_RO(mappings);
247 
248 static ssize_t nstype_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct nd_region *nd_region = to_nd_region(dev);
252 
253 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
254 }
255 static DEVICE_ATTR_RO(nstype);
256 
257 static ssize_t set_cookie_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	struct nd_region *nd_region = to_nd_region(dev);
261 	struct nd_interleave_set *nd_set = nd_region->nd_set;
262 
263 	if (is_nd_pmem(dev) && nd_set)
264 		/* pass, should be precluded by region_visible */;
265 	else
266 		return -ENXIO;
267 
268 	return sprintf(buf, "%#llx\n", nd_set->cookie);
269 }
270 static DEVICE_ATTR_RO(set_cookie);
271 
272 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
273 {
274 	resource_size_t blk_max_overlap = 0, available, overlap;
275 	int i;
276 
277 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
278 
279  retry:
280 	available = 0;
281 	overlap = blk_max_overlap;
282 	for (i = 0; i < nd_region->ndr_mappings; i++) {
283 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
284 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
285 
286 		/* if a dimm is disabled the available capacity is zero */
287 		if (!ndd)
288 			return 0;
289 
290 		if (is_nd_pmem(&nd_region->dev)) {
291 			available += nd_pmem_available_dpa(nd_region,
292 					nd_mapping, &overlap);
293 			if (overlap > blk_max_overlap) {
294 				blk_max_overlap = overlap;
295 				goto retry;
296 			}
297 		} else if (is_nd_blk(&nd_region->dev))
298 			available += nd_blk_available_dpa(nd_region);
299 	}
300 
301 	return available;
302 }
303 
304 static ssize_t available_size_show(struct device *dev,
305 		struct device_attribute *attr, char *buf)
306 {
307 	struct nd_region *nd_region = to_nd_region(dev);
308 	unsigned long long available = 0;
309 
310 	/*
311 	 * Flush in-flight updates and grab a snapshot of the available
312 	 * size.  Of course, this value is potentially invalidated the
313 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
314 	 * problem to not race itself.
315 	 */
316 	nvdimm_bus_lock(dev);
317 	wait_nvdimm_bus_probe_idle(dev);
318 	available = nd_region_available_dpa(nd_region);
319 	nvdimm_bus_unlock(dev);
320 
321 	return sprintf(buf, "%llu\n", available);
322 }
323 static DEVICE_ATTR_RO(available_size);
324 
325 static ssize_t init_namespaces_show(struct device *dev,
326 		struct device_attribute *attr, char *buf)
327 {
328 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
329 	ssize_t rc;
330 
331 	nvdimm_bus_lock(dev);
332 	if (ndrd)
333 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
334 	else
335 		rc = -ENXIO;
336 	nvdimm_bus_unlock(dev);
337 
338 	return rc;
339 }
340 static DEVICE_ATTR_RO(init_namespaces);
341 
342 static ssize_t namespace_seed_show(struct device *dev,
343 		struct device_attribute *attr, char *buf)
344 {
345 	struct nd_region *nd_region = to_nd_region(dev);
346 	ssize_t rc;
347 
348 	nvdimm_bus_lock(dev);
349 	if (nd_region->ns_seed)
350 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
351 	else
352 		rc = sprintf(buf, "\n");
353 	nvdimm_bus_unlock(dev);
354 	return rc;
355 }
356 static DEVICE_ATTR_RO(namespace_seed);
357 
358 static ssize_t btt_seed_show(struct device *dev,
359 		struct device_attribute *attr, char *buf)
360 {
361 	struct nd_region *nd_region = to_nd_region(dev);
362 	ssize_t rc;
363 
364 	nvdimm_bus_lock(dev);
365 	if (nd_region->btt_seed)
366 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
367 	else
368 		rc = sprintf(buf, "\n");
369 	nvdimm_bus_unlock(dev);
370 
371 	return rc;
372 }
373 static DEVICE_ATTR_RO(btt_seed);
374 
375 static ssize_t pfn_seed_show(struct device *dev,
376 		struct device_attribute *attr, char *buf)
377 {
378 	struct nd_region *nd_region = to_nd_region(dev);
379 	ssize_t rc;
380 
381 	nvdimm_bus_lock(dev);
382 	if (nd_region->pfn_seed)
383 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
384 	else
385 		rc = sprintf(buf, "\n");
386 	nvdimm_bus_unlock(dev);
387 
388 	return rc;
389 }
390 static DEVICE_ATTR_RO(pfn_seed);
391 
392 static ssize_t dax_seed_show(struct device *dev,
393 		struct device_attribute *attr, char *buf)
394 {
395 	struct nd_region *nd_region = to_nd_region(dev);
396 	ssize_t rc;
397 
398 	nvdimm_bus_lock(dev);
399 	if (nd_region->dax_seed)
400 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
401 	else
402 		rc = sprintf(buf, "\n");
403 	nvdimm_bus_unlock(dev);
404 
405 	return rc;
406 }
407 static DEVICE_ATTR_RO(dax_seed);
408 
409 static ssize_t read_only_show(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	struct nd_region *nd_region = to_nd_region(dev);
413 
414 	return sprintf(buf, "%d\n", nd_region->ro);
415 }
416 
417 static ssize_t read_only_store(struct device *dev,
418 		struct device_attribute *attr, const char *buf, size_t len)
419 {
420 	bool ro;
421 	int rc = strtobool(buf, &ro);
422 	struct nd_region *nd_region = to_nd_region(dev);
423 
424 	if (rc)
425 		return rc;
426 
427 	nd_region->ro = ro;
428 	return len;
429 }
430 static DEVICE_ATTR_RW(read_only);
431 
432 static struct attribute *nd_region_attributes[] = {
433 	&dev_attr_size.attr,
434 	&dev_attr_nstype.attr,
435 	&dev_attr_mappings.attr,
436 	&dev_attr_btt_seed.attr,
437 	&dev_attr_pfn_seed.attr,
438 	&dev_attr_dax_seed.attr,
439 	&dev_attr_read_only.attr,
440 	&dev_attr_set_cookie.attr,
441 	&dev_attr_available_size.attr,
442 	&dev_attr_namespace_seed.attr,
443 	&dev_attr_init_namespaces.attr,
444 	NULL,
445 };
446 
447 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
448 {
449 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
450 	struct nd_region *nd_region = to_nd_region(dev);
451 	struct nd_interleave_set *nd_set = nd_region->nd_set;
452 	int type = nd_region_to_nstype(nd_region);
453 
454 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
455 		return 0;
456 
457 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
458 		return 0;
459 
460 	if (a != &dev_attr_set_cookie.attr
461 			&& a != &dev_attr_available_size.attr)
462 		return a->mode;
463 
464 	if ((type == ND_DEVICE_NAMESPACE_PMEM
465 				|| type == ND_DEVICE_NAMESPACE_BLK)
466 			&& a == &dev_attr_available_size.attr)
467 		return a->mode;
468 	else if (is_nd_pmem(dev) && nd_set)
469 		return a->mode;
470 
471 	return 0;
472 }
473 
474 struct attribute_group nd_region_attribute_group = {
475 	.attrs = nd_region_attributes,
476 	.is_visible = region_visible,
477 };
478 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
479 
480 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
481 {
482 	struct nd_interleave_set *nd_set = nd_region->nd_set;
483 
484 	if (nd_set)
485 		return nd_set->cookie;
486 	return 0;
487 }
488 
489 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
490 {
491 	struct nd_label_ent *label_ent, *e;
492 
493 	WARN_ON(!mutex_is_locked(&nd_mapping->lock));
494 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
495 		list_del(&label_ent->list);
496 		kfree(label_ent);
497 	}
498 }
499 
500 /*
501  * Upon successful probe/remove, take/release a reference on the
502  * associated interleave set (if present), and plant new btt + namespace
503  * seeds.  Also, on the removal of a BLK region, notify the provider to
504  * disable the region.
505  */
506 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
507 		struct device *dev, bool probe)
508 {
509 	struct nd_region *nd_region;
510 
511 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
512 		int i;
513 
514 		nd_region = to_nd_region(dev);
515 		for (i = 0; i < nd_region->ndr_mappings; i++) {
516 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
517 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
518 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
519 
520 			mutex_lock(&nd_mapping->lock);
521 			nd_mapping_free_labels(nd_mapping);
522 			mutex_unlock(&nd_mapping->lock);
523 
524 			put_ndd(ndd);
525 			nd_mapping->ndd = NULL;
526 			if (ndd)
527 				atomic_dec(&nvdimm->busy);
528 		}
529 
530 		if (is_nd_pmem(dev))
531 			return;
532 	}
533 	if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
534 			&& probe) {
535 		nd_region = to_nd_region(dev->parent);
536 		nvdimm_bus_lock(dev);
537 		if (nd_region->ns_seed == dev)
538 			nd_region_create_ns_seed(nd_region);
539 		nvdimm_bus_unlock(dev);
540 	}
541 	if (is_nd_btt(dev) && probe) {
542 		struct nd_btt *nd_btt = to_nd_btt(dev);
543 
544 		nd_region = to_nd_region(dev->parent);
545 		nvdimm_bus_lock(dev);
546 		if (nd_region->btt_seed == dev)
547 			nd_region_create_btt_seed(nd_region);
548 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
549 			nd_region_create_ns_seed(nd_region);
550 		nvdimm_bus_unlock(dev);
551 	}
552 	if (is_nd_pfn(dev) && probe) {
553 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
554 
555 		nd_region = to_nd_region(dev->parent);
556 		nvdimm_bus_lock(dev);
557 		if (nd_region->pfn_seed == dev)
558 			nd_region_create_pfn_seed(nd_region);
559 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
560 			nd_region_create_ns_seed(nd_region);
561 		nvdimm_bus_unlock(dev);
562 	}
563 	if (is_nd_dax(dev) && probe) {
564 		struct nd_dax *nd_dax = to_nd_dax(dev);
565 
566 		nd_region = to_nd_region(dev->parent);
567 		nvdimm_bus_lock(dev);
568 		if (nd_region->dax_seed == dev)
569 			nd_region_create_dax_seed(nd_region);
570 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
571 			nd_region_create_ns_seed(nd_region);
572 		nvdimm_bus_unlock(dev);
573 	}
574 }
575 
576 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
577 {
578 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
579 }
580 
581 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
582 {
583 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
584 }
585 
586 static ssize_t mappingN(struct device *dev, char *buf, int n)
587 {
588 	struct nd_region *nd_region = to_nd_region(dev);
589 	struct nd_mapping *nd_mapping;
590 	struct nvdimm *nvdimm;
591 
592 	if (n >= nd_region->ndr_mappings)
593 		return -ENXIO;
594 	nd_mapping = &nd_region->mapping[n];
595 	nvdimm = nd_mapping->nvdimm;
596 
597 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
598 			nd_mapping->start, nd_mapping->size);
599 }
600 
601 #define REGION_MAPPING(idx) \
602 static ssize_t mapping##idx##_show(struct device *dev,		\
603 		struct device_attribute *attr, char *buf)	\
604 {								\
605 	return mappingN(dev, buf, idx);				\
606 }								\
607 static DEVICE_ATTR_RO(mapping##idx)
608 
609 /*
610  * 32 should be enough for a while, even in the presence of socket
611  * interleave a 32-way interleave set is a degenerate case.
612  */
613 REGION_MAPPING(0);
614 REGION_MAPPING(1);
615 REGION_MAPPING(2);
616 REGION_MAPPING(3);
617 REGION_MAPPING(4);
618 REGION_MAPPING(5);
619 REGION_MAPPING(6);
620 REGION_MAPPING(7);
621 REGION_MAPPING(8);
622 REGION_MAPPING(9);
623 REGION_MAPPING(10);
624 REGION_MAPPING(11);
625 REGION_MAPPING(12);
626 REGION_MAPPING(13);
627 REGION_MAPPING(14);
628 REGION_MAPPING(15);
629 REGION_MAPPING(16);
630 REGION_MAPPING(17);
631 REGION_MAPPING(18);
632 REGION_MAPPING(19);
633 REGION_MAPPING(20);
634 REGION_MAPPING(21);
635 REGION_MAPPING(22);
636 REGION_MAPPING(23);
637 REGION_MAPPING(24);
638 REGION_MAPPING(25);
639 REGION_MAPPING(26);
640 REGION_MAPPING(27);
641 REGION_MAPPING(28);
642 REGION_MAPPING(29);
643 REGION_MAPPING(30);
644 REGION_MAPPING(31);
645 
646 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
647 {
648 	struct device *dev = container_of(kobj, struct device, kobj);
649 	struct nd_region *nd_region = to_nd_region(dev);
650 
651 	if (n < nd_region->ndr_mappings)
652 		return a->mode;
653 	return 0;
654 }
655 
656 static struct attribute *mapping_attributes[] = {
657 	&dev_attr_mapping0.attr,
658 	&dev_attr_mapping1.attr,
659 	&dev_attr_mapping2.attr,
660 	&dev_attr_mapping3.attr,
661 	&dev_attr_mapping4.attr,
662 	&dev_attr_mapping5.attr,
663 	&dev_attr_mapping6.attr,
664 	&dev_attr_mapping7.attr,
665 	&dev_attr_mapping8.attr,
666 	&dev_attr_mapping9.attr,
667 	&dev_attr_mapping10.attr,
668 	&dev_attr_mapping11.attr,
669 	&dev_attr_mapping12.attr,
670 	&dev_attr_mapping13.attr,
671 	&dev_attr_mapping14.attr,
672 	&dev_attr_mapping15.attr,
673 	&dev_attr_mapping16.attr,
674 	&dev_attr_mapping17.attr,
675 	&dev_attr_mapping18.attr,
676 	&dev_attr_mapping19.attr,
677 	&dev_attr_mapping20.attr,
678 	&dev_attr_mapping21.attr,
679 	&dev_attr_mapping22.attr,
680 	&dev_attr_mapping23.attr,
681 	&dev_attr_mapping24.attr,
682 	&dev_attr_mapping25.attr,
683 	&dev_attr_mapping26.attr,
684 	&dev_attr_mapping27.attr,
685 	&dev_attr_mapping28.attr,
686 	&dev_attr_mapping29.attr,
687 	&dev_attr_mapping30.attr,
688 	&dev_attr_mapping31.attr,
689 	NULL,
690 };
691 
692 struct attribute_group nd_mapping_attribute_group = {
693 	.is_visible = mapping_visible,
694 	.attrs = mapping_attributes,
695 };
696 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
697 
698 int nd_blk_region_init(struct nd_region *nd_region)
699 {
700 	struct device *dev = &nd_region->dev;
701 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
702 
703 	if (!is_nd_blk(dev))
704 		return 0;
705 
706 	if (nd_region->ndr_mappings < 1) {
707 		dev_err(dev, "invalid BLK region\n");
708 		return -ENXIO;
709 	}
710 
711 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
712 }
713 
714 /**
715  * nd_region_acquire_lane - allocate and lock a lane
716  * @nd_region: region id and number of lanes possible
717  *
718  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
719  * We optimize for the common case where there are 256 lanes, one
720  * per-cpu.  For larger systems we need to lock to share lanes.  For now
721  * this implementation assumes the cost of maintaining an allocator for
722  * free lanes is on the order of the lock hold time, so it implements a
723  * static lane = cpu % num_lanes mapping.
724  *
725  * In the case of a BTT instance on top of a BLK namespace a lane may be
726  * acquired recursively.  We lock on the first instance.
727  *
728  * In the case of a BTT instance on top of PMEM, we only acquire a lane
729  * for the BTT metadata updates.
730  */
731 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
732 {
733 	unsigned int cpu, lane;
734 
735 	cpu = get_cpu();
736 	if (nd_region->num_lanes < nr_cpu_ids) {
737 		struct nd_percpu_lane *ndl_lock, *ndl_count;
738 
739 		lane = cpu % nd_region->num_lanes;
740 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
741 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
742 		if (ndl_count->count++ == 0)
743 			spin_lock(&ndl_lock->lock);
744 	} else
745 		lane = cpu;
746 
747 	return lane;
748 }
749 EXPORT_SYMBOL(nd_region_acquire_lane);
750 
751 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
752 {
753 	if (nd_region->num_lanes < nr_cpu_ids) {
754 		unsigned int cpu = get_cpu();
755 		struct nd_percpu_lane *ndl_lock, *ndl_count;
756 
757 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
758 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
759 		if (--ndl_count->count == 0)
760 			spin_unlock(&ndl_lock->lock);
761 		put_cpu();
762 	}
763 	put_cpu();
764 }
765 EXPORT_SYMBOL(nd_region_release_lane);
766 
767 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
768 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
769 		const char *caller)
770 {
771 	struct nd_region *nd_region;
772 	struct device *dev;
773 	void *region_buf;
774 	unsigned int i;
775 	int ro = 0;
776 
777 	for (i = 0; i < ndr_desc->num_mappings; i++) {
778 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
779 		struct nvdimm *nvdimm = mapping->nvdimm;
780 
781 		if ((mapping->start | mapping->size) % SZ_4K) {
782 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
783 					caller, dev_name(&nvdimm->dev), i);
784 
785 			return NULL;
786 		}
787 
788 		if (nvdimm->flags & NDD_UNARMED)
789 			ro = 1;
790 	}
791 
792 	if (dev_type == &nd_blk_device_type) {
793 		struct nd_blk_region_desc *ndbr_desc;
794 		struct nd_blk_region *ndbr;
795 
796 		ndbr_desc = to_blk_region_desc(ndr_desc);
797 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
798 				* ndr_desc->num_mappings,
799 				GFP_KERNEL);
800 		if (ndbr) {
801 			nd_region = &ndbr->nd_region;
802 			ndbr->enable = ndbr_desc->enable;
803 			ndbr->do_io = ndbr_desc->do_io;
804 		}
805 		region_buf = ndbr;
806 	} else {
807 		nd_region = kzalloc(sizeof(struct nd_region)
808 				+ sizeof(struct nd_mapping)
809 				* ndr_desc->num_mappings,
810 				GFP_KERNEL);
811 		region_buf = nd_region;
812 	}
813 
814 	if (!region_buf)
815 		return NULL;
816 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
817 	if (nd_region->id < 0)
818 		goto err_id;
819 
820 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
821 	if (!nd_region->lane)
822 		goto err_percpu;
823 
824         for (i = 0; i < nr_cpu_ids; i++) {
825 		struct nd_percpu_lane *ndl;
826 
827 		ndl = per_cpu_ptr(nd_region->lane, i);
828 		spin_lock_init(&ndl->lock);
829 		ndl->count = 0;
830 	}
831 
832 	for (i = 0; i < ndr_desc->num_mappings; i++) {
833 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
834 		struct nvdimm *nvdimm = mapping->nvdimm;
835 
836 		nd_region->mapping[i].nvdimm = nvdimm;
837 		nd_region->mapping[i].start = mapping->start;
838 		nd_region->mapping[i].size = mapping->size;
839 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
840 		mutex_init(&nd_region->mapping[i].lock);
841 
842 		get_device(&nvdimm->dev);
843 	}
844 	nd_region->ndr_mappings = ndr_desc->num_mappings;
845 	nd_region->provider_data = ndr_desc->provider_data;
846 	nd_region->nd_set = ndr_desc->nd_set;
847 	nd_region->num_lanes = ndr_desc->num_lanes;
848 	nd_region->flags = ndr_desc->flags;
849 	nd_region->ro = ro;
850 	nd_region->numa_node = ndr_desc->numa_node;
851 	ida_init(&nd_region->ns_ida);
852 	ida_init(&nd_region->btt_ida);
853 	ida_init(&nd_region->pfn_ida);
854 	ida_init(&nd_region->dax_ida);
855 	dev = &nd_region->dev;
856 	dev_set_name(dev, "region%d", nd_region->id);
857 	dev->parent = &nvdimm_bus->dev;
858 	dev->type = dev_type;
859 	dev->groups = ndr_desc->attr_groups;
860 	nd_region->ndr_size = resource_size(ndr_desc->res);
861 	nd_region->ndr_start = ndr_desc->res->start;
862 	nd_device_register(dev);
863 
864 	return nd_region;
865 
866  err_percpu:
867 	ida_simple_remove(&region_ida, nd_region->id);
868  err_id:
869 	kfree(region_buf);
870 	return NULL;
871 }
872 
873 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
874 		struct nd_region_desc *ndr_desc)
875 {
876 	ndr_desc->num_lanes = ND_MAX_LANES;
877 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
878 			__func__);
879 }
880 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
881 
882 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
883 		struct nd_region_desc *ndr_desc)
884 {
885 	if (ndr_desc->num_mappings > 1)
886 		return NULL;
887 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
888 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
889 			__func__);
890 }
891 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
892 
893 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
894 		struct nd_region_desc *ndr_desc)
895 {
896 	ndr_desc->num_lanes = ND_MAX_LANES;
897 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
898 			__func__);
899 }
900 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
901 
902 /**
903  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
904  * @nd_region: blk or interleaved pmem region
905  */
906 void nvdimm_flush(struct nd_region *nd_region)
907 {
908 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
909 	int i, idx;
910 
911 	/*
912 	 * Try to encourage some diversity in flush hint addresses
913 	 * across cpus assuming a limited number of flush hints.
914 	 */
915 	idx = this_cpu_read(flush_idx);
916 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
917 
918 	/*
919 	 * The first wmb() is needed to 'sfence' all previous writes
920 	 * such that they are architecturally visible for the platform
921 	 * buffer flush.  Note that we've already arranged for pmem
922 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
923 	 * final wmb() ensures ordering for the NVDIMM flush write.
924 	 */
925 	wmb();
926 	for (i = 0; i < nd_region->ndr_mappings; i++)
927 		if (ndrd->flush_wpq[i][0])
928 			writeq(1, ndrd->flush_wpq[i][idx & ndrd->flush_mask]);
929 	wmb();
930 }
931 EXPORT_SYMBOL_GPL(nvdimm_flush);
932 
933 /**
934  * nvdimm_has_flush - determine write flushing requirements
935  * @nd_region: blk or interleaved pmem region
936  *
937  * Returns 1 if writes require flushing
938  * Returns 0 if writes do not require flushing
939  * Returns -ENXIO if flushing capability can not be determined
940  */
941 int nvdimm_has_flush(struct nd_region *nd_region)
942 {
943 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
944 	int i;
945 
946 	/* no nvdimm == flushing capability unknown */
947 	if (nd_region->ndr_mappings == 0)
948 		return -ENXIO;
949 
950 	for (i = 0; i < nd_region->ndr_mappings; i++)
951 		/* flush hints present, flushing required */
952 		if (ndrd->flush_wpq[i][0])
953 			return 1;
954 
955 	/*
956 	 * The platform defines dimm devices without hints, assume
957 	 * platform persistence mechanism like ADR
958 	 */
959 	return 0;
960 }
961 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
962 
963 void __exit nd_region_devs_exit(void)
964 {
965 	ida_destroy(&region_ida);
966 }
967