1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/sort.h> 19 #include <linux/io.h> 20 #include <linux/nd.h> 21 #include "nd-core.h" 22 #include "nd.h" 23 24 /* 25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 26 * irrelevant. 27 */ 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 30 static DEFINE_IDA(region_ida); 31 static DEFINE_PER_CPU(int, flush_idx); 32 33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 34 struct nd_region_data *ndrd) 35 { 36 int i, j; 37 38 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 39 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 40 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 41 struct resource *res = &nvdimm->flush_wpq[i]; 42 unsigned long pfn = PHYS_PFN(res->start); 43 void __iomem *flush_page; 44 45 /* check if flush hints share a page */ 46 for (j = 0; j < i; j++) { 47 struct resource *res_j = &nvdimm->flush_wpq[j]; 48 unsigned long pfn_j = PHYS_PFN(res_j->start); 49 50 if (pfn == pfn_j) 51 break; 52 } 53 54 if (j < i) 55 flush_page = (void __iomem *) ((unsigned long) 56 ndrd_get_flush_wpq(ndrd, dimm, j) 57 & PAGE_MASK); 58 else 59 flush_page = devm_nvdimm_ioremap(dev, 60 PFN_PHYS(pfn), PAGE_SIZE); 61 if (!flush_page) 62 return -ENXIO; 63 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 64 + (res->start & ~PAGE_MASK)); 65 } 66 67 return 0; 68 } 69 70 int nd_region_activate(struct nd_region *nd_region) 71 { 72 int i, j, num_flush = 0; 73 struct nd_region_data *ndrd; 74 struct device *dev = &nd_region->dev; 75 size_t flush_data_size = sizeof(void *); 76 77 nvdimm_bus_lock(&nd_region->dev); 78 for (i = 0; i < nd_region->ndr_mappings; i++) { 79 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 80 struct nvdimm *nvdimm = nd_mapping->nvdimm; 81 82 /* at least one null hint slot per-dimm for the "no-hint" case */ 83 flush_data_size += sizeof(void *); 84 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 85 if (!nvdimm->num_flush) 86 continue; 87 flush_data_size += nvdimm->num_flush * sizeof(void *); 88 } 89 nvdimm_bus_unlock(&nd_region->dev); 90 91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 92 if (!ndrd) 93 return -ENOMEM; 94 dev_set_drvdata(dev, ndrd); 95 96 if (!num_flush) 97 return 0; 98 99 ndrd->hints_shift = ilog2(num_flush); 100 for (i = 0; i < nd_region->ndr_mappings; i++) { 101 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 102 struct nvdimm *nvdimm = nd_mapping->nvdimm; 103 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 104 105 if (rc) 106 return rc; 107 } 108 109 /* 110 * Clear out entries that are duplicates. This should prevent the 111 * extra flushings. 112 */ 113 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 114 /* ignore if NULL already */ 115 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 116 continue; 117 118 for (j = i + 1; j < nd_region->ndr_mappings; j++) 119 if (ndrd_get_flush_wpq(ndrd, i, 0) == 120 ndrd_get_flush_wpq(ndrd, j, 0)) 121 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 122 } 123 124 return 0; 125 } 126 127 static void nd_region_release(struct device *dev) 128 { 129 struct nd_region *nd_region = to_nd_region(dev); 130 u16 i; 131 132 for (i = 0; i < nd_region->ndr_mappings; i++) { 133 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 134 struct nvdimm *nvdimm = nd_mapping->nvdimm; 135 136 put_device(&nvdimm->dev); 137 } 138 free_percpu(nd_region->lane); 139 ida_simple_remove(®ion_ida, nd_region->id); 140 if (is_nd_blk(dev)) 141 kfree(to_nd_blk_region(dev)); 142 else 143 kfree(nd_region); 144 } 145 146 static struct device_type nd_blk_device_type = { 147 .name = "nd_blk", 148 .release = nd_region_release, 149 }; 150 151 static struct device_type nd_pmem_device_type = { 152 .name = "nd_pmem", 153 .release = nd_region_release, 154 }; 155 156 static struct device_type nd_volatile_device_type = { 157 .name = "nd_volatile", 158 .release = nd_region_release, 159 }; 160 161 bool is_nd_pmem(struct device *dev) 162 { 163 return dev ? dev->type == &nd_pmem_device_type : false; 164 } 165 166 bool is_nd_blk(struct device *dev) 167 { 168 return dev ? dev->type == &nd_blk_device_type : false; 169 } 170 171 bool is_nd_volatile(struct device *dev) 172 { 173 return dev ? dev->type == &nd_volatile_device_type : false; 174 } 175 176 struct nd_region *to_nd_region(struct device *dev) 177 { 178 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 179 180 WARN_ON(dev->type->release != nd_region_release); 181 return nd_region; 182 } 183 EXPORT_SYMBOL_GPL(to_nd_region); 184 185 struct device *nd_region_dev(struct nd_region *nd_region) 186 { 187 if (!nd_region) 188 return NULL; 189 return &nd_region->dev; 190 } 191 EXPORT_SYMBOL_GPL(nd_region_dev); 192 193 struct nd_blk_region *to_nd_blk_region(struct device *dev) 194 { 195 struct nd_region *nd_region = to_nd_region(dev); 196 197 WARN_ON(!is_nd_blk(dev)); 198 return container_of(nd_region, struct nd_blk_region, nd_region); 199 } 200 EXPORT_SYMBOL_GPL(to_nd_blk_region); 201 202 void *nd_region_provider_data(struct nd_region *nd_region) 203 { 204 return nd_region->provider_data; 205 } 206 EXPORT_SYMBOL_GPL(nd_region_provider_data); 207 208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 209 { 210 return ndbr->blk_provider_data; 211 } 212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 213 214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 215 { 216 ndbr->blk_provider_data = data; 217 } 218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 219 220 /** 221 * nd_region_to_nstype() - region to an integer namespace type 222 * @nd_region: region-device to interrogate 223 * 224 * This is the 'nstype' attribute of a region as well, an input to the 225 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 226 * namespace devices with namespace drivers. 227 */ 228 int nd_region_to_nstype(struct nd_region *nd_region) 229 { 230 if (is_memory(&nd_region->dev)) { 231 u16 i, alias; 232 233 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 234 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 235 struct nvdimm *nvdimm = nd_mapping->nvdimm; 236 237 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 238 alias++; 239 } 240 if (alias) 241 return ND_DEVICE_NAMESPACE_PMEM; 242 else 243 return ND_DEVICE_NAMESPACE_IO; 244 } else if (is_nd_blk(&nd_region->dev)) { 245 return ND_DEVICE_NAMESPACE_BLK; 246 } 247 248 return 0; 249 } 250 EXPORT_SYMBOL(nd_region_to_nstype); 251 252 static ssize_t size_show(struct device *dev, 253 struct device_attribute *attr, char *buf) 254 { 255 struct nd_region *nd_region = to_nd_region(dev); 256 unsigned long long size = 0; 257 258 if (is_memory(dev)) { 259 size = nd_region->ndr_size; 260 } else if (nd_region->ndr_mappings == 1) { 261 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 262 263 size = nd_mapping->size; 264 } 265 266 return sprintf(buf, "%llu\n", size); 267 } 268 static DEVICE_ATTR_RO(size); 269 270 static ssize_t deep_flush_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct nd_region *nd_region = to_nd_region(dev); 274 275 /* 276 * NOTE: in the nvdimm_has_flush() error case this attribute is 277 * not visible. 278 */ 279 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 280 } 281 282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 283 const char *buf, size_t len) 284 { 285 bool flush; 286 int rc = strtobool(buf, &flush); 287 struct nd_region *nd_region = to_nd_region(dev); 288 289 if (rc) 290 return rc; 291 if (!flush) 292 return -EINVAL; 293 nvdimm_flush(nd_region); 294 295 return len; 296 } 297 static DEVICE_ATTR_RW(deep_flush); 298 299 static ssize_t mappings_show(struct device *dev, 300 struct device_attribute *attr, char *buf) 301 { 302 struct nd_region *nd_region = to_nd_region(dev); 303 304 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 305 } 306 static DEVICE_ATTR_RO(mappings); 307 308 static ssize_t nstype_show(struct device *dev, 309 struct device_attribute *attr, char *buf) 310 { 311 struct nd_region *nd_region = to_nd_region(dev); 312 313 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 314 } 315 static DEVICE_ATTR_RO(nstype); 316 317 static ssize_t set_cookie_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct nd_region *nd_region = to_nd_region(dev); 321 struct nd_interleave_set *nd_set = nd_region->nd_set; 322 ssize_t rc = 0; 323 324 if (is_memory(dev) && nd_set) 325 /* pass, should be precluded by region_visible */; 326 else 327 return -ENXIO; 328 329 /* 330 * The cookie to show depends on which specification of the 331 * labels we are using. If there are not labels then default to 332 * the v1.1 namespace label cookie definition. To read all this 333 * data we need to wait for probing to settle. 334 */ 335 device_lock(dev); 336 nvdimm_bus_lock(dev); 337 wait_nvdimm_bus_probe_idle(dev); 338 if (nd_region->ndr_mappings) { 339 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 340 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 341 342 if (ndd) { 343 struct nd_namespace_index *nsindex; 344 345 nsindex = to_namespace_index(ndd, ndd->ns_current); 346 rc = sprintf(buf, "%#llx\n", 347 nd_region_interleave_set_cookie(nd_region, 348 nsindex)); 349 } 350 } 351 nvdimm_bus_unlock(dev); 352 device_unlock(dev); 353 354 if (rc) 355 return rc; 356 return sprintf(buf, "%#llx\n", nd_set->cookie1); 357 } 358 static DEVICE_ATTR_RO(set_cookie); 359 360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 361 { 362 resource_size_t blk_max_overlap = 0, available, overlap; 363 int i; 364 365 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 366 367 retry: 368 available = 0; 369 overlap = blk_max_overlap; 370 for (i = 0; i < nd_region->ndr_mappings; i++) { 371 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 372 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 373 374 /* if a dimm is disabled the available capacity is zero */ 375 if (!ndd) 376 return 0; 377 378 if (is_memory(&nd_region->dev)) { 379 available += nd_pmem_available_dpa(nd_region, 380 nd_mapping, &overlap); 381 if (overlap > blk_max_overlap) { 382 blk_max_overlap = overlap; 383 goto retry; 384 } 385 } else if (is_nd_blk(&nd_region->dev)) 386 available += nd_blk_available_dpa(nd_region); 387 } 388 389 return available; 390 } 391 392 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 393 { 394 resource_size_t available = 0; 395 int i; 396 397 if (is_memory(&nd_region->dev)) 398 available = PHYS_ADDR_MAX; 399 400 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 401 for (i = 0; i < nd_region->ndr_mappings; i++) { 402 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 403 404 if (is_memory(&nd_region->dev)) 405 available = min(available, 406 nd_pmem_max_contiguous_dpa(nd_region, 407 nd_mapping)); 408 else if (is_nd_blk(&nd_region->dev)) 409 available += nd_blk_available_dpa(nd_region); 410 } 411 if (is_memory(&nd_region->dev)) 412 return available * nd_region->ndr_mappings; 413 return available; 414 } 415 416 static ssize_t available_size_show(struct device *dev, 417 struct device_attribute *attr, char *buf) 418 { 419 struct nd_region *nd_region = to_nd_region(dev); 420 unsigned long long available = 0; 421 422 /* 423 * Flush in-flight updates and grab a snapshot of the available 424 * size. Of course, this value is potentially invalidated the 425 * memory nvdimm_bus_lock() is dropped, but that's userspace's 426 * problem to not race itself. 427 */ 428 nvdimm_bus_lock(dev); 429 wait_nvdimm_bus_probe_idle(dev); 430 available = nd_region_available_dpa(nd_region); 431 nvdimm_bus_unlock(dev); 432 433 return sprintf(buf, "%llu\n", available); 434 } 435 static DEVICE_ATTR_RO(available_size); 436 437 static ssize_t max_available_extent_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct nd_region *nd_region = to_nd_region(dev); 441 unsigned long long available = 0; 442 443 nvdimm_bus_lock(dev); 444 wait_nvdimm_bus_probe_idle(dev); 445 available = nd_region_allocatable_dpa(nd_region); 446 nvdimm_bus_unlock(dev); 447 448 return sprintf(buf, "%llu\n", available); 449 } 450 static DEVICE_ATTR_RO(max_available_extent); 451 452 static ssize_t init_namespaces_show(struct device *dev, 453 struct device_attribute *attr, char *buf) 454 { 455 struct nd_region_data *ndrd = dev_get_drvdata(dev); 456 ssize_t rc; 457 458 nvdimm_bus_lock(dev); 459 if (ndrd) 460 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 461 else 462 rc = -ENXIO; 463 nvdimm_bus_unlock(dev); 464 465 return rc; 466 } 467 static DEVICE_ATTR_RO(init_namespaces); 468 469 static ssize_t namespace_seed_show(struct device *dev, 470 struct device_attribute *attr, char *buf) 471 { 472 struct nd_region *nd_region = to_nd_region(dev); 473 ssize_t rc; 474 475 nvdimm_bus_lock(dev); 476 if (nd_region->ns_seed) 477 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 478 else 479 rc = sprintf(buf, "\n"); 480 nvdimm_bus_unlock(dev); 481 return rc; 482 } 483 static DEVICE_ATTR_RO(namespace_seed); 484 485 static ssize_t btt_seed_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct nd_region *nd_region = to_nd_region(dev); 489 ssize_t rc; 490 491 nvdimm_bus_lock(dev); 492 if (nd_region->btt_seed) 493 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 494 else 495 rc = sprintf(buf, "\n"); 496 nvdimm_bus_unlock(dev); 497 498 return rc; 499 } 500 static DEVICE_ATTR_RO(btt_seed); 501 502 static ssize_t pfn_seed_show(struct device *dev, 503 struct device_attribute *attr, char *buf) 504 { 505 struct nd_region *nd_region = to_nd_region(dev); 506 ssize_t rc; 507 508 nvdimm_bus_lock(dev); 509 if (nd_region->pfn_seed) 510 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 511 else 512 rc = sprintf(buf, "\n"); 513 nvdimm_bus_unlock(dev); 514 515 return rc; 516 } 517 static DEVICE_ATTR_RO(pfn_seed); 518 519 static ssize_t dax_seed_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct nd_region *nd_region = to_nd_region(dev); 523 ssize_t rc; 524 525 nvdimm_bus_lock(dev); 526 if (nd_region->dax_seed) 527 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 528 else 529 rc = sprintf(buf, "\n"); 530 nvdimm_bus_unlock(dev); 531 532 return rc; 533 } 534 static DEVICE_ATTR_RO(dax_seed); 535 536 static ssize_t read_only_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct nd_region *nd_region = to_nd_region(dev); 540 541 return sprintf(buf, "%d\n", nd_region->ro); 542 } 543 544 static ssize_t read_only_store(struct device *dev, 545 struct device_attribute *attr, const char *buf, size_t len) 546 { 547 bool ro; 548 int rc = strtobool(buf, &ro); 549 struct nd_region *nd_region = to_nd_region(dev); 550 551 if (rc) 552 return rc; 553 554 nd_region->ro = ro; 555 return len; 556 } 557 static DEVICE_ATTR_RW(read_only); 558 559 static ssize_t region_badblocks_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct nd_region *nd_region = to_nd_region(dev); 563 ssize_t rc; 564 565 device_lock(dev); 566 if (dev->driver) 567 rc = badblocks_show(&nd_region->bb, buf, 0); 568 else 569 rc = -ENXIO; 570 device_unlock(dev); 571 572 return rc; 573 } 574 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 575 576 static ssize_t resource_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct nd_region *nd_region = to_nd_region(dev); 580 581 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 582 } 583 static DEVICE_ATTR_RO(resource); 584 585 static ssize_t persistence_domain_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct nd_region *nd_region = to_nd_region(dev); 589 590 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 591 return sprintf(buf, "cpu_cache\n"); 592 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 593 return sprintf(buf, "memory_controller\n"); 594 else 595 return sprintf(buf, "\n"); 596 } 597 static DEVICE_ATTR_RO(persistence_domain); 598 599 static struct attribute *nd_region_attributes[] = { 600 &dev_attr_size.attr, 601 &dev_attr_nstype.attr, 602 &dev_attr_mappings.attr, 603 &dev_attr_btt_seed.attr, 604 &dev_attr_pfn_seed.attr, 605 &dev_attr_dax_seed.attr, 606 &dev_attr_deep_flush.attr, 607 &dev_attr_read_only.attr, 608 &dev_attr_set_cookie.attr, 609 &dev_attr_available_size.attr, 610 &dev_attr_max_available_extent.attr, 611 &dev_attr_namespace_seed.attr, 612 &dev_attr_init_namespaces.attr, 613 &dev_attr_badblocks.attr, 614 &dev_attr_resource.attr, 615 &dev_attr_persistence_domain.attr, 616 NULL, 617 }; 618 619 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 620 { 621 struct device *dev = container_of(kobj, typeof(*dev), kobj); 622 struct nd_region *nd_region = to_nd_region(dev); 623 struct nd_interleave_set *nd_set = nd_region->nd_set; 624 int type = nd_region_to_nstype(nd_region); 625 626 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 627 return 0; 628 629 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 630 return 0; 631 632 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 633 return 0; 634 635 if (a == &dev_attr_resource.attr) { 636 if (is_nd_pmem(dev)) 637 return 0400; 638 else 639 return 0; 640 } 641 642 if (a == &dev_attr_deep_flush.attr) { 643 int has_flush = nvdimm_has_flush(nd_region); 644 645 if (has_flush == 1) 646 return a->mode; 647 else if (has_flush == 0) 648 return 0444; 649 else 650 return 0; 651 } 652 653 if (a == &dev_attr_persistence_domain.attr) { 654 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 655 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 656 return 0; 657 return a->mode; 658 } 659 660 if (a != &dev_attr_set_cookie.attr 661 && a != &dev_attr_available_size.attr) 662 return a->mode; 663 664 if ((type == ND_DEVICE_NAMESPACE_PMEM 665 || type == ND_DEVICE_NAMESPACE_BLK) 666 && a == &dev_attr_available_size.attr) 667 return a->mode; 668 else if (is_memory(dev) && nd_set) 669 return a->mode; 670 671 return 0; 672 } 673 674 struct attribute_group nd_region_attribute_group = { 675 .attrs = nd_region_attributes, 676 .is_visible = region_visible, 677 }; 678 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 679 680 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 681 struct nd_namespace_index *nsindex) 682 { 683 struct nd_interleave_set *nd_set = nd_region->nd_set; 684 685 if (!nd_set) 686 return 0; 687 688 if (nsindex && __le16_to_cpu(nsindex->major) == 1 689 && __le16_to_cpu(nsindex->minor) == 1) 690 return nd_set->cookie1; 691 return nd_set->cookie2; 692 } 693 694 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 695 { 696 struct nd_interleave_set *nd_set = nd_region->nd_set; 697 698 if (nd_set) 699 return nd_set->altcookie; 700 return 0; 701 } 702 703 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 704 { 705 struct nd_label_ent *label_ent, *e; 706 707 lockdep_assert_held(&nd_mapping->lock); 708 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 709 list_del(&label_ent->list); 710 kfree(label_ent); 711 } 712 } 713 714 /* 715 * Upon successful probe/remove, take/release a reference on the 716 * associated interleave set (if present), and plant new btt + namespace 717 * seeds. Also, on the removal of a BLK region, notify the provider to 718 * disable the region. 719 */ 720 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 721 struct device *dev, bool probe) 722 { 723 struct nd_region *nd_region; 724 725 if (!probe && is_nd_region(dev)) { 726 int i; 727 728 nd_region = to_nd_region(dev); 729 for (i = 0; i < nd_region->ndr_mappings; i++) { 730 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 731 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 732 struct nvdimm *nvdimm = nd_mapping->nvdimm; 733 734 mutex_lock(&nd_mapping->lock); 735 nd_mapping_free_labels(nd_mapping); 736 mutex_unlock(&nd_mapping->lock); 737 738 put_ndd(ndd); 739 nd_mapping->ndd = NULL; 740 if (ndd) 741 atomic_dec(&nvdimm->busy); 742 } 743 } 744 if (dev->parent && is_nd_region(dev->parent) && probe) { 745 nd_region = to_nd_region(dev->parent); 746 nvdimm_bus_lock(dev); 747 if (nd_region->ns_seed == dev) 748 nd_region_create_ns_seed(nd_region); 749 nvdimm_bus_unlock(dev); 750 } 751 if (is_nd_btt(dev) && probe) { 752 struct nd_btt *nd_btt = to_nd_btt(dev); 753 754 nd_region = to_nd_region(dev->parent); 755 nvdimm_bus_lock(dev); 756 if (nd_region->btt_seed == dev) 757 nd_region_create_btt_seed(nd_region); 758 if (nd_region->ns_seed == &nd_btt->ndns->dev) 759 nd_region_create_ns_seed(nd_region); 760 nvdimm_bus_unlock(dev); 761 } 762 if (is_nd_pfn(dev) && probe) { 763 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 764 765 nd_region = to_nd_region(dev->parent); 766 nvdimm_bus_lock(dev); 767 if (nd_region->pfn_seed == dev) 768 nd_region_create_pfn_seed(nd_region); 769 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 770 nd_region_create_ns_seed(nd_region); 771 nvdimm_bus_unlock(dev); 772 } 773 if (is_nd_dax(dev) && probe) { 774 struct nd_dax *nd_dax = to_nd_dax(dev); 775 776 nd_region = to_nd_region(dev->parent); 777 nvdimm_bus_lock(dev); 778 if (nd_region->dax_seed == dev) 779 nd_region_create_dax_seed(nd_region); 780 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 781 nd_region_create_ns_seed(nd_region); 782 nvdimm_bus_unlock(dev); 783 } 784 } 785 786 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 787 { 788 nd_region_notify_driver_action(nvdimm_bus, dev, true); 789 } 790 791 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 792 { 793 nd_region_notify_driver_action(nvdimm_bus, dev, false); 794 } 795 796 static ssize_t mappingN(struct device *dev, char *buf, int n) 797 { 798 struct nd_region *nd_region = to_nd_region(dev); 799 struct nd_mapping *nd_mapping; 800 struct nvdimm *nvdimm; 801 802 if (n >= nd_region->ndr_mappings) 803 return -ENXIO; 804 nd_mapping = &nd_region->mapping[n]; 805 nvdimm = nd_mapping->nvdimm; 806 807 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 808 nd_mapping->start, nd_mapping->size, 809 nd_mapping->position); 810 } 811 812 #define REGION_MAPPING(idx) \ 813 static ssize_t mapping##idx##_show(struct device *dev, \ 814 struct device_attribute *attr, char *buf) \ 815 { \ 816 return mappingN(dev, buf, idx); \ 817 } \ 818 static DEVICE_ATTR_RO(mapping##idx) 819 820 /* 821 * 32 should be enough for a while, even in the presence of socket 822 * interleave a 32-way interleave set is a degenerate case. 823 */ 824 REGION_MAPPING(0); 825 REGION_MAPPING(1); 826 REGION_MAPPING(2); 827 REGION_MAPPING(3); 828 REGION_MAPPING(4); 829 REGION_MAPPING(5); 830 REGION_MAPPING(6); 831 REGION_MAPPING(7); 832 REGION_MAPPING(8); 833 REGION_MAPPING(9); 834 REGION_MAPPING(10); 835 REGION_MAPPING(11); 836 REGION_MAPPING(12); 837 REGION_MAPPING(13); 838 REGION_MAPPING(14); 839 REGION_MAPPING(15); 840 REGION_MAPPING(16); 841 REGION_MAPPING(17); 842 REGION_MAPPING(18); 843 REGION_MAPPING(19); 844 REGION_MAPPING(20); 845 REGION_MAPPING(21); 846 REGION_MAPPING(22); 847 REGION_MAPPING(23); 848 REGION_MAPPING(24); 849 REGION_MAPPING(25); 850 REGION_MAPPING(26); 851 REGION_MAPPING(27); 852 REGION_MAPPING(28); 853 REGION_MAPPING(29); 854 REGION_MAPPING(30); 855 REGION_MAPPING(31); 856 857 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 858 { 859 struct device *dev = container_of(kobj, struct device, kobj); 860 struct nd_region *nd_region = to_nd_region(dev); 861 862 if (n < nd_region->ndr_mappings) 863 return a->mode; 864 return 0; 865 } 866 867 static struct attribute *mapping_attributes[] = { 868 &dev_attr_mapping0.attr, 869 &dev_attr_mapping1.attr, 870 &dev_attr_mapping2.attr, 871 &dev_attr_mapping3.attr, 872 &dev_attr_mapping4.attr, 873 &dev_attr_mapping5.attr, 874 &dev_attr_mapping6.attr, 875 &dev_attr_mapping7.attr, 876 &dev_attr_mapping8.attr, 877 &dev_attr_mapping9.attr, 878 &dev_attr_mapping10.attr, 879 &dev_attr_mapping11.attr, 880 &dev_attr_mapping12.attr, 881 &dev_attr_mapping13.attr, 882 &dev_attr_mapping14.attr, 883 &dev_attr_mapping15.attr, 884 &dev_attr_mapping16.attr, 885 &dev_attr_mapping17.attr, 886 &dev_attr_mapping18.attr, 887 &dev_attr_mapping19.attr, 888 &dev_attr_mapping20.attr, 889 &dev_attr_mapping21.attr, 890 &dev_attr_mapping22.attr, 891 &dev_attr_mapping23.attr, 892 &dev_attr_mapping24.attr, 893 &dev_attr_mapping25.attr, 894 &dev_attr_mapping26.attr, 895 &dev_attr_mapping27.attr, 896 &dev_attr_mapping28.attr, 897 &dev_attr_mapping29.attr, 898 &dev_attr_mapping30.attr, 899 &dev_attr_mapping31.attr, 900 NULL, 901 }; 902 903 struct attribute_group nd_mapping_attribute_group = { 904 .is_visible = mapping_visible, 905 .attrs = mapping_attributes, 906 }; 907 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 908 909 int nd_blk_region_init(struct nd_region *nd_region) 910 { 911 struct device *dev = &nd_region->dev; 912 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 913 914 if (!is_nd_blk(dev)) 915 return 0; 916 917 if (nd_region->ndr_mappings < 1) { 918 dev_dbg(dev, "invalid BLK region\n"); 919 return -ENXIO; 920 } 921 922 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 923 } 924 925 /** 926 * nd_region_acquire_lane - allocate and lock a lane 927 * @nd_region: region id and number of lanes possible 928 * 929 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 930 * We optimize for the common case where there are 256 lanes, one 931 * per-cpu. For larger systems we need to lock to share lanes. For now 932 * this implementation assumes the cost of maintaining an allocator for 933 * free lanes is on the order of the lock hold time, so it implements a 934 * static lane = cpu % num_lanes mapping. 935 * 936 * In the case of a BTT instance on top of a BLK namespace a lane may be 937 * acquired recursively. We lock on the first instance. 938 * 939 * In the case of a BTT instance on top of PMEM, we only acquire a lane 940 * for the BTT metadata updates. 941 */ 942 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 943 { 944 unsigned int cpu, lane; 945 946 cpu = get_cpu(); 947 if (nd_region->num_lanes < nr_cpu_ids) { 948 struct nd_percpu_lane *ndl_lock, *ndl_count; 949 950 lane = cpu % nd_region->num_lanes; 951 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 952 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 953 if (ndl_count->count++ == 0) 954 spin_lock(&ndl_lock->lock); 955 } else 956 lane = cpu; 957 958 return lane; 959 } 960 EXPORT_SYMBOL(nd_region_acquire_lane); 961 962 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 963 { 964 if (nd_region->num_lanes < nr_cpu_ids) { 965 unsigned int cpu = get_cpu(); 966 struct nd_percpu_lane *ndl_lock, *ndl_count; 967 968 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 969 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 970 if (--ndl_count->count == 0) 971 spin_unlock(&ndl_lock->lock); 972 put_cpu(); 973 } 974 put_cpu(); 975 } 976 EXPORT_SYMBOL(nd_region_release_lane); 977 978 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 979 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 980 const char *caller) 981 { 982 struct nd_region *nd_region; 983 struct device *dev; 984 void *region_buf; 985 unsigned int i; 986 int ro = 0; 987 988 for (i = 0; i < ndr_desc->num_mappings; i++) { 989 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 990 struct nvdimm *nvdimm = mapping->nvdimm; 991 992 if ((mapping->start | mapping->size) % SZ_4K) { 993 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 994 caller, dev_name(&nvdimm->dev), i); 995 996 return NULL; 997 } 998 999 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 1000 ro = 1; 1001 } 1002 1003 if (dev_type == &nd_blk_device_type) { 1004 struct nd_blk_region_desc *ndbr_desc; 1005 struct nd_blk_region *ndbr; 1006 1007 ndbr_desc = to_blk_region_desc(ndr_desc); 1008 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 1009 * ndr_desc->num_mappings, 1010 GFP_KERNEL); 1011 if (ndbr) { 1012 nd_region = &ndbr->nd_region; 1013 ndbr->enable = ndbr_desc->enable; 1014 ndbr->do_io = ndbr_desc->do_io; 1015 } 1016 region_buf = ndbr; 1017 } else { 1018 nd_region = kzalloc(sizeof(struct nd_region) 1019 + sizeof(struct nd_mapping) 1020 * ndr_desc->num_mappings, 1021 GFP_KERNEL); 1022 region_buf = nd_region; 1023 } 1024 1025 if (!region_buf) 1026 return NULL; 1027 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 1028 if (nd_region->id < 0) 1029 goto err_id; 1030 1031 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1032 if (!nd_region->lane) 1033 goto err_percpu; 1034 1035 for (i = 0; i < nr_cpu_ids; i++) { 1036 struct nd_percpu_lane *ndl; 1037 1038 ndl = per_cpu_ptr(nd_region->lane, i); 1039 spin_lock_init(&ndl->lock); 1040 ndl->count = 0; 1041 } 1042 1043 for (i = 0; i < ndr_desc->num_mappings; i++) { 1044 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1045 struct nvdimm *nvdimm = mapping->nvdimm; 1046 1047 nd_region->mapping[i].nvdimm = nvdimm; 1048 nd_region->mapping[i].start = mapping->start; 1049 nd_region->mapping[i].size = mapping->size; 1050 nd_region->mapping[i].position = mapping->position; 1051 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1052 mutex_init(&nd_region->mapping[i].lock); 1053 1054 get_device(&nvdimm->dev); 1055 } 1056 nd_region->ndr_mappings = ndr_desc->num_mappings; 1057 nd_region->provider_data = ndr_desc->provider_data; 1058 nd_region->nd_set = ndr_desc->nd_set; 1059 nd_region->num_lanes = ndr_desc->num_lanes; 1060 nd_region->flags = ndr_desc->flags; 1061 nd_region->ro = ro; 1062 nd_region->numa_node = ndr_desc->numa_node; 1063 ida_init(&nd_region->ns_ida); 1064 ida_init(&nd_region->btt_ida); 1065 ida_init(&nd_region->pfn_ida); 1066 ida_init(&nd_region->dax_ida); 1067 dev = &nd_region->dev; 1068 dev_set_name(dev, "region%d", nd_region->id); 1069 dev->parent = &nvdimm_bus->dev; 1070 dev->type = dev_type; 1071 dev->groups = ndr_desc->attr_groups; 1072 dev->of_node = ndr_desc->of_node; 1073 nd_region->ndr_size = resource_size(ndr_desc->res); 1074 nd_region->ndr_start = ndr_desc->res->start; 1075 nd_device_register(dev); 1076 1077 return nd_region; 1078 1079 err_percpu: 1080 ida_simple_remove(®ion_ida, nd_region->id); 1081 err_id: 1082 kfree(region_buf); 1083 return NULL; 1084 } 1085 1086 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1087 struct nd_region_desc *ndr_desc) 1088 { 1089 ndr_desc->num_lanes = ND_MAX_LANES; 1090 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1091 __func__); 1092 } 1093 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1094 1095 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1096 struct nd_region_desc *ndr_desc) 1097 { 1098 if (ndr_desc->num_mappings > 1) 1099 return NULL; 1100 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1101 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1102 __func__); 1103 } 1104 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1105 1106 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1107 struct nd_region_desc *ndr_desc) 1108 { 1109 ndr_desc->num_lanes = ND_MAX_LANES; 1110 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1111 __func__); 1112 } 1113 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1114 1115 /** 1116 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1117 * @nd_region: blk or interleaved pmem region 1118 */ 1119 void nvdimm_flush(struct nd_region *nd_region) 1120 { 1121 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1122 int i, idx; 1123 1124 /* 1125 * Try to encourage some diversity in flush hint addresses 1126 * across cpus assuming a limited number of flush hints. 1127 */ 1128 idx = this_cpu_read(flush_idx); 1129 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1130 1131 /* 1132 * The first wmb() is needed to 'sfence' all previous writes 1133 * such that they are architecturally visible for the platform 1134 * buffer flush. Note that we've already arranged for pmem 1135 * writes to avoid the cache via memcpy_flushcache(). The final 1136 * wmb() ensures ordering for the NVDIMM flush write. 1137 */ 1138 wmb(); 1139 for (i = 0; i < nd_region->ndr_mappings; i++) 1140 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1141 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1142 wmb(); 1143 } 1144 EXPORT_SYMBOL_GPL(nvdimm_flush); 1145 1146 /** 1147 * nvdimm_has_flush - determine write flushing requirements 1148 * @nd_region: blk or interleaved pmem region 1149 * 1150 * Returns 1 if writes require flushing 1151 * Returns 0 if writes do not require flushing 1152 * Returns -ENXIO if flushing capability can not be determined 1153 */ 1154 int nvdimm_has_flush(struct nd_region *nd_region) 1155 { 1156 int i; 1157 1158 /* no nvdimm or pmem api == flushing capability unknown */ 1159 if (nd_region->ndr_mappings == 0 1160 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1161 return -ENXIO; 1162 1163 for (i = 0; i < nd_region->ndr_mappings; i++) { 1164 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1165 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1166 1167 /* flush hints present / available */ 1168 if (nvdimm->num_flush) 1169 return 1; 1170 } 1171 1172 /* 1173 * The platform defines dimm devices without hints, assume 1174 * platform persistence mechanism like ADR 1175 */ 1176 return 0; 1177 } 1178 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1179 1180 int nvdimm_has_cache(struct nd_region *nd_region) 1181 { 1182 return is_nd_pmem(&nd_region->dev) && 1183 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1184 } 1185 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1186 1187 void __exit nd_region_devs_exit(void) 1188 { 1189 ida_destroy(®ion_ida); 1190 } 1191