1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/highmem.h> 7 #include <linux/sched.h> 8 #include <linux/slab.h> 9 #include <linux/hash.h> 10 #include <linux/sort.h> 11 #include <linux/io.h> 12 #include <linux/nd.h> 13 #include "nd-core.h" 14 #include "nd.h" 15 16 /* 17 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 18 * irrelevant. 19 */ 20 #include <linux/io-64-nonatomic-hi-lo.h> 21 22 static DEFINE_IDA(region_ida); 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 ida_simple_remove(®ion_ida, nd_region->id); 137 if (is_nd_blk(dev)) 138 kfree(to_nd_blk_region(dev)); 139 else 140 kfree(nd_region); 141 } 142 143 static struct device_type nd_blk_device_type = { 144 .name = "nd_blk", 145 .release = nd_region_release, 146 }; 147 148 static struct device_type nd_pmem_device_type = { 149 .name = "nd_pmem", 150 .release = nd_region_release, 151 }; 152 153 static struct device_type nd_volatile_device_type = { 154 .name = "nd_volatile", 155 .release = nd_region_release, 156 }; 157 158 bool is_nd_pmem(struct device *dev) 159 { 160 return dev ? dev->type == &nd_pmem_device_type : false; 161 } 162 163 bool is_nd_blk(struct device *dev) 164 { 165 return dev ? dev->type == &nd_blk_device_type : false; 166 } 167 168 bool is_nd_volatile(struct device *dev) 169 { 170 return dev ? dev->type == &nd_volatile_device_type : false; 171 } 172 173 struct nd_region *to_nd_region(struct device *dev) 174 { 175 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 176 177 WARN_ON(dev->type->release != nd_region_release); 178 return nd_region; 179 } 180 EXPORT_SYMBOL_GPL(to_nd_region); 181 182 struct device *nd_region_dev(struct nd_region *nd_region) 183 { 184 if (!nd_region) 185 return NULL; 186 return &nd_region->dev; 187 } 188 EXPORT_SYMBOL_GPL(nd_region_dev); 189 190 struct nd_blk_region *to_nd_blk_region(struct device *dev) 191 { 192 struct nd_region *nd_region = to_nd_region(dev); 193 194 WARN_ON(!is_nd_blk(dev)); 195 return container_of(nd_region, struct nd_blk_region, nd_region); 196 } 197 EXPORT_SYMBOL_GPL(to_nd_blk_region); 198 199 void *nd_region_provider_data(struct nd_region *nd_region) 200 { 201 return nd_region->provider_data; 202 } 203 EXPORT_SYMBOL_GPL(nd_region_provider_data); 204 205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 206 { 207 return ndbr->blk_provider_data; 208 } 209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 210 211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 212 { 213 ndbr->blk_provider_data = data; 214 } 215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 216 217 /** 218 * nd_region_to_nstype() - region to an integer namespace type 219 * @nd_region: region-device to interrogate 220 * 221 * This is the 'nstype' attribute of a region as well, an input to the 222 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 223 * namespace devices with namespace drivers. 224 */ 225 int nd_region_to_nstype(struct nd_region *nd_region) 226 { 227 if (is_memory(&nd_region->dev)) { 228 u16 i, alias; 229 230 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 231 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 232 struct nvdimm *nvdimm = nd_mapping->nvdimm; 233 234 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 235 alias++; 236 } 237 if (alias) 238 return ND_DEVICE_NAMESPACE_PMEM; 239 else 240 return ND_DEVICE_NAMESPACE_IO; 241 } else if (is_nd_blk(&nd_region->dev)) { 242 return ND_DEVICE_NAMESPACE_BLK; 243 } 244 245 return 0; 246 } 247 EXPORT_SYMBOL(nd_region_to_nstype); 248 249 static ssize_t size_show(struct device *dev, 250 struct device_attribute *attr, char *buf) 251 { 252 struct nd_region *nd_region = to_nd_region(dev); 253 unsigned long long size = 0; 254 255 if (is_memory(dev)) { 256 size = nd_region->ndr_size; 257 } else if (nd_region->ndr_mappings == 1) { 258 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 259 260 size = nd_mapping->size; 261 } 262 263 return sprintf(buf, "%llu\n", size); 264 } 265 static DEVICE_ATTR_RO(size); 266 267 static ssize_t deep_flush_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct nd_region *nd_region = to_nd_region(dev); 271 272 /* 273 * NOTE: in the nvdimm_has_flush() error case this attribute is 274 * not visible. 275 */ 276 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 277 } 278 279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 280 const char *buf, size_t len) 281 { 282 bool flush; 283 int rc = strtobool(buf, &flush); 284 struct nd_region *nd_region = to_nd_region(dev); 285 286 if (rc) 287 return rc; 288 if (!flush) 289 return -EINVAL; 290 rc = nvdimm_flush(nd_region, NULL); 291 if (rc) 292 return rc; 293 294 return len; 295 } 296 static DEVICE_ATTR_RW(deep_flush); 297 298 static ssize_t mappings_show(struct device *dev, 299 struct device_attribute *attr, char *buf) 300 { 301 struct nd_region *nd_region = to_nd_region(dev); 302 303 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 304 } 305 static DEVICE_ATTR_RO(mappings); 306 307 static ssize_t nstype_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct nd_region *nd_region = to_nd_region(dev); 311 312 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 313 } 314 static DEVICE_ATTR_RO(nstype); 315 316 static ssize_t set_cookie_show(struct device *dev, 317 struct device_attribute *attr, char *buf) 318 { 319 struct nd_region *nd_region = to_nd_region(dev); 320 struct nd_interleave_set *nd_set = nd_region->nd_set; 321 ssize_t rc = 0; 322 323 if (is_memory(dev) && nd_set) 324 /* pass, should be precluded by region_visible */; 325 else 326 return -ENXIO; 327 328 /* 329 * The cookie to show depends on which specification of the 330 * labels we are using. If there are not labels then default to 331 * the v1.1 namespace label cookie definition. To read all this 332 * data we need to wait for probing to settle. 333 */ 334 device_lock(dev); 335 nvdimm_bus_lock(dev); 336 wait_nvdimm_bus_probe_idle(dev); 337 if (nd_region->ndr_mappings) { 338 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 339 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 340 341 if (ndd) { 342 struct nd_namespace_index *nsindex; 343 344 nsindex = to_namespace_index(ndd, ndd->ns_current); 345 rc = sprintf(buf, "%#llx\n", 346 nd_region_interleave_set_cookie(nd_region, 347 nsindex)); 348 } 349 } 350 nvdimm_bus_unlock(dev); 351 device_unlock(dev); 352 353 if (rc) 354 return rc; 355 return sprintf(buf, "%#llx\n", nd_set->cookie1); 356 } 357 static DEVICE_ATTR_RO(set_cookie); 358 359 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 360 { 361 resource_size_t blk_max_overlap = 0, available, overlap; 362 int i; 363 364 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 365 366 retry: 367 available = 0; 368 overlap = blk_max_overlap; 369 for (i = 0; i < nd_region->ndr_mappings; i++) { 370 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 371 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 372 373 /* if a dimm is disabled the available capacity is zero */ 374 if (!ndd) 375 return 0; 376 377 if (is_memory(&nd_region->dev)) { 378 available += nd_pmem_available_dpa(nd_region, 379 nd_mapping, &overlap); 380 if (overlap > blk_max_overlap) { 381 blk_max_overlap = overlap; 382 goto retry; 383 } 384 } else if (is_nd_blk(&nd_region->dev)) 385 available += nd_blk_available_dpa(nd_region); 386 } 387 388 return available; 389 } 390 391 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 392 { 393 resource_size_t available = 0; 394 int i; 395 396 if (is_memory(&nd_region->dev)) 397 available = PHYS_ADDR_MAX; 398 399 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 400 for (i = 0; i < nd_region->ndr_mappings; i++) { 401 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 402 403 if (is_memory(&nd_region->dev)) 404 available = min(available, 405 nd_pmem_max_contiguous_dpa(nd_region, 406 nd_mapping)); 407 else if (is_nd_blk(&nd_region->dev)) 408 available += nd_blk_available_dpa(nd_region); 409 } 410 if (is_memory(&nd_region->dev)) 411 return available * nd_region->ndr_mappings; 412 return available; 413 } 414 415 static ssize_t available_size_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct nd_region *nd_region = to_nd_region(dev); 419 unsigned long long available = 0; 420 421 /* 422 * Flush in-flight updates and grab a snapshot of the available 423 * size. Of course, this value is potentially invalidated the 424 * memory nvdimm_bus_lock() is dropped, but that's userspace's 425 * problem to not race itself. 426 */ 427 nvdimm_bus_lock(dev); 428 wait_nvdimm_bus_probe_idle(dev); 429 available = nd_region_available_dpa(nd_region); 430 nvdimm_bus_unlock(dev); 431 432 return sprintf(buf, "%llu\n", available); 433 } 434 static DEVICE_ATTR_RO(available_size); 435 436 static ssize_t max_available_extent_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct nd_region *nd_region = to_nd_region(dev); 440 unsigned long long available = 0; 441 442 nvdimm_bus_lock(dev); 443 wait_nvdimm_bus_probe_idle(dev); 444 available = nd_region_allocatable_dpa(nd_region); 445 nvdimm_bus_unlock(dev); 446 447 return sprintf(buf, "%llu\n", available); 448 } 449 static DEVICE_ATTR_RO(max_available_extent); 450 451 static ssize_t init_namespaces_show(struct device *dev, 452 struct device_attribute *attr, char *buf) 453 { 454 struct nd_region_data *ndrd = dev_get_drvdata(dev); 455 ssize_t rc; 456 457 nvdimm_bus_lock(dev); 458 if (ndrd) 459 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 460 else 461 rc = -ENXIO; 462 nvdimm_bus_unlock(dev); 463 464 return rc; 465 } 466 static DEVICE_ATTR_RO(init_namespaces); 467 468 static ssize_t namespace_seed_show(struct device *dev, 469 struct device_attribute *attr, char *buf) 470 { 471 struct nd_region *nd_region = to_nd_region(dev); 472 ssize_t rc; 473 474 nvdimm_bus_lock(dev); 475 if (nd_region->ns_seed) 476 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 477 else 478 rc = sprintf(buf, "\n"); 479 nvdimm_bus_unlock(dev); 480 return rc; 481 } 482 static DEVICE_ATTR_RO(namespace_seed); 483 484 static ssize_t btt_seed_show(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct nd_region *nd_region = to_nd_region(dev); 488 ssize_t rc; 489 490 nvdimm_bus_lock(dev); 491 if (nd_region->btt_seed) 492 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 493 else 494 rc = sprintf(buf, "\n"); 495 nvdimm_bus_unlock(dev); 496 497 return rc; 498 } 499 static DEVICE_ATTR_RO(btt_seed); 500 501 static ssize_t pfn_seed_show(struct device *dev, 502 struct device_attribute *attr, char *buf) 503 { 504 struct nd_region *nd_region = to_nd_region(dev); 505 ssize_t rc; 506 507 nvdimm_bus_lock(dev); 508 if (nd_region->pfn_seed) 509 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 510 else 511 rc = sprintf(buf, "\n"); 512 nvdimm_bus_unlock(dev); 513 514 return rc; 515 } 516 static DEVICE_ATTR_RO(pfn_seed); 517 518 static ssize_t dax_seed_show(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct nd_region *nd_region = to_nd_region(dev); 522 ssize_t rc; 523 524 nvdimm_bus_lock(dev); 525 if (nd_region->dax_seed) 526 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 527 else 528 rc = sprintf(buf, "\n"); 529 nvdimm_bus_unlock(dev); 530 531 return rc; 532 } 533 static DEVICE_ATTR_RO(dax_seed); 534 535 static ssize_t read_only_show(struct device *dev, 536 struct device_attribute *attr, char *buf) 537 { 538 struct nd_region *nd_region = to_nd_region(dev); 539 540 return sprintf(buf, "%d\n", nd_region->ro); 541 } 542 543 static ssize_t read_only_store(struct device *dev, 544 struct device_attribute *attr, const char *buf, size_t len) 545 { 546 bool ro; 547 int rc = strtobool(buf, &ro); 548 struct nd_region *nd_region = to_nd_region(dev); 549 550 if (rc) 551 return rc; 552 553 nd_region->ro = ro; 554 return len; 555 } 556 static DEVICE_ATTR_RW(read_only); 557 558 static ssize_t region_badblocks_show(struct device *dev, 559 struct device_attribute *attr, char *buf) 560 { 561 struct nd_region *nd_region = to_nd_region(dev); 562 ssize_t rc; 563 564 device_lock(dev); 565 if (dev->driver) 566 rc = badblocks_show(&nd_region->bb, buf, 0); 567 else 568 rc = -ENXIO; 569 device_unlock(dev); 570 571 return rc; 572 } 573 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 574 575 static ssize_t resource_show(struct device *dev, 576 struct device_attribute *attr, char *buf) 577 { 578 struct nd_region *nd_region = to_nd_region(dev); 579 580 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 581 } 582 static DEVICE_ATTR_RO(resource); 583 584 static ssize_t persistence_domain_show(struct device *dev, 585 struct device_attribute *attr, char *buf) 586 { 587 struct nd_region *nd_region = to_nd_region(dev); 588 589 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 590 return sprintf(buf, "cpu_cache\n"); 591 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 592 return sprintf(buf, "memory_controller\n"); 593 else 594 return sprintf(buf, "\n"); 595 } 596 static DEVICE_ATTR_RO(persistence_domain); 597 598 static struct attribute *nd_region_attributes[] = { 599 &dev_attr_size.attr, 600 &dev_attr_nstype.attr, 601 &dev_attr_mappings.attr, 602 &dev_attr_btt_seed.attr, 603 &dev_attr_pfn_seed.attr, 604 &dev_attr_dax_seed.attr, 605 &dev_attr_deep_flush.attr, 606 &dev_attr_read_only.attr, 607 &dev_attr_set_cookie.attr, 608 &dev_attr_available_size.attr, 609 &dev_attr_max_available_extent.attr, 610 &dev_attr_namespace_seed.attr, 611 &dev_attr_init_namespaces.attr, 612 &dev_attr_badblocks.attr, 613 &dev_attr_resource.attr, 614 &dev_attr_persistence_domain.attr, 615 NULL, 616 }; 617 618 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 619 { 620 struct device *dev = container_of(kobj, typeof(*dev), kobj); 621 struct nd_region *nd_region = to_nd_region(dev); 622 struct nd_interleave_set *nd_set = nd_region->nd_set; 623 int type = nd_region_to_nstype(nd_region); 624 625 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 626 return 0; 627 628 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 629 return 0; 630 631 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 632 return 0; 633 634 if (a == &dev_attr_resource.attr) { 635 if (is_nd_pmem(dev)) 636 return 0400; 637 else 638 return 0; 639 } 640 641 if (a == &dev_attr_deep_flush.attr) { 642 int has_flush = nvdimm_has_flush(nd_region); 643 644 if (has_flush == 1) 645 return a->mode; 646 else if (has_flush == 0) 647 return 0444; 648 else 649 return 0; 650 } 651 652 if (a == &dev_attr_persistence_domain.attr) { 653 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 654 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 655 return 0; 656 return a->mode; 657 } 658 659 if (a != &dev_attr_set_cookie.attr 660 && a != &dev_attr_available_size.attr) 661 return a->mode; 662 663 if ((type == ND_DEVICE_NAMESPACE_PMEM 664 || type == ND_DEVICE_NAMESPACE_BLK) 665 && a == &dev_attr_available_size.attr) 666 return a->mode; 667 else if (is_memory(dev) && nd_set) 668 return a->mode; 669 670 return 0; 671 } 672 673 struct attribute_group nd_region_attribute_group = { 674 .attrs = nd_region_attributes, 675 .is_visible = region_visible, 676 }; 677 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 678 679 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 680 struct nd_namespace_index *nsindex) 681 { 682 struct nd_interleave_set *nd_set = nd_region->nd_set; 683 684 if (!nd_set) 685 return 0; 686 687 if (nsindex && __le16_to_cpu(nsindex->major) == 1 688 && __le16_to_cpu(nsindex->minor) == 1) 689 return nd_set->cookie1; 690 return nd_set->cookie2; 691 } 692 693 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 694 { 695 struct nd_interleave_set *nd_set = nd_region->nd_set; 696 697 if (nd_set) 698 return nd_set->altcookie; 699 return 0; 700 } 701 702 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 703 { 704 struct nd_label_ent *label_ent, *e; 705 706 lockdep_assert_held(&nd_mapping->lock); 707 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 708 list_del(&label_ent->list); 709 kfree(label_ent); 710 } 711 } 712 713 /* 714 * Upon successful probe/remove, take/release a reference on the 715 * associated interleave set (if present), and plant new btt + namespace 716 * seeds. Also, on the removal of a BLK region, notify the provider to 717 * disable the region. 718 */ 719 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 720 struct device *dev, bool probe) 721 { 722 struct nd_region *nd_region; 723 724 if (!probe && is_nd_region(dev)) { 725 int i; 726 727 nd_region = to_nd_region(dev); 728 for (i = 0; i < nd_region->ndr_mappings; i++) { 729 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 730 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 731 struct nvdimm *nvdimm = nd_mapping->nvdimm; 732 733 mutex_lock(&nd_mapping->lock); 734 nd_mapping_free_labels(nd_mapping); 735 mutex_unlock(&nd_mapping->lock); 736 737 put_ndd(ndd); 738 nd_mapping->ndd = NULL; 739 if (ndd) 740 atomic_dec(&nvdimm->busy); 741 } 742 } 743 if (dev->parent && is_nd_region(dev->parent) && probe) { 744 nd_region = to_nd_region(dev->parent); 745 nvdimm_bus_lock(dev); 746 if (nd_region->ns_seed == dev) 747 nd_region_create_ns_seed(nd_region); 748 nvdimm_bus_unlock(dev); 749 } 750 if (is_nd_btt(dev) && probe) { 751 struct nd_btt *nd_btt = to_nd_btt(dev); 752 753 nd_region = to_nd_region(dev->parent); 754 nvdimm_bus_lock(dev); 755 if (nd_region->btt_seed == dev) 756 nd_region_create_btt_seed(nd_region); 757 if (nd_region->ns_seed == &nd_btt->ndns->dev) 758 nd_region_create_ns_seed(nd_region); 759 nvdimm_bus_unlock(dev); 760 } 761 if (is_nd_pfn(dev) && probe) { 762 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 763 764 nd_region = to_nd_region(dev->parent); 765 nvdimm_bus_lock(dev); 766 if (nd_region->pfn_seed == dev) 767 nd_region_create_pfn_seed(nd_region); 768 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 769 nd_region_create_ns_seed(nd_region); 770 nvdimm_bus_unlock(dev); 771 } 772 if (is_nd_dax(dev) && probe) { 773 struct nd_dax *nd_dax = to_nd_dax(dev); 774 775 nd_region = to_nd_region(dev->parent); 776 nvdimm_bus_lock(dev); 777 if (nd_region->dax_seed == dev) 778 nd_region_create_dax_seed(nd_region); 779 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 780 nd_region_create_ns_seed(nd_region); 781 nvdimm_bus_unlock(dev); 782 } 783 } 784 785 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 786 { 787 nd_region_notify_driver_action(nvdimm_bus, dev, true); 788 } 789 790 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 791 { 792 nd_region_notify_driver_action(nvdimm_bus, dev, false); 793 } 794 795 static ssize_t mappingN(struct device *dev, char *buf, int n) 796 { 797 struct nd_region *nd_region = to_nd_region(dev); 798 struct nd_mapping *nd_mapping; 799 struct nvdimm *nvdimm; 800 801 if (n >= nd_region->ndr_mappings) 802 return -ENXIO; 803 nd_mapping = &nd_region->mapping[n]; 804 nvdimm = nd_mapping->nvdimm; 805 806 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 807 nd_mapping->start, nd_mapping->size, 808 nd_mapping->position); 809 } 810 811 #define REGION_MAPPING(idx) \ 812 static ssize_t mapping##idx##_show(struct device *dev, \ 813 struct device_attribute *attr, char *buf) \ 814 { \ 815 return mappingN(dev, buf, idx); \ 816 } \ 817 static DEVICE_ATTR_RO(mapping##idx) 818 819 /* 820 * 32 should be enough for a while, even in the presence of socket 821 * interleave a 32-way interleave set is a degenerate case. 822 */ 823 REGION_MAPPING(0); 824 REGION_MAPPING(1); 825 REGION_MAPPING(2); 826 REGION_MAPPING(3); 827 REGION_MAPPING(4); 828 REGION_MAPPING(5); 829 REGION_MAPPING(6); 830 REGION_MAPPING(7); 831 REGION_MAPPING(8); 832 REGION_MAPPING(9); 833 REGION_MAPPING(10); 834 REGION_MAPPING(11); 835 REGION_MAPPING(12); 836 REGION_MAPPING(13); 837 REGION_MAPPING(14); 838 REGION_MAPPING(15); 839 REGION_MAPPING(16); 840 REGION_MAPPING(17); 841 REGION_MAPPING(18); 842 REGION_MAPPING(19); 843 REGION_MAPPING(20); 844 REGION_MAPPING(21); 845 REGION_MAPPING(22); 846 REGION_MAPPING(23); 847 REGION_MAPPING(24); 848 REGION_MAPPING(25); 849 REGION_MAPPING(26); 850 REGION_MAPPING(27); 851 REGION_MAPPING(28); 852 REGION_MAPPING(29); 853 REGION_MAPPING(30); 854 REGION_MAPPING(31); 855 856 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 857 { 858 struct device *dev = container_of(kobj, struct device, kobj); 859 struct nd_region *nd_region = to_nd_region(dev); 860 861 if (n < nd_region->ndr_mappings) 862 return a->mode; 863 return 0; 864 } 865 866 static struct attribute *mapping_attributes[] = { 867 &dev_attr_mapping0.attr, 868 &dev_attr_mapping1.attr, 869 &dev_attr_mapping2.attr, 870 &dev_attr_mapping3.attr, 871 &dev_attr_mapping4.attr, 872 &dev_attr_mapping5.attr, 873 &dev_attr_mapping6.attr, 874 &dev_attr_mapping7.attr, 875 &dev_attr_mapping8.attr, 876 &dev_attr_mapping9.attr, 877 &dev_attr_mapping10.attr, 878 &dev_attr_mapping11.attr, 879 &dev_attr_mapping12.attr, 880 &dev_attr_mapping13.attr, 881 &dev_attr_mapping14.attr, 882 &dev_attr_mapping15.attr, 883 &dev_attr_mapping16.attr, 884 &dev_attr_mapping17.attr, 885 &dev_attr_mapping18.attr, 886 &dev_attr_mapping19.attr, 887 &dev_attr_mapping20.attr, 888 &dev_attr_mapping21.attr, 889 &dev_attr_mapping22.attr, 890 &dev_attr_mapping23.attr, 891 &dev_attr_mapping24.attr, 892 &dev_attr_mapping25.attr, 893 &dev_attr_mapping26.attr, 894 &dev_attr_mapping27.attr, 895 &dev_attr_mapping28.attr, 896 &dev_attr_mapping29.attr, 897 &dev_attr_mapping30.attr, 898 &dev_attr_mapping31.attr, 899 NULL, 900 }; 901 902 struct attribute_group nd_mapping_attribute_group = { 903 .is_visible = mapping_visible, 904 .attrs = mapping_attributes, 905 }; 906 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 907 908 int nd_blk_region_init(struct nd_region *nd_region) 909 { 910 struct device *dev = &nd_region->dev; 911 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 912 913 if (!is_nd_blk(dev)) 914 return 0; 915 916 if (nd_region->ndr_mappings < 1) { 917 dev_dbg(dev, "invalid BLK region\n"); 918 return -ENXIO; 919 } 920 921 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 922 } 923 924 /** 925 * nd_region_acquire_lane - allocate and lock a lane 926 * @nd_region: region id and number of lanes possible 927 * 928 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 929 * We optimize for the common case where there are 256 lanes, one 930 * per-cpu. For larger systems we need to lock to share lanes. For now 931 * this implementation assumes the cost of maintaining an allocator for 932 * free lanes is on the order of the lock hold time, so it implements a 933 * static lane = cpu % num_lanes mapping. 934 * 935 * In the case of a BTT instance on top of a BLK namespace a lane may be 936 * acquired recursively. We lock on the first instance. 937 * 938 * In the case of a BTT instance on top of PMEM, we only acquire a lane 939 * for the BTT metadata updates. 940 */ 941 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 942 { 943 unsigned int cpu, lane; 944 945 cpu = get_cpu(); 946 if (nd_region->num_lanes < nr_cpu_ids) { 947 struct nd_percpu_lane *ndl_lock, *ndl_count; 948 949 lane = cpu % nd_region->num_lanes; 950 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 951 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 952 if (ndl_count->count++ == 0) 953 spin_lock(&ndl_lock->lock); 954 } else 955 lane = cpu; 956 957 return lane; 958 } 959 EXPORT_SYMBOL(nd_region_acquire_lane); 960 961 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 962 { 963 if (nd_region->num_lanes < nr_cpu_ids) { 964 unsigned int cpu = get_cpu(); 965 struct nd_percpu_lane *ndl_lock, *ndl_count; 966 967 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 968 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 969 if (--ndl_count->count == 0) 970 spin_unlock(&ndl_lock->lock); 971 put_cpu(); 972 } 973 put_cpu(); 974 } 975 EXPORT_SYMBOL(nd_region_release_lane); 976 977 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 978 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 979 const char *caller) 980 { 981 struct nd_region *nd_region; 982 struct device *dev; 983 void *region_buf; 984 unsigned int i; 985 int ro = 0; 986 987 for (i = 0; i < ndr_desc->num_mappings; i++) { 988 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 989 struct nvdimm *nvdimm = mapping->nvdimm; 990 991 if ((mapping->start | mapping->size) % SZ_4K) { 992 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 993 caller, dev_name(&nvdimm->dev), i); 994 995 return NULL; 996 } 997 998 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 999 ro = 1; 1000 1001 if (test_bit(NDD_NOBLK, &nvdimm->flags) 1002 && dev_type == &nd_blk_device_type) { 1003 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", 1004 caller, dev_name(&nvdimm->dev), i); 1005 return NULL; 1006 } 1007 } 1008 1009 if (dev_type == &nd_blk_device_type) { 1010 struct nd_blk_region_desc *ndbr_desc; 1011 struct nd_blk_region *ndbr; 1012 1013 ndbr_desc = to_blk_region_desc(ndr_desc); 1014 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 1015 * ndr_desc->num_mappings, 1016 GFP_KERNEL); 1017 if (ndbr) { 1018 nd_region = &ndbr->nd_region; 1019 ndbr->enable = ndbr_desc->enable; 1020 ndbr->do_io = ndbr_desc->do_io; 1021 } 1022 region_buf = ndbr; 1023 } else { 1024 nd_region = kzalloc(sizeof(struct nd_region) 1025 + sizeof(struct nd_mapping) 1026 * ndr_desc->num_mappings, 1027 GFP_KERNEL); 1028 region_buf = nd_region; 1029 } 1030 1031 if (!region_buf) 1032 return NULL; 1033 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 1034 if (nd_region->id < 0) 1035 goto err_id; 1036 1037 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1038 if (!nd_region->lane) 1039 goto err_percpu; 1040 1041 for (i = 0; i < nr_cpu_ids; i++) { 1042 struct nd_percpu_lane *ndl; 1043 1044 ndl = per_cpu_ptr(nd_region->lane, i); 1045 spin_lock_init(&ndl->lock); 1046 ndl->count = 0; 1047 } 1048 1049 for (i = 0; i < ndr_desc->num_mappings; i++) { 1050 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1051 struct nvdimm *nvdimm = mapping->nvdimm; 1052 1053 nd_region->mapping[i].nvdimm = nvdimm; 1054 nd_region->mapping[i].start = mapping->start; 1055 nd_region->mapping[i].size = mapping->size; 1056 nd_region->mapping[i].position = mapping->position; 1057 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1058 mutex_init(&nd_region->mapping[i].lock); 1059 1060 get_device(&nvdimm->dev); 1061 } 1062 nd_region->ndr_mappings = ndr_desc->num_mappings; 1063 nd_region->provider_data = ndr_desc->provider_data; 1064 nd_region->nd_set = ndr_desc->nd_set; 1065 nd_region->num_lanes = ndr_desc->num_lanes; 1066 nd_region->flags = ndr_desc->flags; 1067 nd_region->ro = ro; 1068 nd_region->numa_node = ndr_desc->numa_node; 1069 nd_region->target_node = ndr_desc->target_node; 1070 ida_init(&nd_region->ns_ida); 1071 ida_init(&nd_region->btt_ida); 1072 ida_init(&nd_region->pfn_ida); 1073 ida_init(&nd_region->dax_ida); 1074 dev = &nd_region->dev; 1075 dev_set_name(dev, "region%d", nd_region->id); 1076 dev->parent = &nvdimm_bus->dev; 1077 dev->type = dev_type; 1078 dev->groups = ndr_desc->attr_groups; 1079 dev->of_node = ndr_desc->of_node; 1080 nd_region->ndr_size = resource_size(ndr_desc->res); 1081 nd_region->ndr_start = ndr_desc->res->start; 1082 if (ndr_desc->flush) 1083 nd_region->flush = ndr_desc->flush; 1084 else 1085 nd_region->flush = NULL; 1086 1087 nd_device_register(dev); 1088 1089 return nd_region; 1090 1091 err_percpu: 1092 ida_simple_remove(®ion_ida, nd_region->id); 1093 err_id: 1094 kfree(region_buf); 1095 return NULL; 1096 } 1097 1098 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1099 struct nd_region_desc *ndr_desc) 1100 { 1101 ndr_desc->num_lanes = ND_MAX_LANES; 1102 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1103 __func__); 1104 } 1105 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1106 1107 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1108 struct nd_region_desc *ndr_desc) 1109 { 1110 if (ndr_desc->num_mappings > 1) 1111 return NULL; 1112 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1113 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1114 __func__); 1115 } 1116 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1117 1118 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1119 struct nd_region_desc *ndr_desc) 1120 { 1121 ndr_desc->num_lanes = ND_MAX_LANES; 1122 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1123 __func__); 1124 } 1125 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1126 1127 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1128 { 1129 int rc = 0; 1130 1131 if (!nd_region->flush) 1132 rc = generic_nvdimm_flush(nd_region); 1133 else { 1134 if (nd_region->flush(nd_region, bio)) 1135 rc = -EIO; 1136 } 1137 1138 return rc; 1139 } 1140 /** 1141 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1142 * @nd_region: blk or interleaved pmem region 1143 */ 1144 int generic_nvdimm_flush(struct nd_region *nd_region) 1145 { 1146 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1147 int i, idx; 1148 1149 /* 1150 * Try to encourage some diversity in flush hint addresses 1151 * across cpus assuming a limited number of flush hints. 1152 */ 1153 idx = this_cpu_read(flush_idx); 1154 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1155 1156 /* 1157 * The first wmb() is needed to 'sfence' all previous writes 1158 * such that they are architecturally visible for the platform 1159 * buffer flush. Note that we've already arranged for pmem 1160 * writes to avoid the cache via memcpy_flushcache(). The final 1161 * wmb() ensures ordering for the NVDIMM flush write. 1162 */ 1163 wmb(); 1164 for (i = 0; i < nd_region->ndr_mappings; i++) 1165 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1166 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1167 wmb(); 1168 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(nvdimm_flush); 1172 1173 /** 1174 * nvdimm_has_flush - determine write flushing requirements 1175 * @nd_region: blk or interleaved pmem region 1176 * 1177 * Returns 1 if writes require flushing 1178 * Returns 0 if writes do not require flushing 1179 * Returns -ENXIO if flushing capability can not be determined 1180 */ 1181 int nvdimm_has_flush(struct nd_region *nd_region) 1182 { 1183 int i; 1184 1185 /* no nvdimm or pmem api == flushing capability unknown */ 1186 if (nd_region->ndr_mappings == 0 1187 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1188 return -ENXIO; 1189 1190 for (i = 0; i < nd_region->ndr_mappings; i++) { 1191 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1192 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1193 1194 /* flush hints present / available */ 1195 if (nvdimm->num_flush) 1196 return 1; 1197 } 1198 1199 /* 1200 * The platform defines dimm devices without hints, assume 1201 * platform persistence mechanism like ADR 1202 */ 1203 return 0; 1204 } 1205 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1206 1207 int nvdimm_has_cache(struct nd_region *nd_region) 1208 { 1209 return is_nd_pmem(&nd_region->dev) && 1210 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1211 } 1212 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1213 1214 bool is_nvdimm_sync(struct nd_region *nd_region) 1215 { 1216 return is_nd_pmem(&nd_region->dev) && 1217 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1218 } 1219 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1220 1221 struct conflict_context { 1222 struct nd_region *nd_region; 1223 resource_size_t start, size; 1224 }; 1225 1226 static int region_conflict(struct device *dev, void *data) 1227 { 1228 struct nd_region *nd_region; 1229 struct conflict_context *ctx = data; 1230 resource_size_t res_end, region_end, region_start; 1231 1232 if (!is_memory(dev)) 1233 return 0; 1234 1235 nd_region = to_nd_region(dev); 1236 if (nd_region == ctx->nd_region) 1237 return 0; 1238 1239 res_end = ctx->start + ctx->size; 1240 region_start = nd_region->ndr_start; 1241 region_end = region_start + nd_region->ndr_size; 1242 if (ctx->start >= region_start && ctx->start < region_end) 1243 return -EBUSY; 1244 if (res_end > region_start && res_end <= region_end) 1245 return -EBUSY; 1246 return 0; 1247 } 1248 1249 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1250 resource_size_t size) 1251 { 1252 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1253 struct conflict_context ctx = { 1254 .nd_region = nd_region, 1255 .start = start, 1256 .size = size, 1257 }; 1258 1259 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1260 } 1261 1262 void __exit nd_region_devs_exit(void) 1263 { 1264 ida_destroy(®ion_ida); 1265 } 1266