1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/sort.h> 19 #include <linux/io.h> 20 #include <linux/nd.h> 21 #include "nd-core.h" 22 #include "nd.h" 23 24 /* 25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 26 * irrelevant. 27 */ 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 30 static DEFINE_IDA(region_ida); 31 static DEFINE_PER_CPU(int, flush_idx); 32 33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 34 struct nd_region_data *ndrd) 35 { 36 int i, j; 37 38 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 39 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 40 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 41 struct resource *res = &nvdimm->flush_wpq[i]; 42 unsigned long pfn = PHYS_PFN(res->start); 43 void __iomem *flush_page; 44 45 /* check if flush hints share a page */ 46 for (j = 0; j < i; j++) { 47 struct resource *res_j = &nvdimm->flush_wpq[j]; 48 unsigned long pfn_j = PHYS_PFN(res_j->start); 49 50 if (pfn == pfn_j) 51 break; 52 } 53 54 if (j < i) 55 flush_page = (void __iomem *) ((unsigned long) 56 ndrd_get_flush_wpq(ndrd, dimm, j) 57 & PAGE_MASK); 58 else 59 flush_page = devm_nvdimm_ioremap(dev, 60 PFN_PHYS(pfn), PAGE_SIZE); 61 if (!flush_page) 62 return -ENXIO; 63 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 64 + (res->start & ~PAGE_MASK)); 65 } 66 67 return 0; 68 } 69 70 int nd_region_activate(struct nd_region *nd_region) 71 { 72 int i, j, num_flush = 0; 73 struct nd_region_data *ndrd; 74 struct device *dev = &nd_region->dev; 75 size_t flush_data_size = sizeof(void *); 76 77 nvdimm_bus_lock(&nd_region->dev); 78 for (i = 0; i < nd_region->ndr_mappings; i++) { 79 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 80 struct nvdimm *nvdimm = nd_mapping->nvdimm; 81 82 /* at least one null hint slot per-dimm for the "no-hint" case */ 83 flush_data_size += sizeof(void *); 84 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 85 if (!nvdimm->num_flush) 86 continue; 87 flush_data_size += nvdimm->num_flush * sizeof(void *); 88 } 89 nvdimm_bus_unlock(&nd_region->dev); 90 91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 92 if (!ndrd) 93 return -ENOMEM; 94 dev_set_drvdata(dev, ndrd); 95 96 if (!num_flush) 97 return 0; 98 99 ndrd->hints_shift = ilog2(num_flush); 100 for (i = 0; i < nd_region->ndr_mappings; i++) { 101 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 102 struct nvdimm *nvdimm = nd_mapping->nvdimm; 103 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 104 105 if (rc) 106 return rc; 107 } 108 109 /* 110 * Clear out entries that are duplicates. This should prevent the 111 * extra flushings. 112 */ 113 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 114 /* ignore if NULL already */ 115 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 116 continue; 117 118 for (j = i + 1; j < nd_region->ndr_mappings; j++) 119 if (ndrd_get_flush_wpq(ndrd, i, 0) == 120 ndrd_get_flush_wpq(ndrd, j, 0)) 121 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 122 } 123 124 return 0; 125 } 126 127 static void nd_region_release(struct device *dev) 128 { 129 struct nd_region *nd_region = to_nd_region(dev); 130 u16 i; 131 132 for (i = 0; i < nd_region->ndr_mappings; i++) { 133 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 134 struct nvdimm *nvdimm = nd_mapping->nvdimm; 135 136 put_device(&nvdimm->dev); 137 } 138 free_percpu(nd_region->lane); 139 ida_simple_remove(®ion_ida, nd_region->id); 140 if (is_nd_blk(dev)) 141 kfree(to_nd_blk_region(dev)); 142 else 143 kfree(nd_region); 144 } 145 146 static struct device_type nd_blk_device_type = { 147 .name = "nd_blk", 148 .release = nd_region_release, 149 }; 150 151 static struct device_type nd_pmem_device_type = { 152 .name = "nd_pmem", 153 .release = nd_region_release, 154 }; 155 156 static struct device_type nd_volatile_device_type = { 157 .name = "nd_volatile", 158 .release = nd_region_release, 159 }; 160 161 bool is_nd_pmem(struct device *dev) 162 { 163 return dev ? dev->type == &nd_pmem_device_type : false; 164 } 165 166 bool is_nd_blk(struct device *dev) 167 { 168 return dev ? dev->type == &nd_blk_device_type : false; 169 } 170 171 bool is_nd_volatile(struct device *dev) 172 { 173 return dev ? dev->type == &nd_volatile_device_type : false; 174 } 175 176 struct nd_region *to_nd_region(struct device *dev) 177 { 178 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 179 180 WARN_ON(dev->type->release != nd_region_release); 181 return nd_region; 182 } 183 EXPORT_SYMBOL_GPL(to_nd_region); 184 185 struct device *nd_region_dev(struct nd_region *nd_region) 186 { 187 if (!nd_region) 188 return NULL; 189 return &nd_region->dev; 190 } 191 EXPORT_SYMBOL_GPL(nd_region_dev); 192 193 struct nd_blk_region *to_nd_blk_region(struct device *dev) 194 { 195 struct nd_region *nd_region = to_nd_region(dev); 196 197 WARN_ON(!is_nd_blk(dev)); 198 return container_of(nd_region, struct nd_blk_region, nd_region); 199 } 200 EXPORT_SYMBOL_GPL(to_nd_blk_region); 201 202 void *nd_region_provider_data(struct nd_region *nd_region) 203 { 204 return nd_region->provider_data; 205 } 206 EXPORT_SYMBOL_GPL(nd_region_provider_data); 207 208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 209 { 210 return ndbr->blk_provider_data; 211 } 212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 213 214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 215 { 216 ndbr->blk_provider_data = data; 217 } 218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 219 220 /** 221 * nd_region_to_nstype() - region to an integer namespace type 222 * @nd_region: region-device to interrogate 223 * 224 * This is the 'nstype' attribute of a region as well, an input to the 225 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 226 * namespace devices with namespace drivers. 227 */ 228 int nd_region_to_nstype(struct nd_region *nd_region) 229 { 230 if (is_memory(&nd_region->dev)) { 231 u16 i, alias; 232 233 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 234 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 235 struct nvdimm *nvdimm = nd_mapping->nvdimm; 236 237 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 238 alias++; 239 } 240 if (alias) 241 return ND_DEVICE_NAMESPACE_PMEM; 242 else 243 return ND_DEVICE_NAMESPACE_IO; 244 } else if (is_nd_blk(&nd_region->dev)) { 245 return ND_DEVICE_NAMESPACE_BLK; 246 } 247 248 return 0; 249 } 250 EXPORT_SYMBOL(nd_region_to_nstype); 251 252 static ssize_t size_show(struct device *dev, 253 struct device_attribute *attr, char *buf) 254 { 255 struct nd_region *nd_region = to_nd_region(dev); 256 unsigned long long size = 0; 257 258 if (is_memory(dev)) { 259 size = nd_region->ndr_size; 260 } else if (nd_region->ndr_mappings == 1) { 261 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 262 263 size = nd_mapping->size; 264 } 265 266 return sprintf(buf, "%llu\n", size); 267 } 268 static DEVICE_ATTR_RO(size); 269 270 static ssize_t deep_flush_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct nd_region *nd_region = to_nd_region(dev); 274 275 /* 276 * NOTE: in the nvdimm_has_flush() error case this attribute is 277 * not visible. 278 */ 279 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 280 } 281 282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 283 const char *buf, size_t len) 284 { 285 bool flush; 286 int rc = strtobool(buf, &flush); 287 struct nd_region *nd_region = to_nd_region(dev); 288 289 if (rc) 290 return rc; 291 if (!flush) 292 return -EINVAL; 293 nvdimm_flush(nd_region); 294 295 return len; 296 } 297 static DEVICE_ATTR_RW(deep_flush); 298 299 static ssize_t mappings_show(struct device *dev, 300 struct device_attribute *attr, char *buf) 301 { 302 struct nd_region *nd_region = to_nd_region(dev); 303 304 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 305 } 306 static DEVICE_ATTR_RO(mappings); 307 308 static ssize_t nstype_show(struct device *dev, 309 struct device_attribute *attr, char *buf) 310 { 311 struct nd_region *nd_region = to_nd_region(dev); 312 313 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 314 } 315 static DEVICE_ATTR_RO(nstype); 316 317 static ssize_t set_cookie_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct nd_region *nd_region = to_nd_region(dev); 321 struct nd_interleave_set *nd_set = nd_region->nd_set; 322 ssize_t rc = 0; 323 324 if (is_memory(dev) && nd_set) 325 /* pass, should be precluded by region_visible */; 326 else 327 return -ENXIO; 328 329 /* 330 * The cookie to show depends on which specification of the 331 * labels we are using. If there are not labels then default to 332 * the v1.1 namespace label cookie definition. To read all this 333 * data we need to wait for probing to settle. 334 */ 335 device_lock(dev); 336 nvdimm_bus_lock(dev); 337 wait_nvdimm_bus_probe_idle(dev); 338 if (nd_region->ndr_mappings) { 339 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 340 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 341 342 if (ndd) { 343 struct nd_namespace_index *nsindex; 344 345 nsindex = to_namespace_index(ndd, ndd->ns_current); 346 rc = sprintf(buf, "%#llx\n", 347 nd_region_interleave_set_cookie(nd_region, 348 nsindex)); 349 } 350 } 351 nvdimm_bus_unlock(dev); 352 device_unlock(dev); 353 354 if (rc) 355 return rc; 356 return sprintf(buf, "%#llx\n", nd_set->cookie1); 357 } 358 static DEVICE_ATTR_RO(set_cookie); 359 360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 361 { 362 resource_size_t blk_max_overlap = 0, available, overlap; 363 int i; 364 365 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 366 367 retry: 368 available = 0; 369 overlap = blk_max_overlap; 370 for (i = 0; i < nd_region->ndr_mappings; i++) { 371 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 372 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 373 374 /* if a dimm is disabled the available capacity is zero */ 375 if (!ndd) 376 return 0; 377 378 if (is_memory(&nd_region->dev)) { 379 available += nd_pmem_available_dpa(nd_region, 380 nd_mapping, &overlap); 381 if (overlap > blk_max_overlap) { 382 blk_max_overlap = overlap; 383 goto retry; 384 } 385 } else if (is_nd_blk(&nd_region->dev)) 386 available += nd_blk_available_dpa(nd_region); 387 } 388 389 return available; 390 } 391 392 static ssize_t available_size_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct nd_region *nd_region = to_nd_region(dev); 396 unsigned long long available = 0; 397 398 /* 399 * Flush in-flight updates and grab a snapshot of the available 400 * size. Of course, this value is potentially invalidated the 401 * memory nvdimm_bus_lock() is dropped, but that's userspace's 402 * problem to not race itself. 403 */ 404 nvdimm_bus_lock(dev); 405 wait_nvdimm_bus_probe_idle(dev); 406 available = nd_region_available_dpa(nd_region); 407 nvdimm_bus_unlock(dev); 408 409 return sprintf(buf, "%llu\n", available); 410 } 411 static DEVICE_ATTR_RO(available_size); 412 413 static ssize_t init_namespaces_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct nd_region_data *ndrd = dev_get_drvdata(dev); 417 ssize_t rc; 418 419 nvdimm_bus_lock(dev); 420 if (ndrd) 421 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 422 else 423 rc = -ENXIO; 424 nvdimm_bus_unlock(dev); 425 426 return rc; 427 } 428 static DEVICE_ATTR_RO(init_namespaces); 429 430 static ssize_t namespace_seed_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct nd_region *nd_region = to_nd_region(dev); 434 ssize_t rc; 435 436 nvdimm_bus_lock(dev); 437 if (nd_region->ns_seed) 438 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 439 else 440 rc = sprintf(buf, "\n"); 441 nvdimm_bus_unlock(dev); 442 return rc; 443 } 444 static DEVICE_ATTR_RO(namespace_seed); 445 446 static ssize_t btt_seed_show(struct device *dev, 447 struct device_attribute *attr, char *buf) 448 { 449 struct nd_region *nd_region = to_nd_region(dev); 450 ssize_t rc; 451 452 nvdimm_bus_lock(dev); 453 if (nd_region->btt_seed) 454 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 455 else 456 rc = sprintf(buf, "\n"); 457 nvdimm_bus_unlock(dev); 458 459 return rc; 460 } 461 static DEVICE_ATTR_RO(btt_seed); 462 463 static ssize_t pfn_seed_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct nd_region *nd_region = to_nd_region(dev); 467 ssize_t rc; 468 469 nvdimm_bus_lock(dev); 470 if (nd_region->pfn_seed) 471 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 472 else 473 rc = sprintf(buf, "\n"); 474 nvdimm_bus_unlock(dev); 475 476 return rc; 477 } 478 static DEVICE_ATTR_RO(pfn_seed); 479 480 static ssize_t dax_seed_show(struct device *dev, 481 struct device_attribute *attr, char *buf) 482 { 483 struct nd_region *nd_region = to_nd_region(dev); 484 ssize_t rc; 485 486 nvdimm_bus_lock(dev); 487 if (nd_region->dax_seed) 488 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 489 else 490 rc = sprintf(buf, "\n"); 491 nvdimm_bus_unlock(dev); 492 493 return rc; 494 } 495 static DEVICE_ATTR_RO(dax_seed); 496 497 static ssize_t read_only_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct nd_region *nd_region = to_nd_region(dev); 501 502 return sprintf(buf, "%d\n", nd_region->ro); 503 } 504 505 static ssize_t read_only_store(struct device *dev, 506 struct device_attribute *attr, const char *buf, size_t len) 507 { 508 bool ro; 509 int rc = strtobool(buf, &ro); 510 struct nd_region *nd_region = to_nd_region(dev); 511 512 if (rc) 513 return rc; 514 515 nd_region->ro = ro; 516 return len; 517 } 518 static DEVICE_ATTR_RW(read_only); 519 520 static ssize_t region_badblocks_show(struct device *dev, 521 struct device_attribute *attr, char *buf) 522 { 523 struct nd_region *nd_region = to_nd_region(dev); 524 525 return badblocks_show(&nd_region->bb, buf, 0); 526 } 527 528 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 529 530 static ssize_t resource_show(struct device *dev, 531 struct device_attribute *attr, char *buf) 532 { 533 struct nd_region *nd_region = to_nd_region(dev); 534 535 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 536 } 537 static DEVICE_ATTR_RO(resource); 538 539 static ssize_t persistence_domain_show(struct device *dev, 540 struct device_attribute *attr, char *buf) 541 { 542 struct nd_region *nd_region = to_nd_region(dev); 543 544 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 545 return sprintf(buf, "cpu_cache\n"); 546 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 547 return sprintf(buf, "memory_controller\n"); 548 else 549 return sprintf(buf, "\n"); 550 } 551 static DEVICE_ATTR_RO(persistence_domain); 552 553 static struct attribute *nd_region_attributes[] = { 554 &dev_attr_size.attr, 555 &dev_attr_nstype.attr, 556 &dev_attr_mappings.attr, 557 &dev_attr_btt_seed.attr, 558 &dev_attr_pfn_seed.attr, 559 &dev_attr_dax_seed.attr, 560 &dev_attr_deep_flush.attr, 561 &dev_attr_read_only.attr, 562 &dev_attr_set_cookie.attr, 563 &dev_attr_available_size.attr, 564 &dev_attr_namespace_seed.attr, 565 &dev_attr_init_namespaces.attr, 566 &dev_attr_badblocks.attr, 567 &dev_attr_resource.attr, 568 &dev_attr_persistence_domain.attr, 569 NULL, 570 }; 571 572 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 573 { 574 struct device *dev = container_of(kobj, typeof(*dev), kobj); 575 struct nd_region *nd_region = to_nd_region(dev); 576 struct nd_interleave_set *nd_set = nd_region->nd_set; 577 int type = nd_region_to_nstype(nd_region); 578 579 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 580 return 0; 581 582 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 583 return 0; 584 585 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 586 return 0; 587 588 if (a == &dev_attr_resource.attr) { 589 if (is_nd_pmem(dev)) 590 return 0400; 591 else 592 return 0; 593 } 594 595 if (a == &dev_attr_deep_flush.attr) { 596 int has_flush = nvdimm_has_flush(nd_region); 597 598 if (has_flush == 1) 599 return a->mode; 600 else if (has_flush == 0) 601 return 0444; 602 else 603 return 0; 604 } 605 606 if (a == &dev_attr_persistence_domain.attr) { 607 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 608 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 609 return 0; 610 return a->mode; 611 } 612 613 if (a != &dev_attr_set_cookie.attr 614 && a != &dev_attr_available_size.attr) 615 return a->mode; 616 617 if ((type == ND_DEVICE_NAMESPACE_PMEM 618 || type == ND_DEVICE_NAMESPACE_BLK) 619 && a == &dev_attr_available_size.attr) 620 return a->mode; 621 else if (is_memory(dev) && nd_set) 622 return a->mode; 623 624 return 0; 625 } 626 627 struct attribute_group nd_region_attribute_group = { 628 .attrs = nd_region_attributes, 629 .is_visible = region_visible, 630 }; 631 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 632 633 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 634 struct nd_namespace_index *nsindex) 635 { 636 struct nd_interleave_set *nd_set = nd_region->nd_set; 637 638 if (!nd_set) 639 return 0; 640 641 if (nsindex && __le16_to_cpu(nsindex->major) == 1 642 && __le16_to_cpu(nsindex->minor) == 1) 643 return nd_set->cookie1; 644 return nd_set->cookie2; 645 } 646 647 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 648 { 649 struct nd_interleave_set *nd_set = nd_region->nd_set; 650 651 if (nd_set) 652 return nd_set->altcookie; 653 return 0; 654 } 655 656 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 657 { 658 struct nd_label_ent *label_ent, *e; 659 660 lockdep_assert_held(&nd_mapping->lock); 661 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 662 list_del(&label_ent->list); 663 kfree(label_ent); 664 } 665 } 666 667 /* 668 * Upon successful probe/remove, take/release a reference on the 669 * associated interleave set (if present), and plant new btt + namespace 670 * seeds. Also, on the removal of a BLK region, notify the provider to 671 * disable the region. 672 */ 673 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 674 struct device *dev, bool probe) 675 { 676 struct nd_region *nd_region; 677 678 if (!probe && is_nd_region(dev)) { 679 int i; 680 681 nd_region = to_nd_region(dev); 682 for (i = 0; i < nd_region->ndr_mappings; i++) { 683 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 684 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 685 struct nvdimm *nvdimm = nd_mapping->nvdimm; 686 687 mutex_lock(&nd_mapping->lock); 688 nd_mapping_free_labels(nd_mapping); 689 mutex_unlock(&nd_mapping->lock); 690 691 put_ndd(ndd); 692 nd_mapping->ndd = NULL; 693 if (ndd) 694 atomic_dec(&nvdimm->busy); 695 } 696 } 697 if (dev->parent && is_nd_region(dev->parent) && probe) { 698 nd_region = to_nd_region(dev->parent); 699 nvdimm_bus_lock(dev); 700 if (nd_region->ns_seed == dev) 701 nd_region_create_ns_seed(nd_region); 702 nvdimm_bus_unlock(dev); 703 } 704 if (is_nd_btt(dev) && probe) { 705 struct nd_btt *nd_btt = to_nd_btt(dev); 706 707 nd_region = to_nd_region(dev->parent); 708 nvdimm_bus_lock(dev); 709 if (nd_region->btt_seed == dev) 710 nd_region_create_btt_seed(nd_region); 711 if (nd_region->ns_seed == &nd_btt->ndns->dev) 712 nd_region_create_ns_seed(nd_region); 713 nvdimm_bus_unlock(dev); 714 } 715 if (is_nd_pfn(dev) && probe) { 716 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 717 718 nd_region = to_nd_region(dev->parent); 719 nvdimm_bus_lock(dev); 720 if (nd_region->pfn_seed == dev) 721 nd_region_create_pfn_seed(nd_region); 722 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 723 nd_region_create_ns_seed(nd_region); 724 nvdimm_bus_unlock(dev); 725 } 726 if (is_nd_dax(dev) && probe) { 727 struct nd_dax *nd_dax = to_nd_dax(dev); 728 729 nd_region = to_nd_region(dev->parent); 730 nvdimm_bus_lock(dev); 731 if (nd_region->dax_seed == dev) 732 nd_region_create_dax_seed(nd_region); 733 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 734 nd_region_create_ns_seed(nd_region); 735 nvdimm_bus_unlock(dev); 736 } 737 } 738 739 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 740 { 741 nd_region_notify_driver_action(nvdimm_bus, dev, true); 742 } 743 744 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 745 { 746 nd_region_notify_driver_action(nvdimm_bus, dev, false); 747 } 748 749 static ssize_t mappingN(struct device *dev, char *buf, int n) 750 { 751 struct nd_region *nd_region = to_nd_region(dev); 752 struct nd_mapping *nd_mapping; 753 struct nvdimm *nvdimm; 754 755 if (n >= nd_region->ndr_mappings) 756 return -ENXIO; 757 nd_mapping = &nd_region->mapping[n]; 758 nvdimm = nd_mapping->nvdimm; 759 760 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 761 nd_mapping->start, nd_mapping->size, 762 nd_mapping->position); 763 } 764 765 #define REGION_MAPPING(idx) \ 766 static ssize_t mapping##idx##_show(struct device *dev, \ 767 struct device_attribute *attr, char *buf) \ 768 { \ 769 return mappingN(dev, buf, idx); \ 770 } \ 771 static DEVICE_ATTR_RO(mapping##idx) 772 773 /* 774 * 32 should be enough for a while, even in the presence of socket 775 * interleave a 32-way interleave set is a degenerate case. 776 */ 777 REGION_MAPPING(0); 778 REGION_MAPPING(1); 779 REGION_MAPPING(2); 780 REGION_MAPPING(3); 781 REGION_MAPPING(4); 782 REGION_MAPPING(5); 783 REGION_MAPPING(6); 784 REGION_MAPPING(7); 785 REGION_MAPPING(8); 786 REGION_MAPPING(9); 787 REGION_MAPPING(10); 788 REGION_MAPPING(11); 789 REGION_MAPPING(12); 790 REGION_MAPPING(13); 791 REGION_MAPPING(14); 792 REGION_MAPPING(15); 793 REGION_MAPPING(16); 794 REGION_MAPPING(17); 795 REGION_MAPPING(18); 796 REGION_MAPPING(19); 797 REGION_MAPPING(20); 798 REGION_MAPPING(21); 799 REGION_MAPPING(22); 800 REGION_MAPPING(23); 801 REGION_MAPPING(24); 802 REGION_MAPPING(25); 803 REGION_MAPPING(26); 804 REGION_MAPPING(27); 805 REGION_MAPPING(28); 806 REGION_MAPPING(29); 807 REGION_MAPPING(30); 808 REGION_MAPPING(31); 809 810 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 811 { 812 struct device *dev = container_of(kobj, struct device, kobj); 813 struct nd_region *nd_region = to_nd_region(dev); 814 815 if (n < nd_region->ndr_mappings) 816 return a->mode; 817 return 0; 818 } 819 820 static struct attribute *mapping_attributes[] = { 821 &dev_attr_mapping0.attr, 822 &dev_attr_mapping1.attr, 823 &dev_attr_mapping2.attr, 824 &dev_attr_mapping3.attr, 825 &dev_attr_mapping4.attr, 826 &dev_attr_mapping5.attr, 827 &dev_attr_mapping6.attr, 828 &dev_attr_mapping7.attr, 829 &dev_attr_mapping8.attr, 830 &dev_attr_mapping9.attr, 831 &dev_attr_mapping10.attr, 832 &dev_attr_mapping11.attr, 833 &dev_attr_mapping12.attr, 834 &dev_attr_mapping13.attr, 835 &dev_attr_mapping14.attr, 836 &dev_attr_mapping15.attr, 837 &dev_attr_mapping16.attr, 838 &dev_attr_mapping17.attr, 839 &dev_attr_mapping18.attr, 840 &dev_attr_mapping19.attr, 841 &dev_attr_mapping20.attr, 842 &dev_attr_mapping21.attr, 843 &dev_attr_mapping22.attr, 844 &dev_attr_mapping23.attr, 845 &dev_attr_mapping24.attr, 846 &dev_attr_mapping25.attr, 847 &dev_attr_mapping26.attr, 848 &dev_attr_mapping27.attr, 849 &dev_attr_mapping28.attr, 850 &dev_attr_mapping29.attr, 851 &dev_attr_mapping30.attr, 852 &dev_attr_mapping31.attr, 853 NULL, 854 }; 855 856 struct attribute_group nd_mapping_attribute_group = { 857 .is_visible = mapping_visible, 858 .attrs = mapping_attributes, 859 }; 860 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 861 862 int nd_blk_region_init(struct nd_region *nd_region) 863 { 864 struct device *dev = &nd_region->dev; 865 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 866 867 if (!is_nd_blk(dev)) 868 return 0; 869 870 if (nd_region->ndr_mappings < 1) { 871 dev_dbg(dev, "invalid BLK region\n"); 872 return -ENXIO; 873 } 874 875 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 876 } 877 878 /** 879 * nd_region_acquire_lane - allocate and lock a lane 880 * @nd_region: region id and number of lanes possible 881 * 882 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 883 * We optimize for the common case where there are 256 lanes, one 884 * per-cpu. For larger systems we need to lock to share lanes. For now 885 * this implementation assumes the cost of maintaining an allocator for 886 * free lanes is on the order of the lock hold time, so it implements a 887 * static lane = cpu % num_lanes mapping. 888 * 889 * In the case of a BTT instance on top of a BLK namespace a lane may be 890 * acquired recursively. We lock on the first instance. 891 * 892 * In the case of a BTT instance on top of PMEM, we only acquire a lane 893 * for the BTT metadata updates. 894 */ 895 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 896 { 897 unsigned int cpu, lane; 898 899 cpu = get_cpu(); 900 if (nd_region->num_lanes < nr_cpu_ids) { 901 struct nd_percpu_lane *ndl_lock, *ndl_count; 902 903 lane = cpu % nd_region->num_lanes; 904 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 905 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 906 if (ndl_count->count++ == 0) 907 spin_lock(&ndl_lock->lock); 908 } else 909 lane = cpu; 910 911 return lane; 912 } 913 EXPORT_SYMBOL(nd_region_acquire_lane); 914 915 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 916 { 917 if (nd_region->num_lanes < nr_cpu_ids) { 918 unsigned int cpu = get_cpu(); 919 struct nd_percpu_lane *ndl_lock, *ndl_count; 920 921 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 922 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 923 if (--ndl_count->count == 0) 924 spin_unlock(&ndl_lock->lock); 925 put_cpu(); 926 } 927 put_cpu(); 928 } 929 EXPORT_SYMBOL(nd_region_release_lane); 930 931 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 932 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 933 const char *caller) 934 { 935 struct nd_region *nd_region; 936 struct device *dev; 937 void *region_buf; 938 unsigned int i; 939 int ro = 0; 940 941 for (i = 0; i < ndr_desc->num_mappings; i++) { 942 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 943 struct nvdimm *nvdimm = mapping->nvdimm; 944 945 if ((mapping->start | mapping->size) % SZ_4K) { 946 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 947 caller, dev_name(&nvdimm->dev), i); 948 949 return NULL; 950 } 951 952 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 953 ro = 1; 954 } 955 956 if (dev_type == &nd_blk_device_type) { 957 struct nd_blk_region_desc *ndbr_desc; 958 struct nd_blk_region *ndbr; 959 960 ndbr_desc = to_blk_region_desc(ndr_desc); 961 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 962 * ndr_desc->num_mappings, 963 GFP_KERNEL); 964 if (ndbr) { 965 nd_region = &ndbr->nd_region; 966 ndbr->enable = ndbr_desc->enable; 967 ndbr->do_io = ndbr_desc->do_io; 968 } 969 region_buf = ndbr; 970 } else { 971 nd_region = kzalloc(sizeof(struct nd_region) 972 + sizeof(struct nd_mapping) 973 * ndr_desc->num_mappings, 974 GFP_KERNEL); 975 region_buf = nd_region; 976 } 977 978 if (!region_buf) 979 return NULL; 980 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 981 if (nd_region->id < 0) 982 goto err_id; 983 984 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 985 if (!nd_region->lane) 986 goto err_percpu; 987 988 for (i = 0; i < nr_cpu_ids; i++) { 989 struct nd_percpu_lane *ndl; 990 991 ndl = per_cpu_ptr(nd_region->lane, i); 992 spin_lock_init(&ndl->lock); 993 ndl->count = 0; 994 } 995 996 for (i = 0; i < ndr_desc->num_mappings; i++) { 997 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 998 struct nvdimm *nvdimm = mapping->nvdimm; 999 1000 nd_region->mapping[i].nvdimm = nvdimm; 1001 nd_region->mapping[i].start = mapping->start; 1002 nd_region->mapping[i].size = mapping->size; 1003 nd_region->mapping[i].position = mapping->position; 1004 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1005 mutex_init(&nd_region->mapping[i].lock); 1006 1007 get_device(&nvdimm->dev); 1008 } 1009 nd_region->ndr_mappings = ndr_desc->num_mappings; 1010 nd_region->provider_data = ndr_desc->provider_data; 1011 nd_region->nd_set = ndr_desc->nd_set; 1012 nd_region->num_lanes = ndr_desc->num_lanes; 1013 nd_region->flags = ndr_desc->flags; 1014 nd_region->ro = ro; 1015 nd_region->numa_node = ndr_desc->numa_node; 1016 ida_init(&nd_region->ns_ida); 1017 ida_init(&nd_region->btt_ida); 1018 ida_init(&nd_region->pfn_ida); 1019 ida_init(&nd_region->dax_ida); 1020 dev = &nd_region->dev; 1021 dev_set_name(dev, "region%d", nd_region->id); 1022 dev->parent = &nvdimm_bus->dev; 1023 dev->type = dev_type; 1024 dev->groups = ndr_desc->attr_groups; 1025 dev->of_node = ndr_desc->of_node; 1026 nd_region->ndr_size = resource_size(ndr_desc->res); 1027 nd_region->ndr_start = ndr_desc->res->start; 1028 nd_device_register(dev); 1029 1030 return nd_region; 1031 1032 err_percpu: 1033 ida_simple_remove(®ion_ida, nd_region->id); 1034 err_id: 1035 kfree(region_buf); 1036 return NULL; 1037 } 1038 1039 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1040 struct nd_region_desc *ndr_desc) 1041 { 1042 ndr_desc->num_lanes = ND_MAX_LANES; 1043 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1044 __func__); 1045 } 1046 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1047 1048 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1049 struct nd_region_desc *ndr_desc) 1050 { 1051 if (ndr_desc->num_mappings > 1) 1052 return NULL; 1053 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1054 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1055 __func__); 1056 } 1057 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1058 1059 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1060 struct nd_region_desc *ndr_desc) 1061 { 1062 ndr_desc->num_lanes = ND_MAX_LANES; 1063 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1064 __func__); 1065 } 1066 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1067 1068 /** 1069 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1070 * @nd_region: blk or interleaved pmem region 1071 */ 1072 void nvdimm_flush(struct nd_region *nd_region) 1073 { 1074 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1075 int i, idx; 1076 1077 /* 1078 * Try to encourage some diversity in flush hint addresses 1079 * across cpus assuming a limited number of flush hints. 1080 */ 1081 idx = this_cpu_read(flush_idx); 1082 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1083 1084 /* 1085 * The first wmb() is needed to 'sfence' all previous writes 1086 * such that they are architecturally visible for the platform 1087 * buffer flush. Note that we've already arranged for pmem 1088 * writes to avoid the cache via memcpy_flushcache(). The final 1089 * wmb() ensures ordering for the NVDIMM flush write. 1090 */ 1091 wmb(); 1092 for (i = 0; i < nd_region->ndr_mappings; i++) 1093 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1094 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1095 wmb(); 1096 } 1097 EXPORT_SYMBOL_GPL(nvdimm_flush); 1098 1099 /** 1100 * nvdimm_has_flush - determine write flushing requirements 1101 * @nd_region: blk or interleaved pmem region 1102 * 1103 * Returns 1 if writes require flushing 1104 * Returns 0 if writes do not require flushing 1105 * Returns -ENXIO if flushing capability can not be determined 1106 */ 1107 int nvdimm_has_flush(struct nd_region *nd_region) 1108 { 1109 int i; 1110 1111 /* no nvdimm or pmem api == flushing capability unknown */ 1112 if (nd_region->ndr_mappings == 0 1113 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1114 return -ENXIO; 1115 1116 for (i = 0; i < nd_region->ndr_mappings; i++) { 1117 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1118 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1119 1120 /* flush hints present / available */ 1121 if (nvdimm->num_flush) 1122 return 1; 1123 } 1124 1125 /* 1126 * The platform defines dimm devices without hints, assume 1127 * platform persistence mechanism like ADR 1128 */ 1129 return 0; 1130 } 1131 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1132 1133 int nvdimm_has_cache(struct nd_region *nd_region) 1134 { 1135 return is_nd_pmem(&nd_region->dev) && 1136 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1137 } 1138 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1139 1140 void __exit nd_region_devs_exit(void) 1141 { 1142 ida_destroy(®ion_ida); 1143 } 1144