1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 memregion_free(nd_region->id); 137 if (is_nd_blk(dev)) 138 kfree(to_nd_blk_region(dev)); 139 else 140 kfree(nd_region); 141 } 142 143 struct nd_region *to_nd_region(struct device *dev) 144 { 145 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 146 147 WARN_ON(dev->type->release != nd_region_release); 148 return nd_region; 149 } 150 EXPORT_SYMBOL_GPL(to_nd_region); 151 152 struct device *nd_region_dev(struct nd_region *nd_region) 153 { 154 if (!nd_region) 155 return NULL; 156 return &nd_region->dev; 157 } 158 EXPORT_SYMBOL_GPL(nd_region_dev); 159 160 struct nd_blk_region *to_nd_blk_region(struct device *dev) 161 { 162 struct nd_region *nd_region = to_nd_region(dev); 163 164 WARN_ON(!is_nd_blk(dev)); 165 return container_of(nd_region, struct nd_blk_region, nd_region); 166 } 167 EXPORT_SYMBOL_GPL(to_nd_blk_region); 168 169 void *nd_region_provider_data(struct nd_region *nd_region) 170 { 171 return nd_region->provider_data; 172 } 173 EXPORT_SYMBOL_GPL(nd_region_provider_data); 174 175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 176 { 177 return ndbr->blk_provider_data; 178 } 179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 180 181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 182 { 183 ndbr->blk_provider_data = data; 184 } 185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 186 187 /** 188 * nd_region_to_nstype() - region to an integer namespace type 189 * @nd_region: region-device to interrogate 190 * 191 * This is the 'nstype' attribute of a region as well, an input to the 192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 193 * namespace devices with namespace drivers. 194 */ 195 int nd_region_to_nstype(struct nd_region *nd_region) 196 { 197 if (is_memory(&nd_region->dev)) { 198 u16 i, alias; 199 200 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 201 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 202 struct nvdimm *nvdimm = nd_mapping->nvdimm; 203 204 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 205 alias++; 206 } 207 if (alias) 208 return ND_DEVICE_NAMESPACE_PMEM; 209 else 210 return ND_DEVICE_NAMESPACE_IO; 211 } else if (is_nd_blk(&nd_region->dev)) { 212 return ND_DEVICE_NAMESPACE_BLK; 213 } 214 215 return 0; 216 } 217 EXPORT_SYMBOL(nd_region_to_nstype); 218 219 static ssize_t size_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 struct nd_region *nd_region = to_nd_region(dev); 223 unsigned long long size = 0; 224 225 if (is_memory(dev)) { 226 size = nd_region->ndr_size; 227 } else if (nd_region->ndr_mappings == 1) { 228 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 229 230 size = nd_mapping->size; 231 } 232 233 return sprintf(buf, "%llu\n", size); 234 } 235 static DEVICE_ATTR_RO(size); 236 237 static ssize_t deep_flush_show(struct device *dev, 238 struct device_attribute *attr, char *buf) 239 { 240 struct nd_region *nd_region = to_nd_region(dev); 241 242 /* 243 * NOTE: in the nvdimm_has_flush() error case this attribute is 244 * not visible. 245 */ 246 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 247 } 248 249 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 250 const char *buf, size_t len) 251 { 252 bool flush; 253 int rc = strtobool(buf, &flush); 254 struct nd_region *nd_region = to_nd_region(dev); 255 256 if (rc) 257 return rc; 258 if (!flush) 259 return -EINVAL; 260 rc = nvdimm_flush(nd_region, NULL); 261 if (rc) 262 return rc; 263 264 return len; 265 } 266 static DEVICE_ATTR_RW(deep_flush); 267 268 static ssize_t mappings_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct nd_region *nd_region = to_nd_region(dev); 272 273 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 274 } 275 static DEVICE_ATTR_RO(mappings); 276 277 static ssize_t nstype_show(struct device *dev, 278 struct device_attribute *attr, char *buf) 279 { 280 struct nd_region *nd_region = to_nd_region(dev); 281 282 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 283 } 284 static DEVICE_ATTR_RO(nstype); 285 286 static ssize_t set_cookie_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct nd_region *nd_region = to_nd_region(dev); 290 struct nd_interleave_set *nd_set = nd_region->nd_set; 291 ssize_t rc = 0; 292 293 if (is_memory(dev) && nd_set) 294 /* pass, should be precluded by region_visible */; 295 else 296 return -ENXIO; 297 298 /* 299 * The cookie to show depends on which specification of the 300 * labels we are using. If there are not labels then default to 301 * the v1.1 namespace label cookie definition. To read all this 302 * data we need to wait for probing to settle. 303 */ 304 nd_device_lock(dev); 305 nvdimm_bus_lock(dev); 306 wait_nvdimm_bus_probe_idle(dev); 307 if (nd_region->ndr_mappings) { 308 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 309 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 310 311 if (ndd) { 312 struct nd_namespace_index *nsindex; 313 314 nsindex = to_namespace_index(ndd, ndd->ns_current); 315 rc = sprintf(buf, "%#llx\n", 316 nd_region_interleave_set_cookie(nd_region, 317 nsindex)); 318 } 319 } 320 nvdimm_bus_unlock(dev); 321 nd_device_unlock(dev); 322 323 if (rc) 324 return rc; 325 return sprintf(buf, "%#llx\n", nd_set->cookie1); 326 } 327 static DEVICE_ATTR_RO(set_cookie); 328 329 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 330 { 331 resource_size_t blk_max_overlap = 0, available, overlap; 332 int i; 333 334 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 335 336 retry: 337 available = 0; 338 overlap = blk_max_overlap; 339 for (i = 0; i < nd_region->ndr_mappings; i++) { 340 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 341 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 342 343 /* if a dimm is disabled the available capacity is zero */ 344 if (!ndd) 345 return 0; 346 347 if (is_memory(&nd_region->dev)) { 348 available += nd_pmem_available_dpa(nd_region, 349 nd_mapping, &overlap); 350 if (overlap > blk_max_overlap) { 351 blk_max_overlap = overlap; 352 goto retry; 353 } 354 } else if (is_nd_blk(&nd_region->dev)) 355 available += nd_blk_available_dpa(nd_region); 356 } 357 358 return available; 359 } 360 361 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 362 { 363 resource_size_t available = 0; 364 int i; 365 366 if (is_memory(&nd_region->dev)) 367 available = PHYS_ADDR_MAX; 368 369 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 370 for (i = 0; i < nd_region->ndr_mappings; i++) { 371 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 372 373 if (is_memory(&nd_region->dev)) 374 available = min(available, 375 nd_pmem_max_contiguous_dpa(nd_region, 376 nd_mapping)); 377 else if (is_nd_blk(&nd_region->dev)) 378 available += nd_blk_available_dpa(nd_region); 379 } 380 if (is_memory(&nd_region->dev)) 381 return available * nd_region->ndr_mappings; 382 return available; 383 } 384 385 static ssize_t available_size_show(struct device *dev, 386 struct device_attribute *attr, char *buf) 387 { 388 struct nd_region *nd_region = to_nd_region(dev); 389 unsigned long long available = 0; 390 391 /* 392 * Flush in-flight updates and grab a snapshot of the available 393 * size. Of course, this value is potentially invalidated the 394 * memory nvdimm_bus_lock() is dropped, but that's userspace's 395 * problem to not race itself. 396 */ 397 nd_device_lock(dev); 398 nvdimm_bus_lock(dev); 399 wait_nvdimm_bus_probe_idle(dev); 400 available = nd_region_available_dpa(nd_region); 401 nvdimm_bus_unlock(dev); 402 nd_device_unlock(dev); 403 404 return sprintf(buf, "%llu\n", available); 405 } 406 static DEVICE_ATTR_RO(available_size); 407 408 static ssize_t max_available_extent_show(struct device *dev, 409 struct device_attribute *attr, char *buf) 410 { 411 struct nd_region *nd_region = to_nd_region(dev); 412 unsigned long long available = 0; 413 414 nd_device_lock(dev); 415 nvdimm_bus_lock(dev); 416 wait_nvdimm_bus_probe_idle(dev); 417 available = nd_region_allocatable_dpa(nd_region); 418 nvdimm_bus_unlock(dev); 419 nd_device_unlock(dev); 420 421 return sprintf(buf, "%llu\n", available); 422 } 423 static DEVICE_ATTR_RO(max_available_extent); 424 425 static ssize_t init_namespaces_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 struct nd_region_data *ndrd = dev_get_drvdata(dev); 429 ssize_t rc; 430 431 nvdimm_bus_lock(dev); 432 if (ndrd) 433 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 434 else 435 rc = -ENXIO; 436 nvdimm_bus_unlock(dev); 437 438 return rc; 439 } 440 static DEVICE_ATTR_RO(init_namespaces); 441 442 static ssize_t namespace_seed_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct nd_region *nd_region = to_nd_region(dev); 446 ssize_t rc; 447 448 nvdimm_bus_lock(dev); 449 if (nd_region->ns_seed) 450 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 451 else 452 rc = sprintf(buf, "\n"); 453 nvdimm_bus_unlock(dev); 454 return rc; 455 } 456 static DEVICE_ATTR_RO(namespace_seed); 457 458 static ssize_t btt_seed_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct nd_region *nd_region = to_nd_region(dev); 462 ssize_t rc; 463 464 nvdimm_bus_lock(dev); 465 if (nd_region->btt_seed) 466 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 467 else 468 rc = sprintf(buf, "\n"); 469 nvdimm_bus_unlock(dev); 470 471 return rc; 472 } 473 static DEVICE_ATTR_RO(btt_seed); 474 475 static ssize_t pfn_seed_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct nd_region *nd_region = to_nd_region(dev); 479 ssize_t rc; 480 481 nvdimm_bus_lock(dev); 482 if (nd_region->pfn_seed) 483 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 484 else 485 rc = sprintf(buf, "\n"); 486 nvdimm_bus_unlock(dev); 487 488 return rc; 489 } 490 static DEVICE_ATTR_RO(pfn_seed); 491 492 static ssize_t dax_seed_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct nd_region *nd_region = to_nd_region(dev); 496 ssize_t rc; 497 498 nvdimm_bus_lock(dev); 499 if (nd_region->dax_seed) 500 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 501 else 502 rc = sprintf(buf, "\n"); 503 nvdimm_bus_unlock(dev); 504 505 return rc; 506 } 507 static DEVICE_ATTR_RO(dax_seed); 508 509 static ssize_t read_only_show(struct device *dev, 510 struct device_attribute *attr, char *buf) 511 { 512 struct nd_region *nd_region = to_nd_region(dev); 513 514 return sprintf(buf, "%d\n", nd_region->ro); 515 } 516 517 static ssize_t read_only_store(struct device *dev, 518 struct device_attribute *attr, const char *buf, size_t len) 519 { 520 bool ro; 521 int rc = strtobool(buf, &ro); 522 struct nd_region *nd_region = to_nd_region(dev); 523 524 if (rc) 525 return rc; 526 527 nd_region->ro = ro; 528 return len; 529 } 530 static DEVICE_ATTR_RW(read_only); 531 532 static ssize_t region_badblocks_show(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct nd_region *nd_region = to_nd_region(dev); 536 ssize_t rc; 537 538 nd_device_lock(dev); 539 if (dev->driver) 540 rc = badblocks_show(&nd_region->bb, buf, 0); 541 else 542 rc = -ENXIO; 543 nd_device_unlock(dev); 544 545 return rc; 546 } 547 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 548 549 static ssize_t resource_show(struct device *dev, 550 struct device_attribute *attr, char *buf) 551 { 552 struct nd_region *nd_region = to_nd_region(dev); 553 554 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 555 } 556 static DEVICE_ATTR(resource, 0400, resource_show, NULL); 557 558 static ssize_t persistence_domain_show(struct device *dev, 559 struct device_attribute *attr, char *buf) 560 { 561 struct nd_region *nd_region = to_nd_region(dev); 562 563 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 564 return sprintf(buf, "cpu_cache\n"); 565 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 566 return sprintf(buf, "memory_controller\n"); 567 else 568 return sprintf(buf, "\n"); 569 } 570 static DEVICE_ATTR_RO(persistence_domain); 571 572 static struct attribute *nd_region_attributes[] = { 573 &dev_attr_size.attr, 574 &dev_attr_nstype.attr, 575 &dev_attr_mappings.attr, 576 &dev_attr_btt_seed.attr, 577 &dev_attr_pfn_seed.attr, 578 &dev_attr_dax_seed.attr, 579 &dev_attr_deep_flush.attr, 580 &dev_attr_read_only.attr, 581 &dev_attr_set_cookie.attr, 582 &dev_attr_available_size.attr, 583 &dev_attr_max_available_extent.attr, 584 &dev_attr_namespace_seed.attr, 585 &dev_attr_init_namespaces.attr, 586 &dev_attr_badblocks.attr, 587 &dev_attr_resource.attr, 588 &dev_attr_persistence_domain.attr, 589 NULL, 590 }; 591 592 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 593 { 594 struct device *dev = container_of(kobj, typeof(*dev), kobj); 595 struct nd_region *nd_region = to_nd_region(dev); 596 struct nd_interleave_set *nd_set = nd_region->nd_set; 597 int type = nd_region_to_nstype(nd_region); 598 599 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 600 return 0; 601 602 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 603 return 0; 604 605 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 606 return 0; 607 608 if (a == &dev_attr_resource.attr && !is_memory(dev)) 609 return 0; 610 611 if (a == &dev_attr_deep_flush.attr) { 612 int has_flush = nvdimm_has_flush(nd_region); 613 614 if (has_flush == 1) 615 return a->mode; 616 else if (has_flush == 0) 617 return 0444; 618 else 619 return 0; 620 } 621 622 if (a == &dev_attr_persistence_domain.attr) { 623 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 624 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 625 return 0; 626 return a->mode; 627 } 628 629 if (a != &dev_attr_set_cookie.attr 630 && a != &dev_attr_available_size.attr) 631 return a->mode; 632 633 if ((type == ND_DEVICE_NAMESPACE_PMEM 634 || type == ND_DEVICE_NAMESPACE_BLK) 635 && a == &dev_attr_available_size.attr) 636 return a->mode; 637 else if (is_memory(dev) && nd_set) 638 return a->mode; 639 640 return 0; 641 } 642 643 static ssize_t mappingN(struct device *dev, char *buf, int n) 644 { 645 struct nd_region *nd_region = to_nd_region(dev); 646 struct nd_mapping *nd_mapping; 647 struct nvdimm *nvdimm; 648 649 if (n >= nd_region->ndr_mappings) 650 return -ENXIO; 651 nd_mapping = &nd_region->mapping[n]; 652 nvdimm = nd_mapping->nvdimm; 653 654 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 655 nd_mapping->start, nd_mapping->size, 656 nd_mapping->position); 657 } 658 659 #define REGION_MAPPING(idx) \ 660 static ssize_t mapping##idx##_show(struct device *dev, \ 661 struct device_attribute *attr, char *buf) \ 662 { \ 663 return mappingN(dev, buf, idx); \ 664 } \ 665 static DEVICE_ATTR_RO(mapping##idx) 666 667 /* 668 * 32 should be enough for a while, even in the presence of socket 669 * interleave a 32-way interleave set is a degenerate case. 670 */ 671 REGION_MAPPING(0); 672 REGION_MAPPING(1); 673 REGION_MAPPING(2); 674 REGION_MAPPING(3); 675 REGION_MAPPING(4); 676 REGION_MAPPING(5); 677 REGION_MAPPING(6); 678 REGION_MAPPING(7); 679 REGION_MAPPING(8); 680 REGION_MAPPING(9); 681 REGION_MAPPING(10); 682 REGION_MAPPING(11); 683 REGION_MAPPING(12); 684 REGION_MAPPING(13); 685 REGION_MAPPING(14); 686 REGION_MAPPING(15); 687 REGION_MAPPING(16); 688 REGION_MAPPING(17); 689 REGION_MAPPING(18); 690 REGION_MAPPING(19); 691 REGION_MAPPING(20); 692 REGION_MAPPING(21); 693 REGION_MAPPING(22); 694 REGION_MAPPING(23); 695 REGION_MAPPING(24); 696 REGION_MAPPING(25); 697 REGION_MAPPING(26); 698 REGION_MAPPING(27); 699 REGION_MAPPING(28); 700 REGION_MAPPING(29); 701 REGION_MAPPING(30); 702 REGION_MAPPING(31); 703 704 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 705 { 706 struct device *dev = container_of(kobj, struct device, kobj); 707 struct nd_region *nd_region = to_nd_region(dev); 708 709 if (n < nd_region->ndr_mappings) 710 return a->mode; 711 return 0; 712 } 713 714 static struct attribute *mapping_attributes[] = { 715 &dev_attr_mapping0.attr, 716 &dev_attr_mapping1.attr, 717 &dev_attr_mapping2.attr, 718 &dev_attr_mapping3.attr, 719 &dev_attr_mapping4.attr, 720 &dev_attr_mapping5.attr, 721 &dev_attr_mapping6.attr, 722 &dev_attr_mapping7.attr, 723 &dev_attr_mapping8.attr, 724 &dev_attr_mapping9.attr, 725 &dev_attr_mapping10.attr, 726 &dev_attr_mapping11.attr, 727 &dev_attr_mapping12.attr, 728 &dev_attr_mapping13.attr, 729 &dev_attr_mapping14.attr, 730 &dev_attr_mapping15.attr, 731 &dev_attr_mapping16.attr, 732 &dev_attr_mapping17.attr, 733 &dev_attr_mapping18.attr, 734 &dev_attr_mapping19.attr, 735 &dev_attr_mapping20.attr, 736 &dev_attr_mapping21.attr, 737 &dev_attr_mapping22.attr, 738 &dev_attr_mapping23.attr, 739 &dev_attr_mapping24.attr, 740 &dev_attr_mapping25.attr, 741 &dev_attr_mapping26.attr, 742 &dev_attr_mapping27.attr, 743 &dev_attr_mapping28.attr, 744 &dev_attr_mapping29.attr, 745 &dev_attr_mapping30.attr, 746 &dev_attr_mapping31.attr, 747 NULL, 748 }; 749 750 static const struct attribute_group nd_mapping_attribute_group = { 751 .is_visible = mapping_visible, 752 .attrs = mapping_attributes, 753 }; 754 755 static const struct attribute_group nd_region_attribute_group = { 756 .attrs = nd_region_attributes, 757 .is_visible = region_visible, 758 }; 759 760 static const struct attribute_group *nd_region_attribute_groups[] = { 761 &nd_device_attribute_group, 762 &nd_region_attribute_group, 763 &nd_numa_attribute_group, 764 &nd_mapping_attribute_group, 765 NULL, 766 }; 767 768 static const struct device_type nd_blk_device_type = { 769 .name = "nd_blk", 770 .release = nd_region_release, 771 .groups = nd_region_attribute_groups, 772 }; 773 774 static const struct device_type nd_pmem_device_type = { 775 .name = "nd_pmem", 776 .release = nd_region_release, 777 .groups = nd_region_attribute_groups, 778 }; 779 780 static const struct device_type nd_volatile_device_type = { 781 .name = "nd_volatile", 782 .release = nd_region_release, 783 .groups = nd_region_attribute_groups, 784 }; 785 786 bool is_nd_pmem(struct device *dev) 787 { 788 return dev ? dev->type == &nd_pmem_device_type : false; 789 } 790 791 bool is_nd_blk(struct device *dev) 792 { 793 return dev ? dev->type == &nd_blk_device_type : false; 794 } 795 796 bool is_nd_volatile(struct device *dev) 797 { 798 return dev ? dev->type == &nd_volatile_device_type : false; 799 } 800 801 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 802 struct nd_namespace_index *nsindex) 803 { 804 struct nd_interleave_set *nd_set = nd_region->nd_set; 805 806 if (!nd_set) 807 return 0; 808 809 if (nsindex && __le16_to_cpu(nsindex->major) == 1 810 && __le16_to_cpu(nsindex->minor) == 1) 811 return nd_set->cookie1; 812 return nd_set->cookie2; 813 } 814 815 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 816 { 817 struct nd_interleave_set *nd_set = nd_region->nd_set; 818 819 if (nd_set) 820 return nd_set->altcookie; 821 return 0; 822 } 823 824 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 825 { 826 struct nd_label_ent *label_ent, *e; 827 828 lockdep_assert_held(&nd_mapping->lock); 829 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 830 list_del(&label_ent->list); 831 kfree(label_ent); 832 } 833 } 834 835 /* 836 * When a namespace is activated create new seeds for the next 837 * namespace, or namespace-personality to be configured. 838 */ 839 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 840 { 841 nvdimm_bus_lock(dev); 842 if (nd_region->ns_seed == dev) { 843 nd_region_create_ns_seed(nd_region); 844 } else if (is_nd_btt(dev)) { 845 struct nd_btt *nd_btt = to_nd_btt(dev); 846 847 if (nd_region->btt_seed == dev) 848 nd_region_create_btt_seed(nd_region); 849 if (nd_region->ns_seed == &nd_btt->ndns->dev) 850 nd_region_create_ns_seed(nd_region); 851 } else if (is_nd_pfn(dev)) { 852 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 853 854 if (nd_region->pfn_seed == dev) 855 nd_region_create_pfn_seed(nd_region); 856 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 857 nd_region_create_ns_seed(nd_region); 858 } else if (is_nd_dax(dev)) { 859 struct nd_dax *nd_dax = to_nd_dax(dev); 860 861 if (nd_region->dax_seed == dev) 862 nd_region_create_dax_seed(nd_region); 863 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 864 nd_region_create_ns_seed(nd_region); 865 } 866 nvdimm_bus_unlock(dev); 867 } 868 869 int nd_blk_region_init(struct nd_region *nd_region) 870 { 871 struct device *dev = &nd_region->dev; 872 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 873 874 if (!is_nd_blk(dev)) 875 return 0; 876 877 if (nd_region->ndr_mappings < 1) { 878 dev_dbg(dev, "invalid BLK region\n"); 879 return -ENXIO; 880 } 881 882 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 883 } 884 885 /** 886 * nd_region_acquire_lane - allocate and lock a lane 887 * @nd_region: region id and number of lanes possible 888 * 889 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 890 * We optimize for the common case where there are 256 lanes, one 891 * per-cpu. For larger systems we need to lock to share lanes. For now 892 * this implementation assumes the cost of maintaining an allocator for 893 * free lanes is on the order of the lock hold time, so it implements a 894 * static lane = cpu % num_lanes mapping. 895 * 896 * In the case of a BTT instance on top of a BLK namespace a lane may be 897 * acquired recursively. We lock on the first instance. 898 * 899 * In the case of a BTT instance on top of PMEM, we only acquire a lane 900 * for the BTT metadata updates. 901 */ 902 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 903 { 904 unsigned int cpu, lane; 905 906 cpu = get_cpu(); 907 if (nd_region->num_lanes < nr_cpu_ids) { 908 struct nd_percpu_lane *ndl_lock, *ndl_count; 909 910 lane = cpu % nd_region->num_lanes; 911 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 912 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 913 if (ndl_count->count++ == 0) 914 spin_lock(&ndl_lock->lock); 915 } else 916 lane = cpu; 917 918 return lane; 919 } 920 EXPORT_SYMBOL(nd_region_acquire_lane); 921 922 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 923 { 924 if (nd_region->num_lanes < nr_cpu_ids) { 925 unsigned int cpu = get_cpu(); 926 struct nd_percpu_lane *ndl_lock, *ndl_count; 927 928 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 929 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 930 if (--ndl_count->count == 0) 931 spin_unlock(&ndl_lock->lock); 932 put_cpu(); 933 } 934 put_cpu(); 935 } 936 EXPORT_SYMBOL(nd_region_release_lane); 937 938 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 939 struct nd_region_desc *ndr_desc, 940 const struct device_type *dev_type, const char *caller) 941 { 942 struct nd_region *nd_region; 943 struct device *dev; 944 void *region_buf; 945 unsigned int i; 946 int ro = 0; 947 948 for (i = 0; i < ndr_desc->num_mappings; i++) { 949 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 950 struct nvdimm *nvdimm = mapping->nvdimm; 951 952 if ((mapping->start | mapping->size) % PAGE_SIZE) { 953 dev_err(&nvdimm_bus->dev, 954 "%s: %s mapping%d is not %ld aligned\n", 955 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 956 return NULL; 957 } 958 959 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 960 ro = 1; 961 962 if (test_bit(NDD_NOBLK, &nvdimm->flags) 963 && dev_type == &nd_blk_device_type) { 964 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", 965 caller, dev_name(&nvdimm->dev), i); 966 return NULL; 967 } 968 } 969 970 if (dev_type == &nd_blk_device_type) { 971 struct nd_blk_region_desc *ndbr_desc; 972 struct nd_blk_region *ndbr; 973 974 ndbr_desc = to_blk_region_desc(ndr_desc); 975 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 976 * ndr_desc->num_mappings, 977 GFP_KERNEL); 978 if (ndbr) { 979 nd_region = &ndbr->nd_region; 980 ndbr->enable = ndbr_desc->enable; 981 ndbr->do_io = ndbr_desc->do_io; 982 } 983 region_buf = ndbr; 984 } else { 985 nd_region = kzalloc(struct_size(nd_region, mapping, 986 ndr_desc->num_mappings), 987 GFP_KERNEL); 988 region_buf = nd_region; 989 } 990 991 if (!region_buf) 992 return NULL; 993 nd_region->id = memregion_alloc(GFP_KERNEL); 994 if (nd_region->id < 0) 995 goto err_id; 996 997 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 998 if (!nd_region->lane) 999 goto err_percpu; 1000 1001 for (i = 0; i < nr_cpu_ids; i++) { 1002 struct nd_percpu_lane *ndl; 1003 1004 ndl = per_cpu_ptr(nd_region->lane, i); 1005 spin_lock_init(&ndl->lock); 1006 ndl->count = 0; 1007 } 1008 1009 for (i = 0; i < ndr_desc->num_mappings; i++) { 1010 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1011 struct nvdimm *nvdimm = mapping->nvdimm; 1012 1013 nd_region->mapping[i].nvdimm = nvdimm; 1014 nd_region->mapping[i].start = mapping->start; 1015 nd_region->mapping[i].size = mapping->size; 1016 nd_region->mapping[i].position = mapping->position; 1017 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1018 mutex_init(&nd_region->mapping[i].lock); 1019 1020 get_device(&nvdimm->dev); 1021 } 1022 nd_region->ndr_mappings = ndr_desc->num_mappings; 1023 nd_region->provider_data = ndr_desc->provider_data; 1024 nd_region->nd_set = ndr_desc->nd_set; 1025 nd_region->num_lanes = ndr_desc->num_lanes; 1026 nd_region->flags = ndr_desc->flags; 1027 nd_region->ro = ro; 1028 nd_region->numa_node = ndr_desc->numa_node; 1029 nd_region->target_node = ndr_desc->target_node; 1030 ida_init(&nd_region->ns_ida); 1031 ida_init(&nd_region->btt_ida); 1032 ida_init(&nd_region->pfn_ida); 1033 ida_init(&nd_region->dax_ida); 1034 dev = &nd_region->dev; 1035 dev_set_name(dev, "region%d", nd_region->id); 1036 dev->parent = &nvdimm_bus->dev; 1037 dev->type = dev_type; 1038 dev->groups = ndr_desc->attr_groups; 1039 dev->of_node = ndr_desc->of_node; 1040 nd_region->ndr_size = resource_size(ndr_desc->res); 1041 nd_region->ndr_start = ndr_desc->res->start; 1042 if (ndr_desc->flush) 1043 nd_region->flush = ndr_desc->flush; 1044 else 1045 nd_region->flush = NULL; 1046 1047 nd_device_register(dev); 1048 1049 return nd_region; 1050 1051 err_percpu: 1052 memregion_free(nd_region->id); 1053 err_id: 1054 kfree(region_buf); 1055 return NULL; 1056 } 1057 1058 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1059 struct nd_region_desc *ndr_desc) 1060 { 1061 ndr_desc->num_lanes = ND_MAX_LANES; 1062 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1063 __func__); 1064 } 1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1066 1067 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1068 struct nd_region_desc *ndr_desc) 1069 { 1070 if (ndr_desc->num_mappings > 1) 1071 return NULL; 1072 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1073 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1074 __func__); 1075 } 1076 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1077 1078 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1079 struct nd_region_desc *ndr_desc) 1080 { 1081 ndr_desc->num_lanes = ND_MAX_LANES; 1082 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1083 __func__); 1084 } 1085 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1086 1087 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1088 { 1089 int rc = 0; 1090 1091 if (!nd_region->flush) 1092 rc = generic_nvdimm_flush(nd_region); 1093 else { 1094 if (nd_region->flush(nd_region, bio)) 1095 rc = -EIO; 1096 } 1097 1098 return rc; 1099 } 1100 /** 1101 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1102 * @nd_region: blk or interleaved pmem region 1103 */ 1104 int generic_nvdimm_flush(struct nd_region *nd_region) 1105 { 1106 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1107 int i, idx; 1108 1109 /* 1110 * Try to encourage some diversity in flush hint addresses 1111 * across cpus assuming a limited number of flush hints. 1112 */ 1113 idx = this_cpu_read(flush_idx); 1114 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1115 1116 /* 1117 * The first wmb() is needed to 'sfence' all previous writes 1118 * such that they are architecturally visible for the platform 1119 * buffer flush. Note that we've already arranged for pmem 1120 * writes to avoid the cache via memcpy_flushcache(). The final 1121 * wmb() ensures ordering for the NVDIMM flush write. 1122 */ 1123 wmb(); 1124 for (i = 0; i < nd_region->ndr_mappings; i++) 1125 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1126 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1127 wmb(); 1128 1129 return 0; 1130 } 1131 EXPORT_SYMBOL_GPL(nvdimm_flush); 1132 1133 /** 1134 * nvdimm_has_flush - determine write flushing requirements 1135 * @nd_region: blk or interleaved pmem region 1136 * 1137 * Returns 1 if writes require flushing 1138 * Returns 0 if writes do not require flushing 1139 * Returns -ENXIO if flushing capability can not be determined 1140 */ 1141 int nvdimm_has_flush(struct nd_region *nd_region) 1142 { 1143 int i; 1144 1145 /* no nvdimm or pmem api == flushing capability unknown */ 1146 if (nd_region->ndr_mappings == 0 1147 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1148 return -ENXIO; 1149 1150 for (i = 0; i < nd_region->ndr_mappings; i++) { 1151 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1152 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1153 1154 /* flush hints present / available */ 1155 if (nvdimm->num_flush) 1156 return 1; 1157 } 1158 1159 /* 1160 * The platform defines dimm devices without hints, assume 1161 * platform persistence mechanism like ADR 1162 */ 1163 return 0; 1164 } 1165 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1166 1167 int nvdimm_has_cache(struct nd_region *nd_region) 1168 { 1169 return is_nd_pmem(&nd_region->dev) && 1170 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1171 } 1172 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1173 1174 bool is_nvdimm_sync(struct nd_region *nd_region) 1175 { 1176 if (is_nd_volatile(&nd_region->dev)) 1177 return true; 1178 1179 return is_nd_pmem(&nd_region->dev) && 1180 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1181 } 1182 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1183 1184 struct conflict_context { 1185 struct nd_region *nd_region; 1186 resource_size_t start, size; 1187 }; 1188 1189 static int region_conflict(struct device *dev, void *data) 1190 { 1191 struct nd_region *nd_region; 1192 struct conflict_context *ctx = data; 1193 resource_size_t res_end, region_end, region_start; 1194 1195 if (!is_memory(dev)) 1196 return 0; 1197 1198 nd_region = to_nd_region(dev); 1199 if (nd_region == ctx->nd_region) 1200 return 0; 1201 1202 res_end = ctx->start + ctx->size; 1203 region_start = nd_region->ndr_start; 1204 region_end = region_start + nd_region->ndr_size; 1205 if (ctx->start >= region_start && ctx->start < region_end) 1206 return -EBUSY; 1207 if (res_end > region_start && res_end <= region_end) 1208 return -EBUSY; 1209 return 0; 1210 } 1211 1212 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1213 resource_size_t size) 1214 { 1215 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1216 struct conflict_context ctx = { 1217 .nd_region = nd_region, 1218 .start = start, 1219 .size = size, 1220 }; 1221 1222 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1223 } 1224