1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/sort.h> 19 #include <linux/io.h> 20 #include <linux/nd.h> 21 #include "nd-core.h" 22 #include "nd.h" 23 24 /* 25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 26 * irrelevant. 27 */ 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 30 static DEFINE_IDA(region_ida); 31 static DEFINE_PER_CPU(int, flush_idx); 32 33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 34 struct nd_region_data *ndrd) 35 { 36 int i, j; 37 38 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 39 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 40 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 41 struct resource *res = &nvdimm->flush_wpq[i]; 42 unsigned long pfn = PHYS_PFN(res->start); 43 void __iomem *flush_page; 44 45 /* check if flush hints share a page */ 46 for (j = 0; j < i; j++) { 47 struct resource *res_j = &nvdimm->flush_wpq[j]; 48 unsigned long pfn_j = PHYS_PFN(res_j->start); 49 50 if (pfn == pfn_j) 51 break; 52 } 53 54 if (j < i) 55 flush_page = (void __iomem *) ((unsigned long) 56 ndrd_get_flush_wpq(ndrd, dimm, j) 57 & PAGE_MASK); 58 else 59 flush_page = devm_nvdimm_ioremap(dev, 60 PFN_PHYS(pfn), PAGE_SIZE); 61 if (!flush_page) 62 return -ENXIO; 63 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 64 + (res->start & ~PAGE_MASK)); 65 } 66 67 return 0; 68 } 69 70 int nd_region_activate(struct nd_region *nd_region) 71 { 72 int i, j, num_flush = 0; 73 struct nd_region_data *ndrd; 74 struct device *dev = &nd_region->dev; 75 size_t flush_data_size = sizeof(void *); 76 77 nvdimm_bus_lock(&nd_region->dev); 78 for (i = 0; i < nd_region->ndr_mappings; i++) { 79 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 80 struct nvdimm *nvdimm = nd_mapping->nvdimm; 81 82 /* at least one null hint slot per-dimm for the "no-hint" case */ 83 flush_data_size += sizeof(void *); 84 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 85 if (!nvdimm->num_flush) 86 continue; 87 flush_data_size += nvdimm->num_flush * sizeof(void *); 88 } 89 nvdimm_bus_unlock(&nd_region->dev); 90 91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 92 if (!ndrd) 93 return -ENOMEM; 94 dev_set_drvdata(dev, ndrd); 95 96 if (!num_flush) 97 return 0; 98 99 ndrd->hints_shift = ilog2(num_flush); 100 for (i = 0; i < nd_region->ndr_mappings; i++) { 101 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 102 struct nvdimm *nvdimm = nd_mapping->nvdimm; 103 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 104 105 if (rc) 106 return rc; 107 } 108 109 /* 110 * Clear out entries that are duplicates. This should prevent the 111 * extra flushings. 112 */ 113 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 114 /* ignore if NULL already */ 115 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 116 continue; 117 118 for (j = i + 1; j < nd_region->ndr_mappings; j++) 119 if (ndrd_get_flush_wpq(ndrd, i, 0) == 120 ndrd_get_flush_wpq(ndrd, j, 0)) 121 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 122 } 123 124 return 0; 125 } 126 127 static void nd_region_release(struct device *dev) 128 { 129 struct nd_region *nd_region = to_nd_region(dev); 130 u16 i; 131 132 for (i = 0; i < nd_region->ndr_mappings; i++) { 133 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 134 struct nvdimm *nvdimm = nd_mapping->nvdimm; 135 136 put_device(&nvdimm->dev); 137 } 138 free_percpu(nd_region->lane); 139 ida_simple_remove(®ion_ida, nd_region->id); 140 if (is_nd_blk(dev)) 141 kfree(to_nd_blk_region(dev)); 142 else 143 kfree(nd_region); 144 } 145 146 static struct device_type nd_blk_device_type = { 147 .name = "nd_blk", 148 .release = nd_region_release, 149 }; 150 151 static struct device_type nd_pmem_device_type = { 152 .name = "nd_pmem", 153 .release = nd_region_release, 154 }; 155 156 static struct device_type nd_volatile_device_type = { 157 .name = "nd_volatile", 158 .release = nd_region_release, 159 }; 160 161 bool is_nd_pmem(struct device *dev) 162 { 163 return dev ? dev->type == &nd_pmem_device_type : false; 164 } 165 166 bool is_nd_blk(struct device *dev) 167 { 168 return dev ? dev->type == &nd_blk_device_type : false; 169 } 170 171 bool is_nd_volatile(struct device *dev) 172 { 173 return dev ? dev->type == &nd_volatile_device_type : false; 174 } 175 176 struct nd_region *to_nd_region(struct device *dev) 177 { 178 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 179 180 WARN_ON(dev->type->release != nd_region_release); 181 return nd_region; 182 } 183 EXPORT_SYMBOL_GPL(to_nd_region); 184 185 struct nd_blk_region *to_nd_blk_region(struct device *dev) 186 { 187 struct nd_region *nd_region = to_nd_region(dev); 188 189 WARN_ON(!is_nd_blk(dev)); 190 return container_of(nd_region, struct nd_blk_region, nd_region); 191 } 192 EXPORT_SYMBOL_GPL(to_nd_blk_region); 193 194 void *nd_region_provider_data(struct nd_region *nd_region) 195 { 196 return nd_region->provider_data; 197 } 198 EXPORT_SYMBOL_GPL(nd_region_provider_data); 199 200 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 201 { 202 return ndbr->blk_provider_data; 203 } 204 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 205 206 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 207 { 208 ndbr->blk_provider_data = data; 209 } 210 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 211 212 /** 213 * nd_region_to_nstype() - region to an integer namespace type 214 * @nd_region: region-device to interrogate 215 * 216 * This is the 'nstype' attribute of a region as well, an input to the 217 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 218 * namespace devices with namespace drivers. 219 */ 220 int nd_region_to_nstype(struct nd_region *nd_region) 221 { 222 if (is_memory(&nd_region->dev)) { 223 u16 i, alias; 224 225 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 226 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 227 struct nvdimm *nvdimm = nd_mapping->nvdimm; 228 229 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 230 alias++; 231 } 232 if (alias) 233 return ND_DEVICE_NAMESPACE_PMEM; 234 else 235 return ND_DEVICE_NAMESPACE_IO; 236 } else if (is_nd_blk(&nd_region->dev)) { 237 return ND_DEVICE_NAMESPACE_BLK; 238 } 239 240 return 0; 241 } 242 EXPORT_SYMBOL(nd_region_to_nstype); 243 244 static ssize_t size_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct nd_region *nd_region = to_nd_region(dev); 248 unsigned long long size = 0; 249 250 if (is_memory(dev)) { 251 size = nd_region->ndr_size; 252 } else if (nd_region->ndr_mappings == 1) { 253 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 254 255 size = nd_mapping->size; 256 } 257 258 return sprintf(buf, "%llu\n", size); 259 } 260 static DEVICE_ATTR_RO(size); 261 262 static ssize_t deep_flush_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct nd_region *nd_region = to_nd_region(dev); 266 267 /* 268 * NOTE: in the nvdimm_has_flush() error case this attribute is 269 * not visible. 270 */ 271 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 272 } 273 274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 275 const char *buf, size_t len) 276 { 277 bool flush; 278 int rc = strtobool(buf, &flush); 279 struct nd_region *nd_region = to_nd_region(dev); 280 281 if (rc) 282 return rc; 283 if (!flush) 284 return -EINVAL; 285 nvdimm_flush(nd_region); 286 287 return len; 288 } 289 static DEVICE_ATTR_RW(deep_flush); 290 291 static ssize_t mappings_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct nd_region *nd_region = to_nd_region(dev); 295 296 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 297 } 298 static DEVICE_ATTR_RO(mappings); 299 300 static ssize_t nstype_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct nd_region *nd_region = to_nd_region(dev); 304 305 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 306 } 307 static DEVICE_ATTR_RO(nstype); 308 309 static ssize_t set_cookie_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct nd_region *nd_region = to_nd_region(dev); 313 struct nd_interleave_set *nd_set = nd_region->nd_set; 314 ssize_t rc = 0; 315 316 if (is_memory(dev) && nd_set) 317 /* pass, should be precluded by region_visible */; 318 else 319 return -ENXIO; 320 321 /* 322 * The cookie to show depends on which specification of the 323 * labels we are using. If there are not labels then default to 324 * the v1.1 namespace label cookie definition. To read all this 325 * data we need to wait for probing to settle. 326 */ 327 device_lock(dev); 328 nvdimm_bus_lock(dev); 329 wait_nvdimm_bus_probe_idle(dev); 330 if (nd_region->ndr_mappings) { 331 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 332 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 333 334 if (ndd) { 335 struct nd_namespace_index *nsindex; 336 337 nsindex = to_namespace_index(ndd, ndd->ns_current); 338 rc = sprintf(buf, "%#llx\n", 339 nd_region_interleave_set_cookie(nd_region, 340 nsindex)); 341 } 342 } 343 nvdimm_bus_unlock(dev); 344 device_unlock(dev); 345 346 if (rc) 347 return rc; 348 return sprintf(buf, "%#llx\n", nd_set->cookie1); 349 } 350 static DEVICE_ATTR_RO(set_cookie); 351 352 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 353 { 354 resource_size_t blk_max_overlap = 0, available, overlap; 355 int i; 356 357 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 358 359 retry: 360 available = 0; 361 overlap = blk_max_overlap; 362 for (i = 0; i < nd_region->ndr_mappings; i++) { 363 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 364 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 365 366 /* if a dimm is disabled the available capacity is zero */ 367 if (!ndd) 368 return 0; 369 370 if (is_memory(&nd_region->dev)) { 371 available += nd_pmem_available_dpa(nd_region, 372 nd_mapping, &overlap); 373 if (overlap > blk_max_overlap) { 374 blk_max_overlap = overlap; 375 goto retry; 376 } 377 } else if (is_nd_blk(&nd_region->dev)) 378 available += nd_blk_available_dpa(nd_region); 379 } 380 381 return available; 382 } 383 384 static ssize_t available_size_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct nd_region *nd_region = to_nd_region(dev); 388 unsigned long long available = 0; 389 390 /* 391 * Flush in-flight updates and grab a snapshot of the available 392 * size. Of course, this value is potentially invalidated the 393 * memory nvdimm_bus_lock() is dropped, but that's userspace's 394 * problem to not race itself. 395 */ 396 nvdimm_bus_lock(dev); 397 wait_nvdimm_bus_probe_idle(dev); 398 available = nd_region_available_dpa(nd_region); 399 nvdimm_bus_unlock(dev); 400 401 return sprintf(buf, "%llu\n", available); 402 } 403 static DEVICE_ATTR_RO(available_size); 404 405 static ssize_t init_namespaces_show(struct device *dev, 406 struct device_attribute *attr, char *buf) 407 { 408 struct nd_region_data *ndrd = dev_get_drvdata(dev); 409 ssize_t rc; 410 411 nvdimm_bus_lock(dev); 412 if (ndrd) 413 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 414 else 415 rc = -ENXIO; 416 nvdimm_bus_unlock(dev); 417 418 return rc; 419 } 420 static DEVICE_ATTR_RO(init_namespaces); 421 422 static ssize_t namespace_seed_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 struct nd_region *nd_region = to_nd_region(dev); 426 ssize_t rc; 427 428 nvdimm_bus_lock(dev); 429 if (nd_region->ns_seed) 430 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 431 else 432 rc = sprintf(buf, "\n"); 433 nvdimm_bus_unlock(dev); 434 return rc; 435 } 436 static DEVICE_ATTR_RO(namespace_seed); 437 438 static ssize_t btt_seed_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct nd_region *nd_region = to_nd_region(dev); 442 ssize_t rc; 443 444 nvdimm_bus_lock(dev); 445 if (nd_region->btt_seed) 446 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 447 else 448 rc = sprintf(buf, "\n"); 449 nvdimm_bus_unlock(dev); 450 451 return rc; 452 } 453 static DEVICE_ATTR_RO(btt_seed); 454 455 static ssize_t pfn_seed_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct nd_region *nd_region = to_nd_region(dev); 459 ssize_t rc; 460 461 nvdimm_bus_lock(dev); 462 if (nd_region->pfn_seed) 463 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 464 else 465 rc = sprintf(buf, "\n"); 466 nvdimm_bus_unlock(dev); 467 468 return rc; 469 } 470 static DEVICE_ATTR_RO(pfn_seed); 471 472 static ssize_t dax_seed_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct nd_region *nd_region = to_nd_region(dev); 476 ssize_t rc; 477 478 nvdimm_bus_lock(dev); 479 if (nd_region->dax_seed) 480 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 481 else 482 rc = sprintf(buf, "\n"); 483 nvdimm_bus_unlock(dev); 484 485 return rc; 486 } 487 static DEVICE_ATTR_RO(dax_seed); 488 489 static ssize_t read_only_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct nd_region *nd_region = to_nd_region(dev); 493 494 return sprintf(buf, "%d\n", nd_region->ro); 495 } 496 497 static ssize_t read_only_store(struct device *dev, 498 struct device_attribute *attr, const char *buf, size_t len) 499 { 500 bool ro; 501 int rc = strtobool(buf, &ro); 502 struct nd_region *nd_region = to_nd_region(dev); 503 504 if (rc) 505 return rc; 506 507 nd_region->ro = ro; 508 return len; 509 } 510 static DEVICE_ATTR_RW(read_only); 511 512 static ssize_t region_badblocks_show(struct device *dev, 513 struct device_attribute *attr, char *buf) 514 { 515 struct nd_region *nd_region = to_nd_region(dev); 516 517 return badblocks_show(&nd_region->bb, buf, 0); 518 } 519 520 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 521 522 static ssize_t resource_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct nd_region *nd_region = to_nd_region(dev); 526 527 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 528 } 529 static DEVICE_ATTR_RO(resource); 530 531 static struct attribute *nd_region_attributes[] = { 532 &dev_attr_size.attr, 533 &dev_attr_nstype.attr, 534 &dev_attr_mappings.attr, 535 &dev_attr_btt_seed.attr, 536 &dev_attr_pfn_seed.attr, 537 &dev_attr_dax_seed.attr, 538 &dev_attr_deep_flush.attr, 539 &dev_attr_read_only.attr, 540 &dev_attr_set_cookie.attr, 541 &dev_attr_available_size.attr, 542 &dev_attr_namespace_seed.attr, 543 &dev_attr_init_namespaces.attr, 544 &dev_attr_badblocks.attr, 545 &dev_attr_resource.attr, 546 NULL, 547 }; 548 549 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 550 { 551 struct device *dev = container_of(kobj, typeof(*dev), kobj); 552 struct nd_region *nd_region = to_nd_region(dev); 553 struct nd_interleave_set *nd_set = nd_region->nd_set; 554 int type = nd_region_to_nstype(nd_region); 555 556 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 557 return 0; 558 559 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 560 return 0; 561 562 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 563 return 0; 564 565 if (!is_nd_pmem(dev) && a == &dev_attr_resource.attr) 566 return 0; 567 568 if (a == &dev_attr_deep_flush.attr) { 569 int has_flush = nvdimm_has_flush(nd_region); 570 571 if (has_flush == 1) 572 return a->mode; 573 else if (has_flush == 0) 574 return 0444; 575 else 576 return 0; 577 } 578 579 if (a != &dev_attr_set_cookie.attr 580 && a != &dev_attr_available_size.attr) 581 return a->mode; 582 583 if ((type == ND_DEVICE_NAMESPACE_PMEM 584 || type == ND_DEVICE_NAMESPACE_BLK) 585 && a == &dev_attr_available_size.attr) 586 return a->mode; 587 else if (is_memory(dev) && nd_set) 588 return a->mode; 589 590 return 0; 591 } 592 593 struct attribute_group nd_region_attribute_group = { 594 .attrs = nd_region_attributes, 595 .is_visible = region_visible, 596 }; 597 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 598 599 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 600 struct nd_namespace_index *nsindex) 601 { 602 struct nd_interleave_set *nd_set = nd_region->nd_set; 603 604 if (!nd_set) 605 return 0; 606 607 if (nsindex && __le16_to_cpu(nsindex->major) == 1 608 && __le16_to_cpu(nsindex->minor) == 1) 609 return nd_set->cookie1; 610 return nd_set->cookie2; 611 } 612 613 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 614 { 615 struct nd_interleave_set *nd_set = nd_region->nd_set; 616 617 if (nd_set) 618 return nd_set->altcookie; 619 return 0; 620 } 621 622 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 623 { 624 struct nd_label_ent *label_ent, *e; 625 626 lockdep_assert_held(&nd_mapping->lock); 627 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 628 list_del(&label_ent->list); 629 kfree(label_ent); 630 } 631 } 632 633 /* 634 * Upon successful probe/remove, take/release a reference on the 635 * associated interleave set (if present), and plant new btt + namespace 636 * seeds. Also, on the removal of a BLK region, notify the provider to 637 * disable the region. 638 */ 639 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 640 struct device *dev, bool probe) 641 { 642 struct nd_region *nd_region; 643 644 if (!probe && is_nd_region(dev)) { 645 int i; 646 647 nd_region = to_nd_region(dev); 648 for (i = 0; i < nd_region->ndr_mappings; i++) { 649 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 650 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 651 struct nvdimm *nvdimm = nd_mapping->nvdimm; 652 653 mutex_lock(&nd_mapping->lock); 654 nd_mapping_free_labels(nd_mapping); 655 mutex_unlock(&nd_mapping->lock); 656 657 put_ndd(ndd); 658 nd_mapping->ndd = NULL; 659 if (ndd) 660 atomic_dec(&nvdimm->busy); 661 } 662 } 663 if (dev->parent && is_nd_region(dev->parent) && probe) { 664 nd_region = to_nd_region(dev->parent); 665 nvdimm_bus_lock(dev); 666 if (nd_region->ns_seed == dev) 667 nd_region_create_ns_seed(nd_region); 668 nvdimm_bus_unlock(dev); 669 } 670 if (is_nd_btt(dev) && probe) { 671 struct nd_btt *nd_btt = to_nd_btt(dev); 672 673 nd_region = to_nd_region(dev->parent); 674 nvdimm_bus_lock(dev); 675 if (nd_region->btt_seed == dev) 676 nd_region_create_btt_seed(nd_region); 677 if (nd_region->ns_seed == &nd_btt->ndns->dev) 678 nd_region_create_ns_seed(nd_region); 679 nvdimm_bus_unlock(dev); 680 } 681 if (is_nd_pfn(dev) && probe) { 682 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 683 684 nd_region = to_nd_region(dev->parent); 685 nvdimm_bus_lock(dev); 686 if (nd_region->pfn_seed == dev) 687 nd_region_create_pfn_seed(nd_region); 688 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 689 nd_region_create_ns_seed(nd_region); 690 nvdimm_bus_unlock(dev); 691 } 692 if (is_nd_dax(dev) && probe) { 693 struct nd_dax *nd_dax = to_nd_dax(dev); 694 695 nd_region = to_nd_region(dev->parent); 696 nvdimm_bus_lock(dev); 697 if (nd_region->dax_seed == dev) 698 nd_region_create_dax_seed(nd_region); 699 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 700 nd_region_create_ns_seed(nd_region); 701 nvdimm_bus_unlock(dev); 702 } 703 } 704 705 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 706 { 707 nd_region_notify_driver_action(nvdimm_bus, dev, true); 708 } 709 710 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 711 { 712 nd_region_notify_driver_action(nvdimm_bus, dev, false); 713 } 714 715 static ssize_t mappingN(struct device *dev, char *buf, int n) 716 { 717 struct nd_region *nd_region = to_nd_region(dev); 718 struct nd_mapping *nd_mapping; 719 struct nvdimm *nvdimm; 720 721 if (n >= nd_region->ndr_mappings) 722 return -ENXIO; 723 nd_mapping = &nd_region->mapping[n]; 724 nvdimm = nd_mapping->nvdimm; 725 726 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 727 nd_mapping->start, nd_mapping->size, 728 nd_mapping->position); 729 } 730 731 #define REGION_MAPPING(idx) \ 732 static ssize_t mapping##idx##_show(struct device *dev, \ 733 struct device_attribute *attr, char *buf) \ 734 { \ 735 return mappingN(dev, buf, idx); \ 736 } \ 737 static DEVICE_ATTR_RO(mapping##idx) 738 739 /* 740 * 32 should be enough for a while, even in the presence of socket 741 * interleave a 32-way interleave set is a degenerate case. 742 */ 743 REGION_MAPPING(0); 744 REGION_MAPPING(1); 745 REGION_MAPPING(2); 746 REGION_MAPPING(3); 747 REGION_MAPPING(4); 748 REGION_MAPPING(5); 749 REGION_MAPPING(6); 750 REGION_MAPPING(7); 751 REGION_MAPPING(8); 752 REGION_MAPPING(9); 753 REGION_MAPPING(10); 754 REGION_MAPPING(11); 755 REGION_MAPPING(12); 756 REGION_MAPPING(13); 757 REGION_MAPPING(14); 758 REGION_MAPPING(15); 759 REGION_MAPPING(16); 760 REGION_MAPPING(17); 761 REGION_MAPPING(18); 762 REGION_MAPPING(19); 763 REGION_MAPPING(20); 764 REGION_MAPPING(21); 765 REGION_MAPPING(22); 766 REGION_MAPPING(23); 767 REGION_MAPPING(24); 768 REGION_MAPPING(25); 769 REGION_MAPPING(26); 770 REGION_MAPPING(27); 771 REGION_MAPPING(28); 772 REGION_MAPPING(29); 773 REGION_MAPPING(30); 774 REGION_MAPPING(31); 775 776 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 777 { 778 struct device *dev = container_of(kobj, struct device, kobj); 779 struct nd_region *nd_region = to_nd_region(dev); 780 781 if (n < nd_region->ndr_mappings) 782 return a->mode; 783 return 0; 784 } 785 786 static struct attribute *mapping_attributes[] = { 787 &dev_attr_mapping0.attr, 788 &dev_attr_mapping1.attr, 789 &dev_attr_mapping2.attr, 790 &dev_attr_mapping3.attr, 791 &dev_attr_mapping4.attr, 792 &dev_attr_mapping5.attr, 793 &dev_attr_mapping6.attr, 794 &dev_attr_mapping7.attr, 795 &dev_attr_mapping8.attr, 796 &dev_attr_mapping9.attr, 797 &dev_attr_mapping10.attr, 798 &dev_attr_mapping11.attr, 799 &dev_attr_mapping12.attr, 800 &dev_attr_mapping13.attr, 801 &dev_attr_mapping14.attr, 802 &dev_attr_mapping15.attr, 803 &dev_attr_mapping16.attr, 804 &dev_attr_mapping17.attr, 805 &dev_attr_mapping18.attr, 806 &dev_attr_mapping19.attr, 807 &dev_attr_mapping20.attr, 808 &dev_attr_mapping21.attr, 809 &dev_attr_mapping22.attr, 810 &dev_attr_mapping23.attr, 811 &dev_attr_mapping24.attr, 812 &dev_attr_mapping25.attr, 813 &dev_attr_mapping26.attr, 814 &dev_attr_mapping27.attr, 815 &dev_attr_mapping28.attr, 816 &dev_attr_mapping29.attr, 817 &dev_attr_mapping30.attr, 818 &dev_attr_mapping31.attr, 819 NULL, 820 }; 821 822 struct attribute_group nd_mapping_attribute_group = { 823 .is_visible = mapping_visible, 824 .attrs = mapping_attributes, 825 }; 826 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 827 828 int nd_blk_region_init(struct nd_region *nd_region) 829 { 830 struct device *dev = &nd_region->dev; 831 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 832 833 if (!is_nd_blk(dev)) 834 return 0; 835 836 if (nd_region->ndr_mappings < 1) { 837 dev_dbg(dev, "invalid BLK region\n"); 838 return -ENXIO; 839 } 840 841 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 842 } 843 844 /** 845 * nd_region_acquire_lane - allocate and lock a lane 846 * @nd_region: region id and number of lanes possible 847 * 848 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 849 * We optimize for the common case where there are 256 lanes, one 850 * per-cpu. For larger systems we need to lock to share lanes. For now 851 * this implementation assumes the cost of maintaining an allocator for 852 * free lanes is on the order of the lock hold time, so it implements a 853 * static lane = cpu % num_lanes mapping. 854 * 855 * In the case of a BTT instance on top of a BLK namespace a lane may be 856 * acquired recursively. We lock on the first instance. 857 * 858 * In the case of a BTT instance on top of PMEM, we only acquire a lane 859 * for the BTT metadata updates. 860 */ 861 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 862 { 863 unsigned int cpu, lane; 864 865 cpu = get_cpu(); 866 if (nd_region->num_lanes < nr_cpu_ids) { 867 struct nd_percpu_lane *ndl_lock, *ndl_count; 868 869 lane = cpu % nd_region->num_lanes; 870 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 871 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 872 if (ndl_count->count++ == 0) 873 spin_lock(&ndl_lock->lock); 874 } else 875 lane = cpu; 876 877 return lane; 878 } 879 EXPORT_SYMBOL(nd_region_acquire_lane); 880 881 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 882 { 883 if (nd_region->num_lanes < nr_cpu_ids) { 884 unsigned int cpu = get_cpu(); 885 struct nd_percpu_lane *ndl_lock, *ndl_count; 886 887 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 888 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 889 if (--ndl_count->count == 0) 890 spin_unlock(&ndl_lock->lock); 891 put_cpu(); 892 } 893 put_cpu(); 894 } 895 EXPORT_SYMBOL(nd_region_release_lane); 896 897 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 898 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 899 const char *caller) 900 { 901 struct nd_region *nd_region; 902 struct device *dev; 903 void *region_buf; 904 unsigned int i; 905 int ro = 0; 906 907 for (i = 0; i < ndr_desc->num_mappings; i++) { 908 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 909 struct nvdimm *nvdimm = mapping->nvdimm; 910 911 if ((mapping->start | mapping->size) % SZ_4K) { 912 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 913 caller, dev_name(&nvdimm->dev), i); 914 915 return NULL; 916 } 917 918 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 919 ro = 1; 920 } 921 922 if (dev_type == &nd_blk_device_type) { 923 struct nd_blk_region_desc *ndbr_desc; 924 struct nd_blk_region *ndbr; 925 926 ndbr_desc = to_blk_region_desc(ndr_desc); 927 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 928 * ndr_desc->num_mappings, 929 GFP_KERNEL); 930 if (ndbr) { 931 nd_region = &ndbr->nd_region; 932 ndbr->enable = ndbr_desc->enable; 933 ndbr->do_io = ndbr_desc->do_io; 934 } 935 region_buf = ndbr; 936 } else { 937 nd_region = kzalloc(sizeof(struct nd_region) 938 + sizeof(struct nd_mapping) 939 * ndr_desc->num_mappings, 940 GFP_KERNEL); 941 region_buf = nd_region; 942 } 943 944 if (!region_buf) 945 return NULL; 946 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 947 if (nd_region->id < 0) 948 goto err_id; 949 950 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 951 if (!nd_region->lane) 952 goto err_percpu; 953 954 for (i = 0; i < nr_cpu_ids; i++) { 955 struct nd_percpu_lane *ndl; 956 957 ndl = per_cpu_ptr(nd_region->lane, i); 958 spin_lock_init(&ndl->lock); 959 ndl->count = 0; 960 } 961 962 for (i = 0; i < ndr_desc->num_mappings; i++) { 963 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 964 struct nvdimm *nvdimm = mapping->nvdimm; 965 966 nd_region->mapping[i].nvdimm = nvdimm; 967 nd_region->mapping[i].start = mapping->start; 968 nd_region->mapping[i].size = mapping->size; 969 nd_region->mapping[i].position = mapping->position; 970 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 971 mutex_init(&nd_region->mapping[i].lock); 972 973 get_device(&nvdimm->dev); 974 } 975 nd_region->ndr_mappings = ndr_desc->num_mappings; 976 nd_region->provider_data = ndr_desc->provider_data; 977 nd_region->nd_set = ndr_desc->nd_set; 978 nd_region->num_lanes = ndr_desc->num_lanes; 979 nd_region->flags = ndr_desc->flags; 980 nd_region->ro = ro; 981 nd_region->numa_node = ndr_desc->numa_node; 982 ida_init(&nd_region->ns_ida); 983 ida_init(&nd_region->btt_ida); 984 ida_init(&nd_region->pfn_ida); 985 ida_init(&nd_region->dax_ida); 986 dev = &nd_region->dev; 987 dev_set_name(dev, "region%d", nd_region->id); 988 dev->parent = &nvdimm_bus->dev; 989 dev->type = dev_type; 990 dev->groups = ndr_desc->attr_groups; 991 nd_region->ndr_size = resource_size(ndr_desc->res); 992 nd_region->ndr_start = ndr_desc->res->start; 993 nd_device_register(dev); 994 995 return nd_region; 996 997 err_percpu: 998 ida_simple_remove(®ion_ida, nd_region->id); 999 err_id: 1000 kfree(region_buf); 1001 return NULL; 1002 } 1003 1004 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1005 struct nd_region_desc *ndr_desc) 1006 { 1007 ndr_desc->num_lanes = ND_MAX_LANES; 1008 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1009 __func__); 1010 } 1011 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1012 1013 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1014 struct nd_region_desc *ndr_desc) 1015 { 1016 if (ndr_desc->num_mappings > 1) 1017 return NULL; 1018 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1019 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1020 __func__); 1021 } 1022 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1023 1024 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1025 struct nd_region_desc *ndr_desc) 1026 { 1027 ndr_desc->num_lanes = ND_MAX_LANES; 1028 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1029 __func__); 1030 } 1031 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1032 1033 /** 1034 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1035 * @nd_region: blk or interleaved pmem region 1036 */ 1037 void nvdimm_flush(struct nd_region *nd_region) 1038 { 1039 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1040 int i, idx; 1041 1042 /* 1043 * Try to encourage some diversity in flush hint addresses 1044 * across cpus assuming a limited number of flush hints. 1045 */ 1046 idx = this_cpu_read(flush_idx); 1047 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1048 1049 /* 1050 * The first wmb() is needed to 'sfence' all previous writes 1051 * such that they are architecturally visible for the platform 1052 * buffer flush. Note that we've already arranged for pmem 1053 * writes to avoid the cache via memcpy_flushcache(). The final 1054 * wmb() ensures ordering for the NVDIMM flush write. 1055 */ 1056 wmb(); 1057 for (i = 0; i < nd_region->ndr_mappings; i++) 1058 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1059 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1060 wmb(); 1061 } 1062 EXPORT_SYMBOL_GPL(nvdimm_flush); 1063 1064 /** 1065 * nvdimm_has_flush - determine write flushing requirements 1066 * @nd_region: blk or interleaved pmem region 1067 * 1068 * Returns 1 if writes require flushing 1069 * Returns 0 if writes do not require flushing 1070 * Returns -ENXIO if flushing capability can not be determined 1071 */ 1072 int nvdimm_has_flush(struct nd_region *nd_region) 1073 { 1074 int i; 1075 1076 /* no nvdimm or pmem api == flushing capability unknown */ 1077 if (nd_region->ndr_mappings == 0 1078 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1079 return -ENXIO; 1080 1081 for (i = 0; i < nd_region->ndr_mappings; i++) { 1082 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1083 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1084 1085 /* flush hints present / available */ 1086 if (nvdimm->num_flush) 1087 return 1; 1088 } 1089 1090 /* 1091 * The platform defines dimm devices without hints, assume 1092 * platform persistence mechanism like ADR 1093 */ 1094 return 0; 1095 } 1096 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1097 1098 int nvdimm_has_cache(struct nd_region *nd_region) 1099 { 1100 return is_nd_pmem(&nd_region->dev); 1101 } 1102 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1103 1104 void __exit nd_region_devs_exit(void) 1105 { 1106 ida_destroy(®ion_ida); 1107 } 1108