xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16 
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22 
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	if (!test_bit(ND_REGION_CXL, &nd_region->flags))
137 		memregion_free(nd_region->id);
138 	kfree(nd_region);
139 }
140 
141 struct nd_region *to_nd_region(struct device *dev)
142 {
143 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
144 
145 	WARN_ON(dev->type->release != nd_region_release);
146 	return nd_region;
147 }
148 EXPORT_SYMBOL_GPL(to_nd_region);
149 
150 struct device *nd_region_dev(struct nd_region *nd_region)
151 {
152 	if (!nd_region)
153 		return NULL;
154 	return &nd_region->dev;
155 }
156 EXPORT_SYMBOL_GPL(nd_region_dev);
157 
158 void *nd_region_provider_data(struct nd_region *nd_region)
159 {
160 	return nd_region->provider_data;
161 }
162 EXPORT_SYMBOL_GPL(nd_region_provider_data);
163 
164 /**
165  * nd_region_to_nstype() - region to an integer namespace type
166  * @nd_region: region-device to interrogate
167  *
168  * This is the 'nstype' attribute of a region as well, an input to the
169  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
170  * namespace devices with namespace drivers.
171  */
172 int nd_region_to_nstype(struct nd_region *nd_region)
173 {
174 	if (is_memory(&nd_region->dev)) {
175 		u16 i, label;
176 
177 		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
178 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
179 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
180 
181 			if (test_bit(NDD_LABELING, &nvdimm->flags))
182 				label++;
183 		}
184 		if (label)
185 			return ND_DEVICE_NAMESPACE_PMEM;
186 		else
187 			return ND_DEVICE_NAMESPACE_IO;
188 	}
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL(nd_region_to_nstype);
193 
194 static unsigned long long region_size(struct nd_region *nd_region)
195 {
196 	if (is_memory(&nd_region->dev)) {
197 		return nd_region->ndr_size;
198 	} else if (nd_region->ndr_mappings == 1) {
199 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
200 
201 		return nd_mapping->size;
202 	}
203 
204 	return 0;
205 }
206 
207 static ssize_t size_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	struct nd_region *nd_region = to_nd_region(dev);
211 
212 	return sprintf(buf, "%llu\n", region_size(nd_region));
213 }
214 static DEVICE_ATTR_RO(size);
215 
216 static ssize_t deep_flush_show(struct device *dev,
217 		struct device_attribute *attr, char *buf)
218 {
219 	struct nd_region *nd_region = to_nd_region(dev);
220 
221 	/*
222 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
223 	 * not visible.
224 	 */
225 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
226 }
227 
228 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
229 		const char *buf, size_t len)
230 {
231 	bool flush;
232 	int rc = strtobool(buf, &flush);
233 	struct nd_region *nd_region = to_nd_region(dev);
234 
235 	if (rc)
236 		return rc;
237 	if (!flush)
238 		return -EINVAL;
239 	rc = nvdimm_flush(nd_region, NULL);
240 	if (rc)
241 		return rc;
242 
243 	return len;
244 }
245 static DEVICE_ATTR_RW(deep_flush);
246 
247 static ssize_t mappings_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct nd_region *nd_region = to_nd_region(dev);
251 
252 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
253 }
254 static DEVICE_ATTR_RO(mappings);
255 
256 static ssize_t nstype_show(struct device *dev,
257 		struct device_attribute *attr, char *buf)
258 {
259 	struct nd_region *nd_region = to_nd_region(dev);
260 
261 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
262 }
263 static DEVICE_ATTR_RO(nstype);
264 
265 static ssize_t set_cookie_show(struct device *dev,
266 		struct device_attribute *attr, char *buf)
267 {
268 	struct nd_region *nd_region = to_nd_region(dev);
269 	struct nd_interleave_set *nd_set = nd_region->nd_set;
270 	ssize_t rc = 0;
271 
272 	if (is_memory(dev) && nd_set)
273 		/* pass, should be precluded by region_visible */;
274 	else
275 		return -ENXIO;
276 
277 	/*
278 	 * The cookie to show depends on which specification of the
279 	 * labels we are using. If there are not labels then default to
280 	 * the v1.1 namespace label cookie definition. To read all this
281 	 * data we need to wait for probing to settle.
282 	 */
283 	device_lock(dev);
284 	nvdimm_bus_lock(dev);
285 	wait_nvdimm_bus_probe_idle(dev);
286 	if (nd_region->ndr_mappings) {
287 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
288 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
289 
290 		if (ndd) {
291 			struct nd_namespace_index *nsindex;
292 
293 			nsindex = to_namespace_index(ndd, ndd->ns_current);
294 			rc = sprintf(buf, "%#llx\n",
295 					nd_region_interleave_set_cookie(nd_region,
296 						nsindex));
297 		}
298 	}
299 	nvdimm_bus_unlock(dev);
300 	device_unlock(dev);
301 
302 	if (rc)
303 		return rc;
304 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
305 }
306 static DEVICE_ATTR_RO(set_cookie);
307 
308 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
309 {
310 	resource_size_t available;
311 	int i;
312 
313 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
314 
315 	available = 0;
316 	for (i = 0; i < nd_region->ndr_mappings; i++) {
317 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
318 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
319 
320 		/* if a dimm is disabled the available capacity is zero */
321 		if (!ndd)
322 			return 0;
323 
324 		available += nd_pmem_available_dpa(nd_region, nd_mapping);
325 	}
326 
327 	return available;
328 }
329 
330 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
331 {
332 	resource_size_t avail = 0;
333 	int i;
334 
335 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
336 	for (i = 0; i < nd_region->ndr_mappings; i++) {
337 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
338 
339 		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
340 						    nd_region, nd_mapping));
341 	}
342 	return avail * nd_region->ndr_mappings;
343 }
344 
345 static ssize_t available_size_show(struct device *dev,
346 		struct device_attribute *attr, char *buf)
347 {
348 	struct nd_region *nd_region = to_nd_region(dev);
349 	unsigned long long available = 0;
350 
351 	/*
352 	 * Flush in-flight updates and grab a snapshot of the available
353 	 * size.  Of course, this value is potentially invalidated the
354 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
355 	 * problem to not race itself.
356 	 */
357 	device_lock(dev);
358 	nvdimm_bus_lock(dev);
359 	wait_nvdimm_bus_probe_idle(dev);
360 	available = nd_region_available_dpa(nd_region);
361 	nvdimm_bus_unlock(dev);
362 	device_unlock(dev);
363 
364 	return sprintf(buf, "%llu\n", available);
365 }
366 static DEVICE_ATTR_RO(available_size);
367 
368 static ssize_t max_available_extent_show(struct device *dev,
369 		struct device_attribute *attr, char *buf)
370 {
371 	struct nd_region *nd_region = to_nd_region(dev);
372 	unsigned long long available = 0;
373 
374 	device_lock(dev);
375 	nvdimm_bus_lock(dev);
376 	wait_nvdimm_bus_probe_idle(dev);
377 	available = nd_region_allocatable_dpa(nd_region);
378 	nvdimm_bus_unlock(dev);
379 	device_unlock(dev);
380 
381 	return sprintf(buf, "%llu\n", available);
382 }
383 static DEVICE_ATTR_RO(max_available_extent);
384 
385 static ssize_t init_namespaces_show(struct device *dev,
386 		struct device_attribute *attr, char *buf)
387 {
388 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
389 	ssize_t rc;
390 
391 	nvdimm_bus_lock(dev);
392 	if (ndrd)
393 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
394 	else
395 		rc = -ENXIO;
396 	nvdimm_bus_unlock(dev);
397 
398 	return rc;
399 }
400 static DEVICE_ATTR_RO(init_namespaces);
401 
402 static ssize_t namespace_seed_show(struct device *dev,
403 		struct device_attribute *attr, char *buf)
404 {
405 	struct nd_region *nd_region = to_nd_region(dev);
406 	ssize_t rc;
407 
408 	nvdimm_bus_lock(dev);
409 	if (nd_region->ns_seed)
410 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
411 	else
412 		rc = sprintf(buf, "\n");
413 	nvdimm_bus_unlock(dev);
414 	return rc;
415 }
416 static DEVICE_ATTR_RO(namespace_seed);
417 
418 static ssize_t btt_seed_show(struct device *dev,
419 		struct device_attribute *attr, char *buf)
420 {
421 	struct nd_region *nd_region = to_nd_region(dev);
422 	ssize_t rc;
423 
424 	nvdimm_bus_lock(dev);
425 	if (nd_region->btt_seed)
426 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
427 	else
428 		rc = sprintf(buf, "\n");
429 	nvdimm_bus_unlock(dev);
430 
431 	return rc;
432 }
433 static DEVICE_ATTR_RO(btt_seed);
434 
435 static ssize_t pfn_seed_show(struct device *dev,
436 		struct device_attribute *attr, char *buf)
437 {
438 	struct nd_region *nd_region = to_nd_region(dev);
439 	ssize_t rc;
440 
441 	nvdimm_bus_lock(dev);
442 	if (nd_region->pfn_seed)
443 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
444 	else
445 		rc = sprintf(buf, "\n");
446 	nvdimm_bus_unlock(dev);
447 
448 	return rc;
449 }
450 static DEVICE_ATTR_RO(pfn_seed);
451 
452 static ssize_t dax_seed_show(struct device *dev,
453 		struct device_attribute *attr, char *buf)
454 {
455 	struct nd_region *nd_region = to_nd_region(dev);
456 	ssize_t rc;
457 
458 	nvdimm_bus_lock(dev);
459 	if (nd_region->dax_seed)
460 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
461 	else
462 		rc = sprintf(buf, "\n");
463 	nvdimm_bus_unlock(dev);
464 
465 	return rc;
466 }
467 static DEVICE_ATTR_RO(dax_seed);
468 
469 static ssize_t read_only_show(struct device *dev,
470 		struct device_attribute *attr, char *buf)
471 {
472 	struct nd_region *nd_region = to_nd_region(dev);
473 
474 	return sprintf(buf, "%d\n", nd_region->ro);
475 }
476 
477 static int revalidate_read_only(struct device *dev, void *data)
478 {
479 	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
480 	return 0;
481 }
482 
483 static ssize_t read_only_store(struct device *dev,
484 		struct device_attribute *attr, const char *buf, size_t len)
485 {
486 	bool ro;
487 	int rc = strtobool(buf, &ro);
488 	struct nd_region *nd_region = to_nd_region(dev);
489 
490 	if (rc)
491 		return rc;
492 
493 	nd_region->ro = ro;
494 	device_for_each_child(dev, NULL, revalidate_read_only);
495 	return len;
496 }
497 static DEVICE_ATTR_RW(read_only);
498 
499 static ssize_t align_show(struct device *dev,
500 		struct device_attribute *attr, char *buf)
501 {
502 	struct nd_region *nd_region = to_nd_region(dev);
503 
504 	return sprintf(buf, "%#lx\n", nd_region->align);
505 }
506 
507 static ssize_t align_store(struct device *dev,
508 		struct device_attribute *attr, const char *buf, size_t len)
509 {
510 	struct nd_region *nd_region = to_nd_region(dev);
511 	unsigned long val, dpa;
512 	u32 mappings, remainder;
513 	int rc;
514 
515 	rc = kstrtoul(buf, 0, &val);
516 	if (rc)
517 		return rc;
518 
519 	/*
520 	 * Ensure space-align is evenly divisible by the region
521 	 * interleave-width because the kernel typically has no facility
522 	 * to determine which DIMM(s), dimm-physical-addresses, would
523 	 * contribute to the tail capacity in system-physical-address
524 	 * space for the namespace.
525 	 */
526 	mappings = max_t(u32, 1, nd_region->ndr_mappings);
527 	dpa = div_u64_rem(val, mappings, &remainder);
528 	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
529 			|| val > region_size(nd_region) || remainder)
530 		return -EINVAL;
531 
532 	/*
533 	 * Given that space allocation consults this value multiple
534 	 * times ensure it does not change for the duration of the
535 	 * allocation.
536 	 */
537 	nvdimm_bus_lock(dev);
538 	nd_region->align = val;
539 	nvdimm_bus_unlock(dev);
540 
541 	return len;
542 }
543 static DEVICE_ATTR_RW(align);
544 
545 static ssize_t region_badblocks_show(struct device *dev,
546 		struct device_attribute *attr, char *buf)
547 {
548 	struct nd_region *nd_region = to_nd_region(dev);
549 	ssize_t rc;
550 
551 	device_lock(dev);
552 	if (dev->driver)
553 		rc = badblocks_show(&nd_region->bb, buf, 0);
554 	else
555 		rc = -ENXIO;
556 	device_unlock(dev);
557 
558 	return rc;
559 }
560 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
561 
562 static ssize_t resource_show(struct device *dev,
563 		struct device_attribute *attr, char *buf)
564 {
565 	struct nd_region *nd_region = to_nd_region(dev);
566 
567 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
568 }
569 static DEVICE_ATTR_ADMIN_RO(resource);
570 
571 static ssize_t persistence_domain_show(struct device *dev,
572 		struct device_attribute *attr, char *buf)
573 {
574 	struct nd_region *nd_region = to_nd_region(dev);
575 
576 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
577 		return sprintf(buf, "cpu_cache\n");
578 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
579 		return sprintf(buf, "memory_controller\n");
580 	else
581 		return sprintf(buf, "\n");
582 }
583 static DEVICE_ATTR_RO(persistence_domain);
584 
585 static struct attribute *nd_region_attributes[] = {
586 	&dev_attr_size.attr,
587 	&dev_attr_align.attr,
588 	&dev_attr_nstype.attr,
589 	&dev_attr_mappings.attr,
590 	&dev_attr_btt_seed.attr,
591 	&dev_attr_pfn_seed.attr,
592 	&dev_attr_dax_seed.attr,
593 	&dev_attr_deep_flush.attr,
594 	&dev_attr_read_only.attr,
595 	&dev_attr_set_cookie.attr,
596 	&dev_attr_available_size.attr,
597 	&dev_attr_max_available_extent.attr,
598 	&dev_attr_namespace_seed.attr,
599 	&dev_attr_init_namespaces.attr,
600 	&dev_attr_badblocks.attr,
601 	&dev_attr_resource.attr,
602 	&dev_attr_persistence_domain.attr,
603 	NULL,
604 };
605 
606 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
607 {
608 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
609 	struct nd_region *nd_region = to_nd_region(dev);
610 	struct nd_interleave_set *nd_set = nd_region->nd_set;
611 	int type = nd_region_to_nstype(nd_region);
612 
613 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
614 		return 0;
615 
616 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
617 		return 0;
618 
619 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
620 		return 0;
621 
622 	if (a == &dev_attr_resource.attr && !is_memory(dev))
623 		return 0;
624 
625 	if (a == &dev_attr_deep_flush.attr) {
626 		int has_flush = nvdimm_has_flush(nd_region);
627 
628 		if (has_flush == 1)
629 			return a->mode;
630 		else if (has_flush == 0)
631 			return 0444;
632 		else
633 			return 0;
634 	}
635 
636 	if (a == &dev_attr_persistence_domain.attr) {
637 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
638 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
639 			return 0;
640 		return a->mode;
641 	}
642 
643 	if (a == &dev_attr_align.attr)
644 		return a->mode;
645 
646 	if (a != &dev_attr_set_cookie.attr
647 			&& a != &dev_attr_available_size.attr)
648 		return a->mode;
649 
650 	if (type == ND_DEVICE_NAMESPACE_PMEM &&
651 	    a == &dev_attr_available_size.attr)
652 		return a->mode;
653 	else if (is_memory(dev) && nd_set)
654 		return a->mode;
655 
656 	return 0;
657 }
658 
659 static ssize_t mappingN(struct device *dev, char *buf, int n)
660 {
661 	struct nd_region *nd_region = to_nd_region(dev);
662 	struct nd_mapping *nd_mapping;
663 	struct nvdimm *nvdimm;
664 
665 	if (n >= nd_region->ndr_mappings)
666 		return -ENXIO;
667 	nd_mapping = &nd_region->mapping[n];
668 	nvdimm = nd_mapping->nvdimm;
669 
670 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
671 			nd_mapping->start, nd_mapping->size,
672 			nd_mapping->position);
673 }
674 
675 #define REGION_MAPPING(idx) \
676 static ssize_t mapping##idx##_show(struct device *dev,		\
677 		struct device_attribute *attr, char *buf)	\
678 {								\
679 	return mappingN(dev, buf, idx);				\
680 }								\
681 static DEVICE_ATTR_RO(mapping##idx)
682 
683 /*
684  * 32 should be enough for a while, even in the presence of socket
685  * interleave a 32-way interleave set is a degenerate case.
686  */
687 REGION_MAPPING(0);
688 REGION_MAPPING(1);
689 REGION_MAPPING(2);
690 REGION_MAPPING(3);
691 REGION_MAPPING(4);
692 REGION_MAPPING(5);
693 REGION_MAPPING(6);
694 REGION_MAPPING(7);
695 REGION_MAPPING(8);
696 REGION_MAPPING(9);
697 REGION_MAPPING(10);
698 REGION_MAPPING(11);
699 REGION_MAPPING(12);
700 REGION_MAPPING(13);
701 REGION_MAPPING(14);
702 REGION_MAPPING(15);
703 REGION_MAPPING(16);
704 REGION_MAPPING(17);
705 REGION_MAPPING(18);
706 REGION_MAPPING(19);
707 REGION_MAPPING(20);
708 REGION_MAPPING(21);
709 REGION_MAPPING(22);
710 REGION_MAPPING(23);
711 REGION_MAPPING(24);
712 REGION_MAPPING(25);
713 REGION_MAPPING(26);
714 REGION_MAPPING(27);
715 REGION_MAPPING(28);
716 REGION_MAPPING(29);
717 REGION_MAPPING(30);
718 REGION_MAPPING(31);
719 
720 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
721 {
722 	struct device *dev = container_of(kobj, struct device, kobj);
723 	struct nd_region *nd_region = to_nd_region(dev);
724 
725 	if (n < nd_region->ndr_mappings)
726 		return a->mode;
727 	return 0;
728 }
729 
730 static struct attribute *mapping_attributes[] = {
731 	&dev_attr_mapping0.attr,
732 	&dev_attr_mapping1.attr,
733 	&dev_attr_mapping2.attr,
734 	&dev_attr_mapping3.attr,
735 	&dev_attr_mapping4.attr,
736 	&dev_attr_mapping5.attr,
737 	&dev_attr_mapping6.attr,
738 	&dev_attr_mapping7.attr,
739 	&dev_attr_mapping8.attr,
740 	&dev_attr_mapping9.attr,
741 	&dev_attr_mapping10.attr,
742 	&dev_attr_mapping11.attr,
743 	&dev_attr_mapping12.attr,
744 	&dev_attr_mapping13.attr,
745 	&dev_attr_mapping14.attr,
746 	&dev_attr_mapping15.attr,
747 	&dev_attr_mapping16.attr,
748 	&dev_attr_mapping17.attr,
749 	&dev_attr_mapping18.attr,
750 	&dev_attr_mapping19.attr,
751 	&dev_attr_mapping20.attr,
752 	&dev_attr_mapping21.attr,
753 	&dev_attr_mapping22.attr,
754 	&dev_attr_mapping23.attr,
755 	&dev_attr_mapping24.attr,
756 	&dev_attr_mapping25.attr,
757 	&dev_attr_mapping26.attr,
758 	&dev_attr_mapping27.attr,
759 	&dev_attr_mapping28.attr,
760 	&dev_attr_mapping29.attr,
761 	&dev_attr_mapping30.attr,
762 	&dev_attr_mapping31.attr,
763 	NULL,
764 };
765 
766 static const struct attribute_group nd_mapping_attribute_group = {
767 	.is_visible = mapping_visible,
768 	.attrs = mapping_attributes,
769 };
770 
771 static const struct attribute_group nd_region_attribute_group = {
772 	.attrs = nd_region_attributes,
773 	.is_visible = region_visible,
774 };
775 
776 static const struct attribute_group *nd_region_attribute_groups[] = {
777 	&nd_device_attribute_group,
778 	&nd_region_attribute_group,
779 	&nd_numa_attribute_group,
780 	&nd_mapping_attribute_group,
781 	NULL,
782 };
783 
784 static const struct device_type nd_pmem_device_type = {
785 	.name = "nd_pmem",
786 	.release = nd_region_release,
787 	.groups = nd_region_attribute_groups,
788 };
789 
790 static const struct device_type nd_volatile_device_type = {
791 	.name = "nd_volatile",
792 	.release = nd_region_release,
793 	.groups = nd_region_attribute_groups,
794 };
795 
796 bool is_nd_pmem(struct device *dev)
797 {
798 	return dev ? dev->type == &nd_pmem_device_type : false;
799 }
800 
801 bool is_nd_volatile(struct device *dev)
802 {
803 	return dev ? dev->type == &nd_volatile_device_type : false;
804 }
805 
806 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
807 		struct nd_namespace_index *nsindex)
808 {
809 	struct nd_interleave_set *nd_set = nd_region->nd_set;
810 
811 	if (!nd_set)
812 		return 0;
813 
814 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
815 			&& __le16_to_cpu(nsindex->minor) == 1)
816 		return nd_set->cookie1;
817 	return nd_set->cookie2;
818 }
819 
820 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
821 {
822 	struct nd_interleave_set *nd_set = nd_region->nd_set;
823 
824 	if (nd_set)
825 		return nd_set->altcookie;
826 	return 0;
827 }
828 
829 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
830 {
831 	struct nd_label_ent *label_ent, *e;
832 
833 	lockdep_assert_held(&nd_mapping->lock);
834 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
835 		list_del(&label_ent->list);
836 		kfree(label_ent);
837 	}
838 }
839 
840 /*
841  * When a namespace is activated create new seeds for the next
842  * namespace, or namespace-personality to be configured.
843  */
844 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
845 {
846 	nvdimm_bus_lock(dev);
847 	if (nd_region->ns_seed == dev) {
848 		nd_region_create_ns_seed(nd_region);
849 	} else if (is_nd_btt(dev)) {
850 		struct nd_btt *nd_btt = to_nd_btt(dev);
851 
852 		if (nd_region->btt_seed == dev)
853 			nd_region_create_btt_seed(nd_region);
854 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
855 			nd_region_create_ns_seed(nd_region);
856 	} else if (is_nd_pfn(dev)) {
857 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
858 
859 		if (nd_region->pfn_seed == dev)
860 			nd_region_create_pfn_seed(nd_region);
861 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
862 			nd_region_create_ns_seed(nd_region);
863 	} else if (is_nd_dax(dev)) {
864 		struct nd_dax *nd_dax = to_nd_dax(dev);
865 
866 		if (nd_region->dax_seed == dev)
867 			nd_region_create_dax_seed(nd_region);
868 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
869 			nd_region_create_ns_seed(nd_region);
870 	}
871 	nvdimm_bus_unlock(dev);
872 }
873 
874 /**
875  * nd_region_acquire_lane - allocate and lock a lane
876  * @nd_region: region id and number of lanes possible
877  *
878  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
879  * We optimize for the common case where there are 256 lanes, one
880  * per-cpu.  For larger systems we need to lock to share lanes.  For now
881  * this implementation assumes the cost of maintaining an allocator for
882  * free lanes is on the order of the lock hold time, so it implements a
883  * static lane = cpu % num_lanes mapping.
884  *
885  * In the case of a BTT instance on top of a BLK namespace a lane may be
886  * acquired recursively.  We lock on the first instance.
887  *
888  * In the case of a BTT instance on top of PMEM, we only acquire a lane
889  * for the BTT metadata updates.
890  */
891 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
892 {
893 	unsigned int cpu, lane;
894 
895 	cpu = get_cpu();
896 	if (nd_region->num_lanes < nr_cpu_ids) {
897 		struct nd_percpu_lane *ndl_lock, *ndl_count;
898 
899 		lane = cpu % nd_region->num_lanes;
900 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
901 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
902 		if (ndl_count->count++ == 0)
903 			spin_lock(&ndl_lock->lock);
904 	} else
905 		lane = cpu;
906 
907 	return lane;
908 }
909 EXPORT_SYMBOL(nd_region_acquire_lane);
910 
911 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
912 {
913 	if (nd_region->num_lanes < nr_cpu_ids) {
914 		unsigned int cpu = get_cpu();
915 		struct nd_percpu_lane *ndl_lock, *ndl_count;
916 
917 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
918 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
919 		if (--ndl_count->count == 0)
920 			spin_unlock(&ndl_lock->lock);
921 		put_cpu();
922 	}
923 	put_cpu();
924 }
925 EXPORT_SYMBOL(nd_region_release_lane);
926 
927 /*
928  * PowerPC requires this alignment for memremap_pages(). All other archs
929  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
930  */
931 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
932 
933 static unsigned long default_align(struct nd_region *nd_region)
934 {
935 	unsigned long align;
936 	u32 remainder;
937 	int mappings;
938 
939 	align = MEMREMAP_COMPAT_ALIGN_MAX;
940 	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
941 		align = PAGE_SIZE;
942 
943 	mappings = max_t(u16, 1, nd_region->ndr_mappings);
944 	div_u64_rem(align, mappings, &remainder);
945 	if (remainder)
946 		align *= mappings;
947 
948 	return align;
949 }
950 
951 static struct lock_class_key nvdimm_region_key;
952 
953 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
954 		struct nd_region_desc *ndr_desc,
955 		const struct device_type *dev_type, const char *caller)
956 {
957 	struct nd_region *nd_region;
958 	struct device *dev;
959 	unsigned int i;
960 	int ro = 0;
961 
962 	for (i = 0; i < ndr_desc->num_mappings; i++) {
963 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
964 		struct nvdimm *nvdimm = mapping->nvdimm;
965 
966 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
967 			dev_err(&nvdimm_bus->dev,
968 				"%s: %s mapping%d is not %ld aligned\n",
969 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
970 			return NULL;
971 		}
972 
973 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
974 			ro = 1;
975 
976 	}
977 
978 	nd_region =
979 		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
980 			GFP_KERNEL);
981 
982 	if (!nd_region)
983 		return NULL;
984 	/* CXL pre-assigns memregion ids before creating nvdimm regions */
985 	if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
986 		nd_region->id = ndr_desc->memregion;
987 	} else {
988 		nd_region->id = memregion_alloc(GFP_KERNEL);
989 		if (nd_region->id < 0)
990 			goto err_id;
991 	}
992 
993 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
994 	if (!nd_region->lane)
995 		goto err_percpu;
996 
997         for (i = 0; i < nr_cpu_ids; i++) {
998 		struct nd_percpu_lane *ndl;
999 
1000 		ndl = per_cpu_ptr(nd_region->lane, i);
1001 		spin_lock_init(&ndl->lock);
1002 		ndl->count = 0;
1003 	}
1004 
1005 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1006 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1007 		struct nvdimm *nvdimm = mapping->nvdimm;
1008 
1009 		nd_region->mapping[i].nvdimm = nvdimm;
1010 		nd_region->mapping[i].start = mapping->start;
1011 		nd_region->mapping[i].size = mapping->size;
1012 		nd_region->mapping[i].position = mapping->position;
1013 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1014 		mutex_init(&nd_region->mapping[i].lock);
1015 
1016 		get_device(&nvdimm->dev);
1017 	}
1018 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1019 	nd_region->provider_data = ndr_desc->provider_data;
1020 	nd_region->nd_set = ndr_desc->nd_set;
1021 	nd_region->num_lanes = ndr_desc->num_lanes;
1022 	nd_region->flags = ndr_desc->flags;
1023 	nd_region->ro = ro;
1024 	nd_region->numa_node = ndr_desc->numa_node;
1025 	nd_region->target_node = ndr_desc->target_node;
1026 	ida_init(&nd_region->ns_ida);
1027 	ida_init(&nd_region->btt_ida);
1028 	ida_init(&nd_region->pfn_ida);
1029 	ida_init(&nd_region->dax_ida);
1030 	dev = &nd_region->dev;
1031 	dev_set_name(dev, "region%d", nd_region->id);
1032 	dev->parent = &nvdimm_bus->dev;
1033 	dev->type = dev_type;
1034 	dev->groups = ndr_desc->attr_groups;
1035 	dev->of_node = ndr_desc->of_node;
1036 	nd_region->ndr_size = resource_size(ndr_desc->res);
1037 	nd_region->ndr_start = ndr_desc->res->start;
1038 	nd_region->align = default_align(nd_region);
1039 	if (ndr_desc->flush)
1040 		nd_region->flush = ndr_desc->flush;
1041 	else
1042 		nd_region->flush = NULL;
1043 
1044 	device_initialize(dev);
1045 	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1046 	nd_device_register(dev);
1047 
1048 	return nd_region;
1049 
1050 err_percpu:
1051 	if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1052 		memregion_free(nd_region->id);
1053 err_id:
1054 	kfree(nd_region);
1055 	return NULL;
1056 }
1057 
1058 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1059 		struct nd_region_desc *ndr_desc)
1060 {
1061 	ndr_desc->num_lanes = ND_MAX_LANES;
1062 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1063 			__func__);
1064 }
1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1066 
1067 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1068 		struct nd_region_desc *ndr_desc)
1069 {
1070 	ndr_desc->num_lanes = ND_MAX_LANES;
1071 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1072 			__func__);
1073 }
1074 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1075 
1076 void nvdimm_region_delete(struct nd_region *nd_region)
1077 {
1078 	if (nd_region)
1079 		nd_device_unregister(&nd_region->dev, ND_SYNC);
1080 }
1081 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1082 
1083 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1084 {
1085 	int rc = 0;
1086 
1087 	if (!nd_region->flush)
1088 		rc = generic_nvdimm_flush(nd_region);
1089 	else {
1090 		if (nd_region->flush(nd_region, bio))
1091 			rc = -EIO;
1092 	}
1093 
1094 	return rc;
1095 }
1096 /**
1097  * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1098  * @nd_region: interleaved pmem region
1099  */
1100 int generic_nvdimm_flush(struct nd_region *nd_region)
1101 {
1102 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1103 	int i, idx;
1104 
1105 	/*
1106 	 * Try to encourage some diversity in flush hint addresses
1107 	 * across cpus assuming a limited number of flush hints.
1108 	 */
1109 	idx = this_cpu_read(flush_idx);
1110 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1111 
1112 	/*
1113 	 * The pmem_wmb() is needed to 'sfence' all
1114 	 * previous writes such that they are architecturally visible for
1115 	 * the platform buffer flush. Note that we've already arranged for pmem
1116 	 * writes to avoid the cache via memcpy_flushcache().  The final
1117 	 * wmb() ensures ordering for the NVDIMM flush write.
1118 	 */
1119 	pmem_wmb();
1120 	for (i = 0; i < nd_region->ndr_mappings; i++)
1121 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1122 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1123 	wmb();
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(nvdimm_flush);
1128 
1129 /**
1130  * nvdimm_has_flush - determine write flushing requirements
1131  * @nd_region: interleaved pmem region
1132  *
1133  * Returns 1 if writes require flushing
1134  * Returns 0 if writes do not require flushing
1135  * Returns -ENXIO if flushing capability can not be determined
1136  */
1137 int nvdimm_has_flush(struct nd_region *nd_region)
1138 {
1139 	int i;
1140 
1141 	/* no nvdimm or pmem api == flushing capability unknown */
1142 	if (nd_region->ndr_mappings == 0
1143 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1144 		return -ENXIO;
1145 
1146 	/* Test if an explicit flush function is defined */
1147 	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1148 		return 1;
1149 
1150 	/* Test if any flush hints for the region are available */
1151 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1152 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1153 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1154 
1155 		/* flush hints present / available */
1156 		if (nvdimm->num_flush)
1157 			return 1;
1158 	}
1159 
1160 	/*
1161 	 * The platform defines dimm devices without hints nor explicit flush,
1162 	 * assume platform persistence mechanism like ADR
1163 	 */
1164 	return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1167 
1168 int nvdimm_has_cache(struct nd_region *nd_region)
1169 {
1170 	return is_nd_pmem(&nd_region->dev) &&
1171 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1172 }
1173 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1174 
1175 bool is_nvdimm_sync(struct nd_region *nd_region)
1176 {
1177 	if (is_nd_volatile(&nd_region->dev))
1178 		return true;
1179 
1180 	return is_nd_pmem(&nd_region->dev) &&
1181 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1182 }
1183 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1184 
1185 struct conflict_context {
1186 	struct nd_region *nd_region;
1187 	resource_size_t start, size;
1188 };
1189 
1190 static int region_conflict(struct device *dev, void *data)
1191 {
1192 	struct nd_region *nd_region;
1193 	struct conflict_context *ctx = data;
1194 	resource_size_t res_end, region_end, region_start;
1195 
1196 	if (!is_memory(dev))
1197 		return 0;
1198 
1199 	nd_region = to_nd_region(dev);
1200 	if (nd_region == ctx->nd_region)
1201 		return 0;
1202 
1203 	res_end = ctx->start + ctx->size;
1204 	region_start = nd_region->ndr_start;
1205 	region_end = region_start + nd_region->ndr_size;
1206 	if (ctx->start >= region_start && ctx->start < region_end)
1207 		return -EBUSY;
1208 	if (res_end > region_start && res_end <= region_end)
1209 		return -EBUSY;
1210 	return 0;
1211 }
1212 
1213 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1214 		resource_size_t size)
1215 {
1216 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1217 	struct conflict_context ctx = {
1218 		.nd_region = nd_region,
1219 		.start = start,
1220 		.size = size,
1221 	};
1222 
1223 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1224 }
1225