xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 55b37d9c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16 
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22 
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 static int nd_region_invalidate_memregion(struct nd_region *nd_region)
63 {
64 	int i, incoherent = 0;
65 
66 	for (i = 0; i < nd_region->ndr_mappings; i++) {
67 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
68 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
69 
70 		if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
71 			incoherent++;
72 			break;
73 		}
74 	}
75 
76 	if (!incoherent)
77 		return 0;
78 
79 	if (!cpu_cache_has_invalidate_memregion()) {
80 		if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
81 			dev_warn(
82 				&nd_region->dev,
83 				"Bypassing cpu_cache_invalidate_memergion() for testing!\n");
84 			goto out;
85 		} else {
86 			dev_err(&nd_region->dev,
87 				"Failed to synchronize CPU cache state\n");
88 			return -ENXIO;
89 		}
90 	}
91 
92 	cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
93 out:
94 	for (i = 0; i < nd_region->ndr_mappings; i++) {
95 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
96 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
97 
98 		clear_bit(NDD_INCOHERENT, &nvdimm->flags);
99 	}
100 
101 	return 0;
102 }
103 
104 int nd_region_activate(struct nd_region *nd_region)
105 {
106 	int i, j, rc, num_flush = 0;
107 	struct nd_region_data *ndrd;
108 	struct device *dev = &nd_region->dev;
109 	size_t flush_data_size = sizeof(void *);
110 
111 	nvdimm_bus_lock(&nd_region->dev);
112 	for (i = 0; i < nd_region->ndr_mappings; i++) {
113 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
114 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
115 
116 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
117 			nvdimm_bus_unlock(&nd_region->dev);
118 			return -EBUSY;
119 		}
120 
121 		/* at least one null hint slot per-dimm for the "no-hint" case */
122 		flush_data_size += sizeof(void *);
123 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
124 		if (!nvdimm->num_flush)
125 			continue;
126 		flush_data_size += nvdimm->num_flush * sizeof(void *);
127 	}
128 	nvdimm_bus_unlock(&nd_region->dev);
129 
130 	rc = nd_region_invalidate_memregion(nd_region);
131 	if (rc)
132 		return rc;
133 
134 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
135 	if (!ndrd)
136 		return -ENOMEM;
137 	dev_set_drvdata(dev, ndrd);
138 
139 	if (!num_flush)
140 		return 0;
141 
142 	ndrd->hints_shift = ilog2(num_flush);
143 	for (i = 0; i < nd_region->ndr_mappings; i++) {
144 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
145 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
146 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
147 
148 		if (rc)
149 			return rc;
150 	}
151 
152 	/*
153 	 * Clear out entries that are duplicates. This should prevent the
154 	 * extra flushings.
155 	 */
156 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
157 		/* ignore if NULL already */
158 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
159 			continue;
160 
161 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
162 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
163 			    ndrd_get_flush_wpq(ndrd, j, 0))
164 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
165 	}
166 
167 	return 0;
168 }
169 
170 static void nd_region_release(struct device *dev)
171 {
172 	struct nd_region *nd_region = to_nd_region(dev);
173 	u16 i;
174 
175 	for (i = 0; i < nd_region->ndr_mappings; i++) {
176 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
177 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
178 
179 		put_device(&nvdimm->dev);
180 	}
181 	free_percpu(nd_region->lane);
182 	if (!test_bit(ND_REGION_CXL, &nd_region->flags))
183 		memregion_free(nd_region->id);
184 	kfree(nd_region);
185 }
186 
187 struct nd_region *to_nd_region(struct device *dev)
188 {
189 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
190 
191 	WARN_ON(dev->type->release != nd_region_release);
192 	return nd_region;
193 }
194 EXPORT_SYMBOL_GPL(to_nd_region);
195 
196 struct device *nd_region_dev(struct nd_region *nd_region)
197 {
198 	if (!nd_region)
199 		return NULL;
200 	return &nd_region->dev;
201 }
202 EXPORT_SYMBOL_GPL(nd_region_dev);
203 
204 void *nd_region_provider_data(struct nd_region *nd_region)
205 {
206 	return nd_region->provider_data;
207 }
208 EXPORT_SYMBOL_GPL(nd_region_provider_data);
209 
210 /**
211  * nd_region_to_nstype() - region to an integer namespace type
212  * @nd_region: region-device to interrogate
213  *
214  * This is the 'nstype' attribute of a region as well, an input to the
215  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
216  * namespace devices with namespace drivers.
217  */
218 int nd_region_to_nstype(struct nd_region *nd_region)
219 {
220 	if (is_memory(&nd_region->dev)) {
221 		u16 i, label;
222 
223 		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
224 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
225 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
226 
227 			if (test_bit(NDD_LABELING, &nvdimm->flags))
228 				label++;
229 		}
230 		if (label)
231 			return ND_DEVICE_NAMESPACE_PMEM;
232 		else
233 			return ND_DEVICE_NAMESPACE_IO;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239 
240 static unsigned long long region_size(struct nd_region *nd_region)
241 {
242 	if (is_memory(&nd_region->dev)) {
243 		return nd_region->ndr_size;
244 	} else if (nd_region->ndr_mappings == 1) {
245 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
246 
247 		return nd_mapping->size;
248 	}
249 
250 	return 0;
251 }
252 
253 static ssize_t size_show(struct device *dev,
254 		struct device_attribute *attr, char *buf)
255 {
256 	struct nd_region *nd_region = to_nd_region(dev);
257 
258 	return sprintf(buf, "%llu\n", region_size(nd_region));
259 }
260 static DEVICE_ATTR_RO(size);
261 
262 static ssize_t deep_flush_show(struct device *dev,
263 		struct device_attribute *attr, char *buf)
264 {
265 	struct nd_region *nd_region = to_nd_region(dev);
266 
267 	/*
268 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
269 	 * not visible.
270 	 */
271 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
272 }
273 
274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
275 		const char *buf, size_t len)
276 {
277 	bool flush;
278 	int rc = strtobool(buf, &flush);
279 	struct nd_region *nd_region = to_nd_region(dev);
280 
281 	if (rc)
282 		return rc;
283 	if (!flush)
284 		return -EINVAL;
285 	rc = nvdimm_flush(nd_region, NULL);
286 	if (rc)
287 		return rc;
288 
289 	return len;
290 }
291 static DEVICE_ATTR_RW(deep_flush);
292 
293 static ssize_t mappings_show(struct device *dev,
294 		struct device_attribute *attr, char *buf)
295 {
296 	struct nd_region *nd_region = to_nd_region(dev);
297 
298 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
299 }
300 static DEVICE_ATTR_RO(mappings);
301 
302 static ssize_t nstype_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct nd_region *nd_region = to_nd_region(dev);
306 
307 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
308 }
309 static DEVICE_ATTR_RO(nstype);
310 
311 static ssize_t set_cookie_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct nd_region *nd_region = to_nd_region(dev);
315 	struct nd_interleave_set *nd_set = nd_region->nd_set;
316 	ssize_t rc = 0;
317 
318 	if (is_memory(dev) && nd_set)
319 		/* pass, should be precluded by region_visible */;
320 	else
321 		return -ENXIO;
322 
323 	/*
324 	 * The cookie to show depends on which specification of the
325 	 * labels we are using. If there are not labels then default to
326 	 * the v1.1 namespace label cookie definition. To read all this
327 	 * data we need to wait for probing to settle.
328 	 */
329 	device_lock(dev);
330 	nvdimm_bus_lock(dev);
331 	wait_nvdimm_bus_probe_idle(dev);
332 	if (nd_region->ndr_mappings) {
333 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
334 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
335 
336 		if (ndd) {
337 			struct nd_namespace_index *nsindex;
338 
339 			nsindex = to_namespace_index(ndd, ndd->ns_current);
340 			rc = sprintf(buf, "%#llx\n",
341 					nd_region_interleave_set_cookie(nd_region,
342 						nsindex));
343 		}
344 	}
345 	nvdimm_bus_unlock(dev);
346 	device_unlock(dev);
347 
348 	if (rc)
349 		return rc;
350 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
351 }
352 static DEVICE_ATTR_RO(set_cookie);
353 
354 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
355 {
356 	resource_size_t available;
357 	int i;
358 
359 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
360 
361 	available = 0;
362 	for (i = 0; i < nd_region->ndr_mappings; i++) {
363 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
364 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
365 
366 		/* if a dimm is disabled the available capacity is zero */
367 		if (!ndd)
368 			return 0;
369 
370 		available += nd_pmem_available_dpa(nd_region, nd_mapping);
371 	}
372 
373 	return available;
374 }
375 
376 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
377 {
378 	resource_size_t avail = 0;
379 	int i;
380 
381 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
382 	for (i = 0; i < nd_region->ndr_mappings; i++) {
383 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
384 
385 		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
386 						    nd_region, nd_mapping));
387 	}
388 	return avail * nd_region->ndr_mappings;
389 }
390 
391 static ssize_t available_size_show(struct device *dev,
392 		struct device_attribute *attr, char *buf)
393 {
394 	struct nd_region *nd_region = to_nd_region(dev);
395 	unsigned long long available = 0;
396 
397 	/*
398 	 * Flush in-flight updates and grab a snapshot of the available
399 	 * size.  Of course, this value is potentially invalidated the
400 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
401 	 * problem to not race itself.
402 	 */
403 	device_lock(dev);
404 	nvdimm_bus_lock(dev);
405 	wait_nvdimm_bus_probe_idle(dev);
406 	available = nd_region_available_dpa(nd_region);
407 	nvdimm_bus_unlock(dev);
408 	device_unlock(dev);
409 
410 	return sprintf(buf, "%llu\n", available);
411 }
412 static DEVICE_ATTR_RO(available_size);
413 
414 static ssize_t max_available_extent_show(struct device *dev,
415 		struct device_attribute *attr, char *buf)
416 {
417 	struct nd_region *nd_region = to_nd_region(dev);
418 	unsigned long long available = 0;
419 
420 	device_lock(dev);
421 	nvdimm_bus_lock(dev);
422 	wait_nvdimm_bus_probe_idle(dev);
423 	available = nd_region_allocatable_dpa(nd_region);
424 	nvdimm_bus_unlock(dev);
425 	device_unlock(dev);
426 
427 	return sprintf(buf, "%llu\n", available);
428 }
429 static DEVICE_ATTR_RO(max_available_extent);
430 
431 static ssize_t init_namespaces_show(struct device *dev,
432 		struct device_attribute *attr, char *buf)
433 {
434 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
435 	ssize_t rc;
436 
437 	nvdimm_bus_lock(dev);
438 	if (ndrd)
439 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
440 	else
441 		rc = -ENXIO;
442 	nvdimm_bus_unlock(dev);
443 
444 	return rc;
445 }
446 static DEVICE_ATTR_RO(init_namespaces);
447 
448 static ssize_t namespace_seed_show(struct device *dev,
449 		struct device_attribute *attr, char *buf)
450 {
451 	struct nd_region *nd_region = to_nd_region(dev);
452 	ssize_t rc;
453 
454 	nvdimm_bus_lock(dev);
455 	if (nd_region->ns_seed)
456 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
457 	else
458 		rc = sprintf(buf, "\n");
459 	nvdimm_bus_unlock(dev);
460 	return rc;
461 }
462 static DEVICE_ATTR_RO(namespace_seed);
463 
464 static ssize_t btt_seed_show(struct device *dev,
465 		struct device_attribute *attr, char *buf)
466 {
467 	struct nd_region *nd_region = to_nd_region(dev);
468 	ssize_t rc;
469 
470 	nvdimm_bus_lock(dev);
471 	if (nd_region->btt_seed)
472 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
473 	else
474 		rc = sprintf(buf, "\n");
475 	nvdimm_bus_unlock(dev);
476 
477 	return rc;
478 }
479 static DEVICE_ATTR_RO(btt_seed);
480 
481 static ssize_t pfn_seed_show(struct device *dev,
482 		struct device_attribute *attr, char *buf)
483 {
484 	struct nd_region *nd_region = to_nd_region(dev);
485 	ssize_t rc;
486 
487 	nvdimm_bus_lock(dev);
488 	if (nd_region->pfn_seed)
489 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
490 	else
491 		rc = sprintf(buf, "\n");
492 	nvdimm_bus_unlock(dev);
493 
494 	return rc;
495 }
496 static DEVICE_ATTR_RO(pfn_seed);
497 
498 static ssize_t dax_seed_show(struct device *dev,
499 		struct device_attribute *attr, char *buf)
500 {
501 	struct nd_region *nd_region = to_nd_region(dev);
502 	ssize_t rc;
503 
504 	nvdimm_bus_lock(dev);
505 	if (nd_region->dax_seed)
506 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
507 	else
508 		rc = sprintf(buf, "\n");
509 	nvdimm_bus_unlock(dev);
510 
511 	return rc;
512 }
513 static DEVICE_ATTR_RO(dax_seed);
514 
515 static ssize_t read_only_show(struct device *dev,
516 		struct device_attribute *attr, char *buf)
517 {
518 	struct nd_region *nd_region = to_nd_region(dev);
519 
520 	return sprintf(buf, "%d\n", nd_region->ro);
521 }
522 
523 static int revalidate_read_only(struct device *dev, void *data)
524 {
525 	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
526 	return 0;
527 }
528 
529 static ssize_t read_only_store(struct device *dev,
530 		struct device_attribute *attr, const char *buf, size_t len)
531 {
532 	bool ro;
533 	int rc = strtobool(buf, &ro);
534 	struct nd_region *nd_region = to_nd_region(dev);
535 
536 	if (rc)
537 		return rc;
538 
539 	nd_region->ro = ro;
540 	device_for_each_child(dev, NULL, revalidate_read_only);
541 	return len;
542 }
543 static DEVICE_ATTR_RW(read_only);
544 
545 static ssize_t align_show(struct device *dev,
546 		struct device_attribute *attr, char *buf)
547 {
548 	struct nd_region *nd_region = to_nd_region(dev);
549 
550 	return sprintf(buf, "%#lx\n", nd_region->align);
551 }
552 
553 static ssize_t align_store(struct device *dev,
554 		struct device_attribute *attr, const char *buf, size_t len)
555 {
556 	struct nd_region *nd_region = to_nd_region(dev);
557 	unsigned long val, dpa;
558 	u32 mappings, remainder;
559 	int rc;
560 
561 	rc = kstrtoul(buf, 0, &val);
562 	if (rc)
563 		return rc;
564 
565 	/*
566 	 * Ensure space-align is evenly divisible by the region
567 	 * interleave-width because the kernel typically has no facility
568 	 * to determine which DIMM(s), dimm-physical-addresses, would
569 	 * contribute to the tail capacity in system-physical-address
570 	 * space for the namespace.
571 	 */
572 	mappings = max_t(u32, 1, nd_region->ndr_mappings);
573 	dpa = div_u64_rem(val, mappings, &remainder);
574 	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
575 			|| val > region_size(nd_region) || remainder)
576 		return -EINVAL;
577 
578 	/*
579 	 * Given that space allocation consults this value multiple
580 	 * times ensure it does not change for the duration of the
581 	 * allocation.
582 	 */
583 	nvdimm_bus_lock(dev);
584 	nd_region->align = val;
585 	nvdimm_bus_unlock(dev);
586 
587 	return len;
588 }
589 static DEVICE_ATTR_RW(align);
590 
591 static ssize_t region_badblocks_show(struct device *dev,
592 		struct device_attribute *attr, char *buf)
593 {
594 	struct nd_region *nd_region = to_nd_region(dev);
595 	ssize_t rc;
596 
597 	device_lock(dev);
598 	if (dev->driver)
599 		rc = badblocks_show(&nd_region->bb, buf, 0);
600 	else
601 		rc = -ENXIO;
602 	device_unlock(dev);
603 
604 	return rc;
605 }
606 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
607 
608 static ssize_t resource_show(struct device *dev,
609 		struct device_attribute *attr, char *buf)
610 {
611 	struct nd_region *nd_region = to_nd_region(dev);
612 
613 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
614 }
615 static DEVICE_ATTR_ADMIN_RO(resource);
616 
617 static ssize_t persistence_domain_show(struct device *dev,
618 		struct device_attribute *attr, char *buf)
619 {
620 	struct nd_region *nd_region = to_nd_region(dev);
621 
622 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
623 		return sprintf(buf, "cpu_cache\n");
624 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
625 		return sprintf(buf, "memory_controller\n");
626 	else
627 		return sprintf(buf, "\n");
628 }
629 static DEVICE_ATTR_RO(persistence_domain);
630 
631 static struct attribute *nd_region_attributes[] = {
632 	&dev_attr_size.attr,
633 	&dev_attr_align.attr,
634 	&dev_attr_nstype.attr,
635 	&dev_attr_mappings.attr,
636 	&dev_attr_btt_seed.attr,
637 	&dev_attr_pfn_seed.attr,
638 	&dev_attr_dax_seed.attr,
639 	&dev_attr_deep_flush.attr,
640 	&dev_attr_read_only.attr,
641 	&dev_attr_set_cookie.attr,
642 	&dev_attr_available_size.attr,
643 	&dev_attr_max_available_extent.attr,
644 	&dev_attr_namespace_seed.attr,
645 	&dev_attr_init_namespaces.attr,
646 	&dev_attr_badblocks.attr,
647 	&dev_attr_resource.attr,
648 	&dev_attr_persistence_domain.attr,
649 	NULL,
650 };
651 
652 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
653 {
654 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
655 	struct nd_region *nd_region = to_nd_region(dev);
656 	struct nd_interleave_set *nd_set = nd_region->nd_set;
657 	int type = nd_region_to_nstype(nd_region);
658 
659 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
660 		return 0;
661 
662 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
663 		return 0;
664 
665 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
666 		return 0;
667 
668 	if (a == &dev_attr_resource.attr && !is_memory(dev))
669 		return 0;
670 
671 	if (a == &dev_attr_deep_flush.attr) {
672 		int has_flush = nvdimm_has_flush(nd_region);
673 
674 		if (has_flush == 1)
675 			return a->mode;
676 		else if (has_flush == 0)
677 			return 0444;
678 		else
679 			return 0;
680 	}
681 
682 	if (a == &dev_attr_persistence_domain.attr) {
683 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
684 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
685 			return 0;
686 		return a->mode;
687 	}
688 
689 	if (a == &dev_attr_align.attr)
690 		return a->mode;
691 
692 	if (a != &dev_attr_set_cookie.attr
693 			&& a != &dev_attr_available_size.attr)
694 		return a->mode;
695 
696 	if (type == ND_DEVICE_NAMESPACE_PMEM &&
697 	    a == &dev_attr_available_size.attr)
698 		return a->mode;
699 	else if (is_memory(dev) && nd_set)
700 		return a->mode;
701 
702 	return 0;
703 }
704 
705 static ssize_t mappingN(struct device *dev, char *buf, int n)
706 {
707 	struct nd_region *nd_region = to_nd_region(dev);
708 	struct nd_mapping *nd_mapping;
709 	struct nvdimm *nvdimm;
710 
711 	if (n >= nd_region->ndr_mappings)
712 		return -ENXIO;
713 	nd_mapping = &nd_region->mapping[n];
714 	nvdimm = nd_mapping->nvdimm;
715 
716 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
717 			nd_mapping->start, nd_mapping->size,
718 			nd_mapping->position);
719 }
720 
721 #define REGION_MAPPING(idx) \
722 static ssize_t mapping##idx##_show(struct device *dev,		\
723 		struct device_attribute *attr, char *buf)	\
724 {								\
725 	return mappingN(dev, buf, idx);				\
726 }								\
727 static DEVICE_ATTR_RO(mapping##idx)
728 
729 /*
730  * 32 should be enough for a while, even in the presence of socket
731  * interleave a 32-way interleave set is a degenerate case.
732  */
733 REGION_MAPPING(0);
734 REGION_MAPPING(1);
735 REGION_MAPPING(2);
736 REGION_MAPPING(3);
737 REGION_MAPPING(4);
738 REGION_MAPPING(5);
739 REGION_MAPPING(6);
740 REGION_MAPPING(7);
741 REGION_MAPPING(8);
742 REGION_MAPPING(9);
743 REGION_MAPPING(10);
744 REGION_MAPPING(11);
745 REGION_MAPPING(12);
746 REGION_MAPPING(13);
747 REGION_MAPPING(14);
748 REGION_MAPPING(15);
749 REGION_MAPPING(16);
750 REGION_MAPPING(17);
751 REGION_MAPPING(18);
752 REGION_MAPPING(19);
753 REGION_MAPPING(20);
754 REGION_MAPPING(21);
755 REGION_MAPPING(22);
756 REGION_MAPPING(23);
757 REGION_MAPPING(24);
758 REGION_MAPPING(25);
759 REGION_MAPPING(26);
760 REGION_MAPPING(27);
761 REGION_MAPPING(28);
762 REGION_MAPPING(29);
763 REGION_MAPPING(30);
764 REGION_MAPPING(31);
765 
766 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
767 {
768 	struct device *dev = container_of(kobj, struct device, kobj);
769 	struct nd_region *nd_region = to_nd_region(dev);
770 
771 	if (n < nd_region->ndr_mappings)
772 		return a->mode;
773 	return 0;
774 }
775 
776 static struct attribute *mapping_attributes[] = {
777 	&dev_attr_mapping0.attr,
778 	&dev_attr_mapping1.attr,
779 	&dev_attr_mapping2.attr,
780 	&dev_attr_mapping3.attr,
781 	&dev_attr_mapping4.attr,
782 	&dev_attr_mapping5.attr,
783 	&dev_attr_mapping6.attr,
784 	&dev_attr_mapping7.attr,
785 	&dev_attr_mapping8.attr,
786 	&dev_attr_mapping9.attr,
787 	&dev_attr_mapping10.attr,
788 	&dev_attr_mapping11.attr,
789 	&dev_attr_mapping12.attr,
790 	&dev_attr_mapping13.attr,
791 	&dev_attr_mapping14.attr,
792 	&dev_attr_mapping15.attr,
793 	&dev_attr_mapping16.attr,
794 	&dev_attr_mapping17.attr,
795 	&dev_attr_mapping18.attr,
796 	&dev_attr_mapping19.attr,
797 	&dev_attr_mapping20.attr,
798 	&dev_attr_mapping21.attr,
799 	&dev_attr_mapping22.attr,
800 	&dev_attr_mapping23.attr,
801 	&dev_attr_mapping24.attr,
802 	&dev_attr_mapping25.attr,
803 	&dev_attr_mapping26.attr,
804 	&dev_attr_mapping27.attr,
805 	&dev_attr_mapping28.attr,
806 	&dev_attr_mapping29.attr,
807 	&dev_attr_mapping30.attr,
808 	&dev_attr_mapping31.attr,
809 	NULL,
810 };
811 
812 static const struct attribute_group nd_mapping_attribute_group = {
813 	.is_visible = mapping_visible,
814 	.attrs = mapping_attributes,
815 };
816 
817 static const struct attribute_group nd_region_attribute_group = {
818 	.attrs = nd_region_attributes,
819 	.is_visible = region_visible,
820 };
821 
822 static const struct attribute_group *nd_region_attribute_groups[] = {
823 	&nd_device_attribute_group,
824 	&nd_region_attribute_group,
825 	&nd_numa_attribute_group,
826 	&nd_mapping_attribute_group,
827 	NULL,
828 };
829 
830 static const struct device_type nd_pmem_device_type = {
831 	.name = "nd_pmem",
832 	.release = nd_region_release,
833 	.groups = nd_region_attribute_groups,
834 };
835 
836 static const struct device_type nd_volatile_device_type = {
837 	.name = "nd_volatile",
838 	.release = nd_region_release,
839 	.groups = nd_region_attribute_groups,
840 };
841 
842 bool is_nd_pmem(const struct device *dev)
843 {
844 	return dev ? dev->type == &nd_pmem_device_type : false;
845 }
846 
847 bool is_nd_volatile(const struct device *dev)
848 {
849 	return dev ? dev->type == &nd_volatile_device_type : false;
850 }
851 
852 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
853 		struct nd_namespace_index *nsindex)
854 {
855 	struct nd_interleave_set *nd_set = nd_region->nd_set;
856 
857 	if (!nd_set)
858 		return 0;
859 
860 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
861 			&& __le16_to_cpu(nsindex->minor) == 1)
862 		return nd_set->cookie1;
863 	return nd_set->cookie2;
864 }
865 
866 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
867 {
868 	struct nd_interleave_set *nd_set = nd_region->nd_set;
869 
870 	if (nd_set)
871 		return nd_set->altcookie;
872 	return 0;
873 }
874 
875 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
876 {
877 	struct nd_label_ent *label_ent, *e;
878 
879 	lockdep_assert_held(&nd_mapping->lock);
880 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
881 		list_del(&label_ent->list);
882 		kfree(label_ent);
883 	}
884 }
885 
886 /*
887  * When a namespace is activated create new seeds for the next
888  * namespace, or namespace-personality to be configured.
889  */
890 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
891 {
892 	nvdimm_bus_lock(dev);
893 	if (nd_region->ns_seed == dev) {
894 		nd_region_create_ns_seed(nd_region);
895 	} else if (is_nd_btt(dev)) {
896 		struct nd_btt *nd_btt = to_nd_btt(dev);
897 
898 		if (nd_region->btt_seed == dev)
899 			nd_region_create_btt_seed(nd_region);
900 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
901 			nd_region_create_ns_seed(nd_region);
902 	} else if (is_nd_pfn(dev)) {
903 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
904 
905 		if (nd_region->pfn_seed == dev)
906 			nd_region_create_pfn_seed(nd_region);
907 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
908 			nd_region_create_ns_seed(nd_region);
909 	} else if (is_nd_dax(dev)) {
910 		struct nd_dax *nd_dax = to_nd_dax(dev);
911 
912 		if (nd_region->dax_seed == dev)
913 			nd_region_create_dax_seed(nd_region);
914 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
915 			nd_region_create_ns_seed(nd_region);
916 	}
917 	nvdimm_bus_unlock(dev);
918 }
919 
920 /**
921  * nd_region_acquire_lane - allocate and lock a lane
922  * @nd_region: region id and number of lanes possible
923  *
924  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
925  * We optimize for the common case where there are 256 lanes, one
926  * per-cpu.  For larger systems we need to lock to share lanes.  For now
927  * this implementation assumes the cost of maintaining an allocator for
928  * free lanes is on the order of the lock hold time, so it implements a
929  * static lane = cpu % num_lanes mapping.
930  *
931  * In the case of a BTT instance on top of a BLK namespace a lane may be
932  * acquired recursively.  We lock on the first instance.
933  *
934  * In the case of a BTT instance on top of PMEM, we only acquire a lane
935  * for the BTT metadata updates.
936  */
937 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
938 {
939 	unsigned int cpu, lane;
940 
941 	cpu = get_cpu();
942 	if (nd_region->num_lanes < nr_cpu_ids) {
943 		struct nd_percpu_lane *ndl_lock, *ndl_count;
944 
945 		lane = cpu % nd_region->num_lanes;
946 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
947 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
948 		if (ndl_count->count++ == 0)
949 			spin_lock(&ndl_lock->lock);
950 	} else
951 		lane = cpu;
952 
953 	return lane;
954 }
955 EXPORT_SYMBOL(nd_region_acquire_lane);
956 
957 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
958 {
959 	if (nd_region->num_lanes < nr_cpu_ids) {
960 		unsigned int cpu = get_cpu();
961 		struct nd_percpu_lane *ndl_lock, *ndl_count;
962 
963 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
964 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
965 		if (--ndl_count->count == 0)
966 			spin_unlock(&ndl_lock->lock);
967 		put_cpu();
968 	}
969 	put_cpu();
970 }
971 EXPORT_SYMBOL(nd_region_release_lane);
972 
973 /*
974  * PowerPC requires this alignment for memremap_pages(). All other archs
975  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
976  */
977 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
978 
979 static unsigned long default_align(struct nd_region *nd_region)
980 {
981 	unsigned long align;
982 	u32 remainder;
983 	int mappings;
984 
985 	align = MEMREMAP_COMPAT_ALIGN_MAX;
986 	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
987 		align = PAGE_SIZE;
988 
989 	mappings = max_t(u16, 1, nd_region->ndr_mappings);
990 	div_u64_rem(align, mappings, &remainder);
991 	if (remainder)
992 		align *= mappings;
993 
994 	return align;
995 }
996 
997 static struct lock_class_key nvdimm_region_key;
998 
999 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1000 		struct nd_region_desc *ndr_desc,
1001 		const struct device_type *dev_type, const char *caller)
1002 {
1003 	struct nd_region *nd_region;
1004 	struct device *dev;
1005 	unsigned int i;
1006 	int ro = 0;
1007 
1008 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1009 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1010 		struct nvdimm *nvdimm = mapping->nvdimm;
1011 
1012 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
1013 			dev_err(&nvdimm_bus->dev,
1014 				"%s: %s mapping%d is not %ld aligned\n",
1015 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1016 			return NULL;
1017 		}
1018 
1019 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1020 			ro = 1;
1021 
1022 	}
1023 
1024 	nd_region =
1025 		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1026 			GFP_KERNEL);
1027 
1028 	if (!nd_region)
1029 		return NULL;
1030 	/* CXL pre-assigns memregion ids before creating nvdimm regions */
1031 	if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1032 		nd_region->id = ndr_desc->memregion;
1033 	} else {
1034 		nd_region->id = memregion_alloc(GFP_KERNEL);
1035 		if (nd_region->id < 0)
1036 			goto err_id;
1037 	}
1038 
1039 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1040 	if (!nd_region->lane)
1041 		goto err_percpu;
1042 
1043         for (i = 0; i < nr_cpu_ids; i++) {
1044 		struct nd_percpu_lane *ndl;
1045 
1046 		ndl = per_cpu_ptr(nd_region->lane, i);
1047 		spin_lock_init(&ndl->lock);
1048 		ndl->count = 0;
1049 	}
1050 
1051 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1052 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1053 		struct nvdimm *nvdimm = mapping->nvdimm;
1054 
1055 		nd_region->mapping[i].nvdimm = nvdimm;
1056 		nd_region->mapping[i].start = mapping->start;
1057 		nd_region->mapping[i].size = mapping->size;
1058 		nd_region->mapping[i].position = mapping->position;
1059 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1060 		mutex_init(&nd_region->mapping[i].lock);
1061 
1062 		get_device(&nvdimm->dev);
1063 	}
1064 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1065 	nd_region->provider_data = ndr_desc->provider_data;
1066 	nd_region->nd_set = ndr_desc->nd_set;
1067 	nd_region->num_lanes = ndr_desc->num_lanes;
1068 	nd_region->flags = ndr_desc->flags;
1069 	nd_region->ro = ro;
1070 	nd_region->numa_node = ndr_desc->numa_node;
1071 	nd_region->target_node = ndr_desc->target_node;
1072 	ida_init(&nd_region->ns_ida);
1073 	ida_init(&nd_region->btt_ida);
1074 	ida_init(&nd_region->pfn_ida);
1075 	ida_init(&nd_region->dax_ida);
1076 	dev = &nd_region->dev;
1077 	dev_set_name(dev, "region%d", nd_region->id);
1078 	dev->parent = &nvdimm_bus->dev;
1079 	dev->type = dev_type;
1080 	dev->groups = ndr_desc->attr_groups;
1081 	dev->of_node = ndr_desc->of_node;
1082 	nd_region->ndr_size = resource_size(ndr_desc->res);
1083 	nd_region->ndr_start = ndr_desc->res->start;
1084 	nd_region->align = default_align(nd_region);
1085 	if (ndr_desc->flush)
1086 		nd_region->flush = ndr_desc->flush;
1087 	else
1088 		nd_region->flush = NULL;
1089 
1090 	device_initialize(dev);
1091 	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1092 	nd_device_register(dev);
1093 
1094 	return nd_region;
1095 
1096 err_percpu:
1097 	if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1098 		memregion_free(nd_region->id);
1099 err_id:
1100 	kfree(nd_region);
1101 	return NULL;
1102 }
1103 
1104 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1105 		struct nd_region_desc *ndr_desc)
1106 {
1107 	ndr_desc->num_lanes = ND_MAX_LANES;
1108 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1109 			__func__);
1110 }
1111 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1112 
1113 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1114 		struct nd_region_desc *ndr_desc)
1115 {
1116 	ndr_desc->num_lanes = ND_MAX_LANES;
1117 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1118 			__func__);
1119 }
1120 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1121 
1122 void nvdimm_region_delete(struct nd_region *nd_region)
1123 {
1124 	if (nd_region)
1125 		nd_device_unregister(&nd_region->dev, ND_SYNC);
1126 }
1127 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1128 
1129 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1130 {
1131 	int rc = 0;
1132 
1133 	if (!nd_region->flush)
1134 		rc = generic_nvdimm_flush(nd_region);
1135 	else {
1136 		if (nd_region->flush(nd_region, bio))
1137 			rc = -EIO;
1138 	}
1139 
1140 	return rc;
1141 }
1142 /**
1143  * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1144  * @nd_region: interleaved pmem region
1145  */
1146 int generic_nvdimm_flush(struct nd_region *nd_region)
1147 {
1148 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1149 	int i, idx;
1150 
1151 	/*
1152 	 * Try to encourage some diversity in flush hint addresses
1153 	 * across cpus assuming a limited number of flush hints.
1154 	 */
1155 	idx = this_cpu_read(flush_idx);
1156 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1157 
1158 	/*
1159 	 * The pmem_wmb() is needed to 'sfence' all
1160 	 * previous writes such that they are architecturally visible for
1161 	 * the platform buffer flush. Note that we've already arranged for pmem
1162 	 * writes to avoid the cache via memcpy_flushcache().  The final
1163 	 * wmb() ensures ordering for the NVDIMM flush write.
1164 	 */
1165 	pmem_wmb();
1166 	for (i = 0; i < nd_region->ndr_mappings; i++)
1167 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1168 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1169 	wmb();
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(nvdimm_flush);
1174 
1175 /**
1176  * nvdimm_has_flush - determine write flushing requirements
1177  * @nd_region: interleaved pmem region
1178  *
1179  * Returns 1 if writes require flushing
1180  * Returns 0 if writes do not require flushing
1181  * Returns -ENXIO if flushing capability can not be determined
1182  */
1183 int nvdimm_has_flush(struct nd_region *nd_region)
1184 {
1185 	int i;
1186 
1187 	/* no nvdimm or pmem api == flushing capability unknown */
1188 	if (nd_region->ndr_mappings == 0
1189 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1190 		return -ENXIO;
1191 
1192 	/* Test if an explicit flush function is defined */
1193 	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1194 		return 1;
1195 
1196 	/* Test if any flush hints for the region are available */
1197 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1198 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1199 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1200 
1201 		/* flush hints present / available */
1202 		if (nvdimm->num_flush)
1203 			return 1;
1204 	}
1205 
1206 	/*
1207 	 * The platform defines dimm devices without hints nor explicit flush,
1208 	 * assume platform persistence mechanism like ADR
1209 	 */
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1213 
1214 int nvdimm_has_cache(struct nd_region *nd_region)
1215 {
1216 	return is_nd_pmem(&nd_region->dev) &&
1217 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1218 }
1219 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1220 
1221 bool is_nvdimm_sync(struct nd_region *nd_region)
1222 {
1223 	if (is_nd_volatile(&nd_region->dev))
1224 		return true;
1225 
1226 	return is_nd_pmem(&nd_region->dev) &&
1227 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1228 }
1229 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1230 
1231 struct conflict_context {
1232 	struct nd_region *nd_region;
1233 	resource_size_t start, size;
1234 };
1235 
1236 static int region_conflict(struct device *dev, void *data)
1237 {
1238 	struct nd_region *nd_region;
1239 	struct conflict_context *ctx = data;
1240 	resource_size_t res_end, region_end, region_start;
1241 
1242 	if (!is_memory(dev))
1243 		return 0;
1244 
1245 	nd_region = to_nd_region(dev);
1246 	if (nd_region == ctx->nd_region)
1247 		return 0;
1248 
1249 	res_end = ctx->start + ctx->size;
1250 	region_start = nd_region->ndr_start;
1251 	region_end = region_start + nd_region->ndr_size;
1252 	if (ctx->start >= region_start && ctx->start < region_end)
1253 		return -EBUSY;
1254 	if (res_end > region_start && res_end <= region_end)
1255 		return -EBUSY;
1256 	return 0;
1257 }
1258 
1259 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1260 		resource_size_t size)
1261 {
1262 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1263 	struct conflict_context ctx = {
1264 		.nd_region = nd_region,
1265 		.start = start,
1266 		.size = size,
1267 	};
1268 
1269 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1270 }
1271 
1272 MODULE_IMPORT_NS(DEVMEM);
1273