xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 53a2a90d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16 
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22 
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	memregion_free(nd_region->id);
137 	kfree(nd_region);
138 }
139 
140 struct nd_region *to_nd_region(struct device *dev)
141 {
142 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
143 
144 	WARN_ON(dev->type->release != nd_region_release);
145 	return nd_region;
146 }
147 EXPORT_SYMBOL_GPL(to_nd_region);
148 
149 struct device *nd_region_dev(struct nd_region *nd_region)
150 {
151 	if (!nd_region)
152 		return NULL;
153 	return &nd_region->dev;
154 }
155 EXPORT_SYMBOL_GPL(nd_region_dev);
156 
157 void *nd_region_provider_data(struct nd_region *nd_region)
158 {
159 	return nd_region->provider_data;
160 }
161 EXPORT_SYMBOL_GPL(nd_region_provider_data);
162 
163 /**
164  * nd_region_to_nstype() - region to an integer namespace type
165  * @nd_region: region-device to interrogate
166  *
167  * This is the 'nstype' attribute of a region as well, an input to the
168  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
169  * namespace devices with namespace drivers.
170  */
171 int nd_region_to_nstype(struct nd_region *nd_region)
172 {
173 	if (is_memory(&nd_region->dev)) {
174 		u16 i, label;
175 
176 		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
177 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
178 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
179 
180 			if (test_bit(NDD_LABELING, &nvdimm->flags))
181 				label++;
182 		}
183 		if (label)
184 			return ND_DEVICE_NAMESPACE_PMEM;
185 		else
186 			return ND_DEVICE_NAMESPACE_IO;
187 	}
188 
189 	return 0;
190 }
191 EXPORT_SYMBOL(nd_region_to_nstype);
192 
193 static unsigned long long region_size(struct nd_region *nd_region)
194 {
195 	if (is_memory(&nd_region->dev)) {
196 		return nd_region->ndr_size;
197 	} else if (nd_region->ndr_mappings == 1) {
198 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
199 
200 		return nd_mapping->size;
201 	}
202 
203 	return 0;
204 }
205 
206 static ssize_t size_show(struct device *dev,
207 		struct device_attribute *attr, char *buf)
208 {
209 	struct nd_region *nd_region = to_nd_region(dev);
210 
211 	return sprintf(buf, "%llu\n", region_size(nd_region));
212 }
213 static DEVICE_ATTR_RO(size);
214 
215 static ssize_t deep_flush_show(struct device *dev,
216 		struct device_attribute *attr, char *buf)
217 {
218 	struct nd_region *nd_region = to_nd_region(dev);
219 
220 	/*
221 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
222 	 * not visible.
223 	 */
224 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
225 }
226 
227 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
228 		const char *buf, size_t len)
229 {
230 	bool flush;
231 	int rc = strtobool(buf, &flush);
232 	struct nd_region *nd_region = to_nd_region(dev);
233 
234 	if (rc)
235 		return rc;
236 	if (!flush)
237 		return -EINVAL;
238 	rc = nvdimm_flush(nd_region, NULL);
239 	if (rc)
240 		return rc;
241 
242 	return len;
243 }
244 static DEVICE_ATTR_RW(deep_flush);
245 
246 static ssize_t mappings_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct nd_region *nd_region = to_nd_region(dev);
250 
251 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
252 }
253 static DEVICE_ATTR_RO(mappings);
254 
255 static ssize_t nstype_show(struct device *dev,
256 		struct device_attribute *attr, char *buf)
257 {
258 	struct nd_region *nd_region = to_nd_region(dev);
259 
260 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
261 }
262 static DEVICE_ATTR_RO(nstype);
263 
264 static ssize_t set_cookie_show(struct device *dev,
265 		struct device_attribute *attr, char *buf)
266 {
267 	struct nd_region *nd_region = to_nd_region(dev);
268 	struct nd_interleave_set *nd_set = nd_region->nd_set;
269 	ssize_t rc = 0;
270 
271 	if (is_memory(dev) && nd_set)
272 		/* pass, should be precluded by region_visible */;
273 	else
274 		return -ENXIO;
275 
276 	/*
277 	 * The cookie to show depends on which specification of the
278 	 * labels we are using. If there are not labels then default to
279 	 * the v1.1 namespace label cookie definition. To read all this
280 	 * data we need to wait for probing to settle.
281 	 */
282 	device_lock(dev);
283 	nvdimm_bus_lock(dev);
284 	wait_nvdimm_bus_probe_idle(dev);
285 	if (nd_region->ndr_mappings) {
286 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
287 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
288 
289 		if (ndd) {
290 			struct nd_namespace_index *nsindex;
291 
292 			nsindex = to_namespace_index(ndd, ndd->ns_current);
293 			rc = sprintf(buf, "%#llx\n",
294 					nd_region_interleave_set_cookie(nd_region,
295 						nsindex));
296 		}
297 	}
298 	nvdimm_bus_unlock(dev);
299 	device_unlock(dev);
300 
301 	if (rc)
302 		return rc;
303 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
304 }
305 static DEVICE_ATTR_RO(set_cookie);
306 
307 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
308 {
309 	resource_size_t available;
310 	int i;
311 
312 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
313 
314 	available = 0;
315 	for (i = 0; i < nd_region->ndr_mappings; i++) {
316 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
317 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
318 
319 		/* if a dimm is disabled the available capacity is zero */
320 		if (!ndd)
321 			return 0;
322 
323 		available += nd_pmem_available_dpa(nd_region, nd_mapping);
324 	}
325 
326 	return available;
327 }
328 
329 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
330 {
331 	resource_size_t avail = 0;
332 	int i;
333 
334 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
335 	for (i = 0; i < nd_region->ndr_mappings; i++) {
336 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
337 
338 		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
339 						    nd_region, nd_mapping));
340 	}
341 	return avail * nd_region->ndr_mappings;
342 }
343 
344 static ssize_t available_size_show(struct device *dev,
345 		struct device_attribute *attr, char *buf)
346 {
347 	struct nd_region *nd_region = to_nd_region(dev);
348 	unsigned long long available = 0;
349 
350 	/*
351 	 * Flush in-flight updates and grab a snapshot of the available
352 	 * size.  Of course, this value is potentially invalidated the
353 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
354 	 * problem to not race itself.
355 	 */
356 	device_lock(dev);
357 	nvdimm_bus_lock(dev);
358 	wait_nvdimm_bus_probe_idle(dev);
359 	available = nd_region_available_dpa(nd_region);
360 	nvdimm_bus_unlock(dev);
361 	device_unlock(dev);
362 
363 	return sprintf(buf, "%llu\n", available);
364 }
365 static DEVICE_ATTR_RO(available_size);
366 
367 static ssize_t max_available_extent_show(struct device *dev,
368 		struct device_attribute *attr, char *buf)
369 {
370 	struct nd_region *nd_region = to_nd_region(dev);
371 	unsigned long long available = 0;
372 
373 	device_lock(dev);
374 	nvdimm_bus_lock(dev);
375 	wait_nvdimm_bus_probe_idle(dev);
376 	available = nd_region_allocatable_dpa(nd_region);
377 	nvdimm_bus_unlock(dev);
378 	device_unlock(dev);
379 
380 	return sprintf(buf, "%llu\n", available);
381 }
382 static DEVICE_ATTR_RO(max_available_extent);
383 
384 static ssize_t init_namespaces_show(struct device *dev,
385 		struct device_attribute *attr, char *buf)
386 {
387 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
388 	ssize_t rc;
389 
390 	nvdimm_bus_lock(dev);
391 	if (ndrd)
392 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
393 	else
394 		rc = -ENXIO;
395 	nvdimm_bus_unlock(dev);
396 
397 	return rc;
398 }
399 static DEVICE_ATTR_RO(init_namespaces);
400 
401 static ssize_t namespace_seed_show(struct device *dev,
402 		struct device_attribute *attr, char *buf)
403 {
404 	struct nd_region *nd_region = to_nd_region(dev);
405 	ssize_t rc;
406 
407 	nvdimm_bus_lock(dev);
408 	if (nd_region->ns_seed)
409 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
410 	else
411 		rc = sprintf(buf, "\n");
412 	nvdimm_bus_unlock(dev);
413 	return rc;
414 }
415 static DEVICE_ATTR_RO(namespace_seed);
416 
417 static ssize_t btt_seed_show(struct device *dev,
418 		struct device_attribute *attr, char *buf)
419 {
420 	struct nd_region *nd_region = to_nd_region(dev);
421 	ssize_t rc;
422 
423 	nvdimm_bus_lock(dev);
424 	if (nd_region->btt_seed)
425 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
426 	else
427 		rc = sprintf(buf, "\n");
428 	nvdimm_bus_unlock(dev);
429 
430 	return rc;
431 }
432 static DEVICE_ATTR_RO(btt_seed);
433 
434 static ssize_t pfn_seed_show(struct device *dev,
435 		struct device_attribute *attr, char *buf)
436 {
437 	struct nd_region *nd_region = to_nd_region(dev);
438 	ssize_t rc;
439 
440 	nvdimm_bus_lock(dev);
441 	if (nd_region->pfn_seed)
442 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
443 	else
444 		rc = sprintf(buf, "\n");
445 	nvdimm_bus_unlock(dev);
446 
447 	return rc;
448 }
449 static DEVICE_ATTR_RO(pfn_seed);
450 
451 static ssize_t dax_seed_show(struct device *dev,
452 		struct device_attribute *attr, char *buf)
453 {
454 	struct nd_region *nd_region = to_nd_region(dev);
455 	ssize_t rc;
456 
457 	nvdimm_bus_lock(dev);
458 	if (nd_region->dax_seed)
459 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
460 	else
461 		rc = sprintf(buf, "\n");
462 	nvdimm_bus_unlock(dev);
463 
464 	return rc;
465 }
466 static DEVICE_ATTR_RO(dax_seed);
467 
468 static ssize_t read_only_show(struct device *dev,
469 		struct device_attribute *attr, char *buf)
470 {
471 	struct nd_region *nd_region = to_nd_region(dev);
472 
473 	return sprintf(buf, "%d\n", nd_region->ro);
474 }
475 
476 static int revalidate_read_only(struct device *dev, void *data)
477 {
478 	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
479 	return 0;
480 }
481 
482 static ssize_t read_only_store(struct device *dev,
483 		struct device_attribute *attr, const char *buf, size_t len)
484 {
485 	bool ro;
486 	int rc = strtobool(buf, &ro);
487 	struct nd_region *nd_region = to_nd_region(dev);
488 
489 	if (rc)
490 		return rc;
491 
492 	nd_region->ro = ro;
493 	device_for_each_child(dev, NULL, revalidate_read_only);
494 	return len;
495 }
496 static DEVICE_ATTR_RW(read_only);
497 
498 static ssize_t align_show(struct device *dev,
499 		struct device_attribute *attr, char *buf)
500 {
501 	struct nd_region *nd_region = to_nd_region(dev);
502 
503 	return sprintf(buf, "%#lx\n", nd_region->align);
504 }
505 
506 static ssize_t align_store(struct device *dev,
507 		struct device_attribute *attr, const char *buf, size_t len)
508 {
509 	struct nd_region *nd_region = to_nd_region(dev);
510 	unsigned long val, dpa;
511 	u32 remainder;
512 	int rc;
513 
514 	rc = kstrtoul(buf, 0, &val);
515 	if (rc)
516 		return rc;
517 
518 	if (!nd_region->ndr_mappings)
519 		return -ENXIO;
520 
521 	/*
522 	 * Ensure space-align is evenly divisible by the region
523 	 * interleave-width because the kernel typically has no facility
524 	 * to determine which DIMM(s), dimm-physical-addresses, would
525 	 * contribute to the tail capacity in system-physical-address
526 	 * space for the namespace.
527 	 */
528 	dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
529 	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
530 			|| val > region_size(nd_region) || remainder)
531 		return -EINVAL;
532 
533 	/*
534 	 * Given that space allocation consults this value multiple
535 	 * times ensure it does not change for the duration of the
536 	 * allocation.
537 	 */
538 	nvdimm_bus_lock(dev);
539 	nd_region->align = val;
540 	nvdimm_bus_unlock(dev);
541 
542 	return len;
543 }
544 static DEVICE_ATTR_RW(align);
545 
546 static ssize_t region_badblocks_show(struct device *dev,
547 		struct device_attribute *attr, char *buf)
548 {
549 	struct nd_region *nd_region = to_nd_region(dev);
550 	ssize_t rc;
551 
552 	device_lock(dev);
553 	if (dev->driver)
554 		rc = badblocks_show(&nd_region->bb, buf, 0);
555 	else
556 		rc = -ENXIO;
557 	device_unlock(dev);
558 
559 	return rc;
560 }
561 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
562 
563 static ssize_t resource_show(struct device *dev,
564 		struct device_attribute *attr, char *buf)
565 {
566 	struct nd_region *nd_region = to_nd_region(dev);
567 
568 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
569 }
570 static DEVICE_ATTR_ADMIN_RO(resource);
571 
572 static ssize_t persistence_domain_show(struct device *dev,
573 		struct device_attribute *attr, char *buf)
574 {
575 	struct nd_region *nd_region = to_nd_region(dev);
576 
577 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
578 		return sprintf(buf, "cpu_cache\n");
579 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
580 		return sprintf(buf, "memory_controller\n");
581 	else
582 		return sprintf(buf, "\n");
583 }
584 static DEVICE_ATTR_RO(persistence_domain);
585 
586 static struct attribute *nd_region_attributes[] = {
587 	&dev_attr_size.attr,
588 	&dev_attr_align.attr,
589 	&dev_attr_nstype.attr,
590 	&dev_attr_mappings.attr,
591 	&dev_attr_btt_seed.attr,
592 	&dev_attr_pfn_seed.attr,
593 	&dev_attr_dax_seed.attr,
594 	&dev_attr_deep_flush.attr,
595 	&dev_attr_read_only.attr,
596 	&dev_attr_set_cookie.attr,
597 	&dev_attr_available_size.attr,
598 	&dev_attr_max_available_extent.attr,
599 	&dev_attr_namespace_seed.attr,
600 	&dev_attr_init_namespaces.attr,
601 	&dev_attr_badblocks.attr,
602 	&dev_attr_resource.attr,
603 	&dev_attr_persistence_domain.attr,
604 	NULL,
605 };
606 
607 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
608 {
609 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
610 	struct nd_region *nd_region = to_nd_region(dev);
611 	struct nd_interleave_set *nd_set = nd_region->nd_set;
612 	int type = nd_region_to_nstype(nd_region);
613 
614 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
615 		return 0;
616 
617 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
618 		return 0;
619 
620 	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
621 		return 0;
622 
623 	if (a == &dev_attr_resource.attr && !is_memory(dev))
624 		return 0;
625 
626 	if (a == &dev_attr_deep_flush.attr) {
627 		int has_flush = nvdimm_has_flush(nd_region);
628 
629 		if (has_flush == 1)
630 			return a->mode;
631 		else if (has_flush == 0)
632 			return 0444;
633 		else
634 			return 0;
635 	}
636 
637 	if (a == &dev_attr_persistence_domain.attr) {
638 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
639 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
640 			return 0;
641 		return a->mode;
642 	}
643 
644 	if (a == &dev_attr_align.attr)
645 		return a->mode;
646 
647 	if (a != &dev_attr_set_cookie.attr
648 			&& a != &dev_attr_available_size.attr)
649 		return a->mode;
650 
651 	if (type == ND_DEVICE_NAMESPACE_PMEM &&
652 	    a == &dev_attr_available_size.attr)
653 		return a->mode;
654 	else if (is_memory(dev) && nd_set)
655 		return a->mode;
656 
657 	return 0;
658 }
659 
660 static ssize_t mappingN(struct device *dev, char *buf, int n)
661 {
662 	struct nd_region *nd_region = to_nd_region(dev);
663 	struct nd_mapping *nd_mapping;
664 	struct nvdimm *nvdimm;
665 
666 	if (n >= nd_region->ndr_mappings)
667 		return -ENXIO;
668 	nd_mapping = &nd_region->mapping[n];
669 	nvdimm = nd_mapping->nvdimm;
670 
671 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
672 			nd_mapping->start, nd_mapping->size,
673 			nd_mapping->position);
674 }
675 
676 #define REGION_MAPPING(idx) \
677 static ssize_t mapping##idx##_show(struct device *dev,		\
678 		struct device_attribute *attr, char *buf)	\
679 {								\
680 	return mappingN(dev, buf, idx);				\
681 }								\
682 static DEVICE_ATTR_RO(mapping##idx)
683 
684 /*
685  * 32 should be enough for a while, even in the presence of socket
686  * interleave a 32-way interleave set is a degenerate case.
687  */
688 REGION_MAPPING(0);
689 REGION_MAPPING(1);
690 REGION_MAPPING(2);
691 REGION_MAPPING(3);
692 REGION_MAPPING(4);
693 REGION_MAPPING(5);
694 REGION_MAPPING(6);
695 REGION_MAPPING(7);
696 REGION_MAPPING(8);
697 REGION_MAPPING(9);
698 REGION_MAPPING(10);
699 REGION_MAPPING(11);
700 REGION_MAPPING(12);
701 REGION_MAPPING(13);
702 REGION_MAPPING(14);
703 REGION_MAPPING(15);
704 REGION_MAPPING(16);
705 REGION_MAPPING(17);
706 REGION_MAPPING(18);
707 REGION_MAPPING(19);
708 REGION_MAPPING(20);
709 REGION_MAPPING(21);
710 REGION_MAPPING(22);
711 REGION_MAPPING(23);
712 REGION_MAPPING(24);
713 REGION_MAPPING(25);
714 REGION_MAPPING(26);
715 REGION_MAPPING(27);
716 REGION_MAPPING(28);
717 REGION_MAPPING(29);
718 REGION_MAPPING(30);
719 REGION_MAPPING(31);
720 
721 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
722 {
723 	struct device *dev = container_of(kobj, struct device, kobj);
724 	struct nd_region *nd_region = to_nd_region(dev);
725 
726 	if (n < nd_region->ndr_mappings)
727 		return a->mode;
728 	return 0;
729 }
730 
731 static struct attribute *mapping_attributes[] = {
732 	&dev_attr_mapping0.attr,
733 	&dev_attr_mapping1.attr,
734 	&dev_attr_mapping2.attr,
735 	&dev_attr_mapping3.attr,
736 	&dev_attr_mapping4.attr,
737 	&dev_attr_mapping5.attr,
738 	&dev_attr_mapping6.attr,
739 	&dev_attr_mapping7.attr,
740 	&dev_attr_mapping8.attr,
741 	&dev_attr_mapping9.attr,
742 	&dev_attr_mapping10.attr,
743 	&dev_attr_mapping11.attr,
744 	&dev_attr_mapping12.attr,
745 	&dev_attr_mapping13.attr,
746 	&dev_attr_mapping14.attr,
747 	&dev_attr_mapping15.attr,
748 	&dev_attr_mapping16.attr,
749 	&dev_attr_mapping17.attr,
750 	&dev_attr_mapping18.attr,
751 	&dev_attr_mapping19.attr,
752 	&dev_attr_mapping20.attr,
753 	&dev_attr_mapping21.attr,
754 	&dev_attr_mapping22.attr,
755 	&dev_attr_mapping23.attr,
756 	&dev_attr_mapping24.attr,
757 	&dev_attr_mapping25.attr,
758 	&dev_attr_mapping26.attr,
759 	&dev_attr_mapping27.attr,
760 	&dev_attr_mapping28.attr,
761 	&dev_attr_mapping29.attr,
762 	&dev_attr_mapping30.attr,
763 	&dev_attr_mapping31.attr,
764 	NULL,
765 };
766 
767 static const struct attribute_group nd_mapping_attribute_group = {
768 	.is_visible = mapping_visible,
769 	.attrs = mapping_attributes,
770 };
771 
772 static const struct attribute_group nd_region_attribute_group = {
773 	.attrs = nd_region_attributes,
774 	.is_visible = region_visible,
775 };
776 
777 static const struct attribute_group *nd_region_attribute_groups[] = {
778 	&nd_device_attribute_group,
779 	&nd_region_attribute_group,
780 	&nd_numa_attribute_group,
781 	&nd_mapping_attribute_group,
782 	NULL,
783 };
784 
785 static const struct device_type nd_pmem_device_type = {
786 	.name = "nd_pmem",
787 	.release = nd_region_release,
788 	.groups = nd_region_attribute_groups,
789 };
790 
791 static const struct device_type nd_volatile_device_type = {
792 	.name = "nd_volatile",
793 	.release = nd_region_release,
794 	.groups = nd_region_attribute_groups,
795 };
796 
797 bool is_nd_pmem(struct device *dev)
798 {
799 	return dev ? dev->type == &nd_pmem_device_type : false;
800 }
801 
802 bool is_nd_volatile(struct device *dev)
803 {
804 	return dev ? dev->type == &nd_volatile_device_type : false;
805 }
806 
807 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
808 		struct nd_namespace_index *nsindex)
809 {
810 	struct nd_interleave_set *nd_set = nd_region->nd_set;
811 
812 	if (!nd_set)
813 		return 0;
814 
815 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
816 			&& __le16_to_cpu(nsindex->minor) == 1)
817 		return nd_set->cookie1;
818 	return nd_set->cookie2;
819 }
820 
821 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
822 {
823 	struct nd_interleave_set *nd_set = nd_region->nd_set;
824 
825 	if (nd_set)
826 		return nd_set->altcookie;
827 	return 0;
828 }
829 
830 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
831 {
832 	struct nd_label_ent *label_ent, *e;
833 
834 	lockdep_assert_held(&nd_mapping->lock);
835 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
836 		list_del(&label_ent->list);
837 		kfree(label_ent);
838 	}
839 }
840 
841 /*
842  * When a namespace is activated create new seeds for the next
843  * namespace, or namespace-personality to be configured.
844  */
845 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
846 {
847 	nvdimm_bus_lock(dev);
848 	if (nd_region->ns_seed == dev) {
849 		nd_region_create_ns_seed(nd_region);
850 	} else if (is_nd_btt(dev)) {
851 		struct nd_btt *nd_btt = to_nd_btt(dev);
852 
853 		if (nd_region->btt_seed == dev)
854 			nd_region_create_btt_seed(nd_region);
855 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
856 			nd_region_create_ns_seed(nd_region);
857 	} else if (is_nd_pfn(dev)) {
858 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
859 
860 		if (nd_region->pfn_seed == dev)
861 			nd_region_create_pfn_seed(nd_region);
862 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
863 			nd_region_create_ns_seed(nd_region);
864 	} else if (is_nd_dax(dev)) {
865 		struct nd_dax *nd_dax = to_nd_dax(dev);
866 
867 		if (nd_region->dax_seed == dev)
868 			nd_region_create_dax_seed(nd_region);
869 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
870 			nd_region_create_ns_seed(nd_region);
871 	}
872 	nvdimm_bus_unlock(dev);
873 }
874 
875 /**
876  * nd_region_acquire_lane - allocate and lock a lane
877  * @nd_region: region id and number of lanes possible
878  *
879  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
880  * We optimize for the common case where there are 256 lanes, one
881  * per-cpu.  For larger systems we need to lock to share lanes.  For now
882  * this implementation assumes the cost of maintaining an allocator for
883  * free lanes is on the order of the lock hold time, so it implements a
884  * static lane = cpu % num_lanes mapping.
885  *
886  * In the case of a BTT instance on top of a BLK namespace a lane may be
887  * acquired recursively.  We lock on the first instance.
888  *
889  * In the case of a BTT instance on top of PMEM, we only acquire a lane
890  * for the BTT metadata updates.
891  */
892 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
893 {
894 	unsigned int cpu, lane;
895 
896 	cpu = get_cpu();
897 	if (nd_region->num_lanes < nr_cpu_ids) {
898 		struct nd_percpu_lane *ndl_lock, *ndl_count;
899 
900 		lane = cpu % nd_region->num_lanes;
901 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
902 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
903 		if (ndl_count->count++ == 0)
904 			spin_lock(&ndl_lock->lock);
905 	} else
906 		lane = cpu;
907 
908 	return lane;
909 }
910 EXPORT_SYMBOL(nd_region_acquire_lane);
911 
912 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
913 {
914 	if (nd_region->num_lanes < nr_cpu_ids) {
915 		unsigned int cpu = get_cpu();
916 		struct nd_percpu_lane *ndl_lock, *ndl_count;
917 
918 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
919 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
920 		if (--ndl_count->count == 0)
921 			spin_unlock(&ndl_lock->lock);
922 		put_cpu();
923 	}
924 	put_cpu();
925 }
926 EXPORT_SYMBOL(nd_region_release_lane);
927 
928 /*
929  * PowerPC requires this alignment for memremap_pages(). All other archs
930  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
931  */
932 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
933 
934 static unsigned long default_align(struct nd_region *nd_region)
935 {
936 	unsigned long align;
937 	u32 remainder;
938 	int mappings;
939 
940 	align = MEMREMAP_COMPAT_ALIGN_MAX;
941 	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
942 		align = PAGE_SIZE;
943 
944 	mappings = max_t(u16, 1, nd_region->ndr_mappings);
945 	div_u64_rem(align, mappings, &remainder);
946 	if (remainder)
947 		align *= mappings;
948 
949 	return align;
950 }
951 
952 static struct lock_class_key nvdimm_region_key;
953 
954 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
955 		struct nd_region_desc *ndr_desc,
956 		const struct device_type *dev_type, const char *caller)
957 {
958 	struct nd_region *nd_region;
959 	struct device *dev;
960 	unsigned int i;
961 	int ro = 0;
962 
963 	for (i = 0; i < ndr_desc->num_mappings; i++) {
964 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
965 		struct nvdimm *nvdimm = mapping->nvdimm;
966 
967 		if ((mapping->start | mapping->size) % PAGE_SIZE) {
968 			dev_err(&nvdimm_bus->dev,
969 				"%s: %s mapping%d is not %ld aligned\n",
970 				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
971 			return NULL;
972 		}
973 
974 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
975 			ro = 1;
976 
977 	}
978 
979 	nd_region =
980 		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
981 			GFP_KERNEL);
982 
983 	if (!nd_region)
984 		return NULL;
985 	nd_region->id = memregion_alloc(GFP_KERNEL);
986 	if (nd_region->id < 0)
987 		goto err_id;
988 
989 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
990 	if (!nd_region->lane)
991 		goto err_percpu;
992 
993         for (i = 0; i < nr_cpu_ids; i++) {
994 		struct nd_percpu_lane *ndl;
995 
996 		ndl = per_cpu_ptr(nd_region->lane, i);
997 		spin_lock_init(&ndl->lock);
998 		ndl->count = 0;
999 	}
1000 
1001 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1002 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1003 		struct nvdimm *nvdimm = mapping->nvdimm;
1004 
1005 		nd_region->mapping[i].nvdimm = nvdimm;
1006 		nd_region->mapping[i].start = mapping->start;
1007 		nd_region->mapping[i].size = mapping->size;
1008 		nd_region->mapping[i].position = mapping->position;
1009 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1010 		mutex_init(&nd_region->mapping[i].lock);
1011 
1012 		get_device(&nvdimm->dev);
1013 	}
1014 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1015 	nd_region->provider_data = ndr_desc->provider_data;
1016 	nd_region->nd_set = ndr_desc->nd_set;
1017 	nd_region->num_lanes = ndr_desc->num_lanes;
1018 	nd_region->flags = ndr_desc->flags;
1019 	nd_region->ro = ro;
1020 	nd_region->numa_node = ndr_desc->numa_node;
1021 	nd_region->target_node = ndr_desc->target_node;
1022 	ida_init(&nd_region->ns_ida);
1023 	ida_init(&nd_region->btt_ida);
1024 	ida_init(&nd_region->pfn_ida);
1025 	ida_init(&nd_region->dax_ida);
1026 	dev = &nd_region->dev;
1027 	dev_set_name(dev, "region%d", nd_region->id);
1028 	dev->parent = &nvdimm_bus->dev;
1029 	dev->type = dev_type;
1030 	dev->groups = ndr_desc->attr_groups;
1031 	dev->of_node = ndr_desc->of_node;
1032 	nd_region->ndr_size = resource_size(ndr_desc->res);
1033 	nd_region->ndr_start = ndr_desc->res->start;
1034 	nd_region->align = default_align(nd_region);
1035 	if (ndr_desc->flush)
1036 		nd_region->flush = ndr_desc->flush;
1037 	else
1038 		nd_region->flush = NULL;
1039 
1040 	device_initialize(dev);
1041 	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1042 	nd_device_register(dev);
1043 
1044 	return nd_region;
1045 
1046  err_percpu:
1047 	memregion_free(nd_region->id);
1048  err_id:
1049 	kfree(nd_region);
1050 	return NULL;
1051 }
1052 
1053 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1054 		struct nd_region_desc *ndr_desc)
1055 {
1056 	ndr_desc->num_lanes = ND_MAX_LANES;
1057 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1058 			__func__);
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1061 
1062 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1063 		struct nd_region_desc *ndr_desc)
1064 {
1065 	ndr_desc->num_lanes = ND_MAX_LANES;
1066 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1067 			__func__);
1068 }
1069 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1070 
1071 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1072 {
1073 	int rc = 0;
1074 
1075 	if (!nd_region->flush)
1076 		rc = generic_nvdimm_flush(nd_region);
1077 	else {
1078 		if (nd_region->flush(nd_region, bio))
1079 			rc = -EIO;
1080 	}
1081 
1082 	return rc;
1083 }
1084 /**
1085  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1086  * @nd_region: interleaved pmem region
1087  */
1088 int generic_nvdimm_flush(struct nd_region *nd_region)
1089 {
1090 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1091 	int i, idx;
1092 
1093 	/*
1094 	 * Try to encourage some diversity in flush hint addresses
1095 	 * across cpus assuming a limited number of flush hints.
1096 	 */
1097 	idx = this_cpu_read(flush_idx);
1098 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1099 
1100 	/*
1101 	 * The pmem_wmb() is needed to 'sfence' all
1102 	 * previous writes such that they are architecturally visible for
1103 	 * the platform buffer flush. Note that we've already arranged for pmem
1104 	 * writes to avoid the cache via memcpy_flushcache().  The final
1105 	 * wmb() ensures ordering for the NVDIMM flush write.
1106 	 */
1107 	pmem_wmb();
1108 	for (i = 0; i < nd_region->ndr_mappings; i++)
1109 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1110 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1111 	wmb();
1112 
1113 	return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(nvdimm_flush);
1116 
1117 /**
1118  * nvdimm_has_flush - determine write flushing requirements
1119  * @nd_region: interleaved pmem region
1120  *
1121  * Returns 1 if writes require flushing
1122  * Returns 0 if writes do not require flushing
1123  * Returns -ENXIO if flushing capability can not be determined
1124  */
1125 int nvdimm_has_flush(struct nd_region *nd_region)
1126 {
1127 	int i;
1128 
1129 	/* no nvdimm or pmem api == flushing capability unknown */
1130 	if (nd_region->ndr_mappings == 0
1131 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1132 		return -ENXIO;
1133 
1134 	/* Test if an explicit flush function is defined */
1135 	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1136 		return 1;
1137 
1138 	/* Test if any flush hints for the region are available */
1139 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1140 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1141 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1142 
1143 		/* flush hints present / available */
1144 		if (nvdimm->num_flush)
1145 			return 1;
1146 	}
1147 
1148 	/*
1149 	 * The platform defines dimm devices without hints nor explicit flush,
1150 	 * assume platform persistence mechanism like ADR
1151 	 */
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1155 
1156 int nvdimm_has_cache(struct nd_region *nd_region)
1157 {
1158 	return is_nd_pmem(&nd_region->dev) &&
1159 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1160 }
1161 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1162 
1163 bool is_nvdimm_sync(struct nd_region *nd_region)
1164 {
1165 	if (is_nd_volatile(&nd_region->dev))
1166 		return true;
1167 
1168 	return is_nd_pmem(&nd_region->dev) &&
1169 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1170 }
1171 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1172 
1173 struct conflict_context {
1174 	struct nd_region *nd_region;
1175 	resource_size_t start, size;
1176 };
1177 
1178 static int region_conflict(struct device *dev, void *data)
1179 {
1180 	struct nd_region *nd_region;
1181 	struct conflict_context *ctx = data;
1182 	resource_size_t res_end, region_end, region_start;
1183 
1184 	if (!is_memory(dev))
1185 		return 0;
1186 
1187 	nd_region = to_nd_region(dev);
1188 	if (nd_region == ctx->nd_region)
1189 		return 0;
1190 
1191 	res_end = ctx->start + ctx->size;
1192 	region_start = nd_region->ndr_start;
1193 	region_end = region_start + nd_region->ndr_size;
1194 	if (ctx->start >= region_start && ctx->start < region_end)
1195 		return -EBUSY;
1196 	if (res_end > region_start && res_end <= region_end)
1197 		return -EBUSY;
1198 	return 0;
1199 }
1200 
1201 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1202 		resource_size_t size)
1203 {
1204 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1205 	struct conflict_context ctx = {
1206 		.nd_region = nd_region,
1207 		.start = start,
1208 		.size = size,
1209 	};
1210 
1211 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1212 }
1213