xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 4f89e4b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/highmem.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/hash.h>
10 #include <linux/sort.h>
11 #include <linux/io.h>
12 #include <linux/nd.h>
13 #include "nd-core.h"
14 #include "nd.h"
15 
16 /*
17  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
18  * irrelevant.
19  */
20 #include <linux/io-64-nonatomic-hi-lo.h>
21 
22 static DEFINE_IDA(region_ida);
23 static DEFINE_PER_CPU(int, flush_idx);
24 
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 		struct nd_region_data *ndrd)
27 {
28 	int i, j;
29 
30 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 		struct resource *res = &nvdimm->flush_wpq[i];
34 		unsigned long pfn = PHYS_PFN(res->start);
35 		void __iomem *flush_page;
36 
37 		/* check if flush hints share a page */
38 		for (j = 0; j < i; j++) {
39 			struct resource *res_j = &nvdimm->flush_wpq[j];
40 			unsigned long pfn_j = PHYS_PFN(res_j->start);
41 
42 			if (pfn == pfn_j)
43 				break;
44 		}
45 
46 		if (j < i)
47 			flush_page = (void __iomem *) ((unsigned long)
48 					ndrd_get_flush_wpq(ndrd, dimm, j)
49 					& PAGE_MASK);
50 		else
51 			flush_page = devm_nvdimm_ioremap(dev,
52 					PFN_PHYS(pfn), PAGE_SIZE);
53 		if (!flush_page)
54 			return -ENXIO;
55 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 				+ (res->start & ~PAGE_MASK));
57 	}
58 
59 	return 0;
60 }
61 
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 	int i, j, num_flush = 0;
65 	struct nd_region_data *ndrd;
66 	struct device *dev = &nd_region->dev;
67 	size_t flush_data_size = sizeof(void *);
68 
69 	nvdimm_bus_lock(&nd_region->dev);
70 	for (i = 0; i < nd_region->ndr_mappings; i++) {
71 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
73 
74 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 			nvdimm_bus_unlock(&nd_region->dev);
76 			return -EBUSY;
77 		}
78 
79 		/* at least one null hint slot per-dimm for the "no-hint" case */
80 		flush_data_size += sizeof(void *);
81 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	if (!num_flush)
94 		return 0;
95 
96 	ndrd->hints_shift = ilog2(num_flush);
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	/*
107 	 * Clear out entries that are duplicates. This should prevent the
108 	 * extra flushings.
109 	 */
110 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 		/* ignore if NULL already */
112 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 			continue;
114 
115 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 			    ndrd_get_flush_wpq(ndrd, j, 0))
118 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 	}
120 
121 	return 0;
122 }
123 
124 static void nd_region_release(struct device *dev)
125 {
126 	struct nd_region *nd_region = to_nd_region(dev);
127 	u16 i;
128 
129 	for (i = 0; i < nd_region->ndr_mappings; i++) {
130 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
132 
133 		put_device(&nvdimm->dev);
134 	}
135 	free_percpu(nd_region->lane);
136 	ida_simple_remove(&region_ida, nd_region->id);
137 	if (is_nd_blk(dev))
138 		kfree(to_nd_blk_region(dev));
139 	else
140 		kfree(nd_region);
141 }
142 
143 static struct device_type nd_blk_device_type = {
144 	.name = "nd_blk",
145 	.release = nd_region_release,
146 };
147 
148 static struct device_type nd_pmem_device_type = {
149 	.name = "nd_pmem",
150 	.release = nd_region_release,
151 };
152 
153 static struct device_type nd_volatile_device_type = {
154 	.name = "nd_volatile",
155 	.release = nd_region_release,
156 };
157 
158 bool is_nd_pmem(struct device *dev)
159 {
160 	return dev ? dev->type == &nd_pmem_device_type : false;
161 }
162 
163 bool is_nd_blk(struct device *dev)
164 {
165 	return dev ? dev->type == &nd_blk_device_type : false;
166 }
167 
168 bool is_nd_volatile(struct device *dev)
169 {
170 	return dev ? dev->type == &nd_volatile_device_type : false;
171 }
172 
173 struct nd_region *to_nd_region(struct device *dev)
174 {
175 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176 
177 	WARN_ON(dev->type->release != nd_region_release);
178 	return nd_region;
179 }
180 EXPORT_SYMBOL_GPL(to_nd_region);
181 
182 struct device *nd_region_dev(struct nd_region *nd_region)
183 {
184 	if (!nd_region)
185 		return NULL;
186 	return &nd_region->dev;
187 }
188 EXPORT_SYMBOL_GPL(nd_region_dev);
189 
190 struct nd_blk_region *to_nd_blk_region(struct device *dev)
191 {
192 	struct nd_region *nd_region = to_nd_region(dev);
193 
194 	WARN_ON(!is_nd_blk(dev));
195 	return container_of(nd_region, struct nd_blk_region, nd_region);
196 }
197 EXPORT_SYMBOL_GPL(to_nd_blk_region);
198 
199 void *nd_region_provider_data(struct nd_region *nd_region)
200 {
201 	return nd_region->provider_data;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_provider_data);
204 
205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
206 {
207 	return ndbr->blk_provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
210 
211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
212 {
213 	ndbr->blk_provider_data = data;
214 }
215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
216 
217 /**
218  * nd_region_to_nstype() - region to an integer namespace type
219  * @nd_region: region-device to interrogate
220  *
221  * This is the 'nstype' attribute of a region as well, an input to the
222  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
223  * namespace devices with namespace drivers.
224  */
225 int nd_region_to_nstype(struct nd_region *nd_region)
226 {
227 	if (is_memory(&nd_region->dev)) {
228 		u16 i, alias;
229 
230 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
231 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
232 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
233 
234 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
235 				alias++;
236 		}
237 		if (alias)
238 			return ND_DEVICE_NAMESPACE_PMEM;
239 		else
240 			return ND_DEVICE_NAMESPACE_IO;
241 	} else if (is_nd_blk(&nd_region->dev)) {
242 		return ND_DEVICE_NAMESPACE_BLK;
243 	}
244 
245 	return 0;
246 }
247 EXPORT_SYMBOL(nd_region_to_nstype);
248 
249 static ssize_t size_show(struct device *dev,
250 		struct device_attribute *attr, char *buf)
251 {
252 	struct nd_region *nd_region = to_nd_region(dev);
253 	unsigned long long size = 0;
254 
255 	if (is_memory(dev)) {
256 		size = nd_region->ndr_size;
257 	} else if (nd_region->ndr_mappings == 1) {
258 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
259 
260 		size = nd_mapping->size;
261 	}
262 
263 	return sprintf(buf, "%llu\n", size);
264 }
265 static DEVICE_ATTR_RO(size);
266 
267 static ssize_t deep_flush_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	/*
273 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
274 	 * not visible.
275 	 */
276 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
277 }
278 
279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
280 		const char *buf, size_t len)
281 {
282 	bool flush;
283 	int rc = strtobool(buf, &flush);
284 	struct nd_region *nd_region = to_nd_region(dev);
285 
286 	if (rc)
287 		return rc;
288 	if (!flush)
289 		return -EINVAL;
290 	rc = nvdimm_flush(nd_region, NULL);
291 	if (rc)
292 		return rc;
293 
294 	return len;
295 }
296 static DEVICE_ATTR_RW(deep_flush);
297 
298 static ssize_t mappings_show(struct device *dev,
299 		struct device_attribute *attr, char *buf)
300 {
301 	struct nd_region *nd_region = to_nd_region(dev);
302 
303 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
304 }
305 static DEVICE_ATTR_RO(mappings);
306 
307 static ssize_t nstype_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct nd_region *nd_region = to_nd_region(dev);
311 
312 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
313 }
314 static DEVICE_ATTR_RO(nstype);
315 
316 static ssize_t set_cookie_show(struct device *dev,
317 		struct device_attribute *attr, char *buf)
318 {
319 	struct nd_region *nd_region = to_nd_region(dev);
320 	struct nd_interleave_set *nd_set = nd_region->nd_set;
321 	ssize_t rc = 0;
322 
323 	if (is_memory(dev) && nd_set)
324 		/* pass, should be precluded by region_visible */;
325 	else
326 		return -ENXIO;
327 
328 	/*
329 	 * The cookie to show depends on which specification of the
330 	 * labels we are using. If there are not labels then default to
331 	 * the v1.1 namespace label cookie definition. To read all this
332 	 * data we need to wait for probing to settle.
333 	 */
334 	device_lock(dev);
335 	nvdimm_bus_lock(dev);
336 	wait_nvdimm_bus_probe_idle(dev);
337 	if (nd_region->ndr_mappings) {
338 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
339 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
340 
341 		if (ndd) {
342 			struct nd_namespace_index *nsindex;
343 
344 			nsindex = to_namespace_index(ndd, ndd->ns_current);
345 			rc = sprintf(buf, "%#llx\n",
346 					nd_region_interleave_set_cookie(nd_region,
347 						nsindex));
348 		}
349 	}
350 	nvdimm_bus_unlock(dev);
351 	device_unlock(dev);
352 
353 	if (rc)
354 		return rc;
355 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
356 }
357 static DEVICE_ATTR_RO(set_cookie);
358 
359 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
360 {
361 	resource_size_t blk_max_overlap = 0, available, overlap;
362 	int i;
363 
364 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
365 
366  retry:
367 	available = 0;
368 	overlap = blk_max_overlap;
369 	for (i = 0; i < nd_region->ndr_mappings; i++) {
370 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
371 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
372 
373 		/* if a dimm is disabled the available capacity is zero */
374 		if (!ndd)
375 			return 0;
376 
377 		if (is_memory(&nd_region->dev)) {
378 			available += nd_pmem_available_dpa(nd_region,
379 					nd_mapping, &overlap);
380 			if (overlap > blk_max_overlap) {
381 				blk_max_overlap = overlap;
382 				goto retry;
383 			}
384 		} else if (is_nd_blk(&nd_region->dev))
385 			available += nd_blk_available_dpa(nd_region);
386 	}
387 
388 	return available;
389 }
390 
391 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
392 {
393 	resource_size_t available = 0;
394 	int i;
395 
396 	if (is_memory(&nd_region->dev))
397 		available = PHYS_ADDR_MAX;
398 
399 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
400 	for (i = 0; i < nd_region->ndr_mappings; i++) {
401 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
402 
403 		if (is_memory(&nd_region->dev))
404 			available = min(available,
405 					nd_pmem_max_contiguous_dpa(nd_region,
406 								   nd_mapping));
407 		else if (is_nd_blk(&nd_region->dev))
408 			available += nd_blk_available_dpa(nd_region);
409 	}
410 	if (is_memory(&nd_region->dev))
411 		return available * nd_region->ndr_mappings;
412 	return available;
413 }
414 
415 static ssize_t available_size_show(struct device *dev,
416 		struct device_attribute *attr, char *buf)
417 {
418 	struct nd_region *nd_region = to_nd_region(dev);
419 	unsigned long long available = 0;
420 
421 	/*
422 	 * Flush in-flight updates and grab a snapshot of the available
423 	 * size.  Of course, this value is potentially invalidated the
424 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
425 	 * problem to not race itself.
426 	 */
427 	nvdimm_bus_lock(dev);
428 	wait_nvdimm_bus_probe_idle(dev);
429 	available = nd_region_available_dpa(nd_region);
430 	nvdimm_bus_unlock(dev);
431 
432 	return sprintf(buf, "%llu\n", available);
433 }
434 static DEVICE_ATTR_RO(available_size);
435 
436 static ssize_t max_available_extent_show(struct device *dev,
437 		struct device_attribute *attr, char *buf)
438 {
439 	struct nd_region *nd_region = to_nd_region(dev);
440 	unsigned long long available = 0;
441 
442 	nvdimm_bus_lock(dev);
443 	wait_nvdimm_bus_probe_idle(dev);
444 	available = nd_region_allocatable_dpa(nd_region);
445 	nvdimm_bus_unlock(dev);
446 
447 	return sprintf(buf, "%llu\n", available);
448 }
449 static DEVICE_ATTR_RO(max_available_extent);
450 
451 static ssize_t init_namespaces_show(struct device *dev,
452 		struct device_attribute *attr, char *buf)
453 {
454 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
455 	ssize_t rc;
456 
457 	nvdimm_bus_lock(dev);
458 	if (ndrd)
459 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
460 	else
461 		rc = -ENXIO;
462 	nvdimm_bus_unlock(dev);
463 
464 	return rc;
465 }
466 static DEVICE_ATTR_RO(init_namespaces);
467 
468 static ssize_t namespace_seed_show(struct device *dev,
469 		struct device_attribute *attr, char *buf)
470 {
471 	struct nd_region *nd_region = to_nd_region(dev);
472 	ssize_t rc;
473 
474 	nvdimm_bus_lock(dev);
475 	if (nd_region->ns_seed)
476 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
477 	else
478 		rc = sprintf(buf, "\n");
479 	nvdimm_bus_unlock(dev);
480 	return rc;
481 }
482 static DEVICE_ATTR_RO(namespace_seed);
483 
484 static ssize_t btt_seed_show(struct device *dev,
485 		struct device_attribute *attr, char *buf)
486 {
487 	struct nd_region *nd_region = to_nd_region(dev);
488 	ssize_t rc;
489 
490 	nvdimm_bus_lock(dev);
491 	if (nd_region->btt_seed)
492 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
493 	else
494 		rc = sprintf(buf, "\n");
495 	nvdimm_bus_unlock(dev);
496 
497 	return rc;
498 }
499 static DEVICE_ATTR_RO(btt_seed);
500 
501 static ssize_t pfn_seed_show(struct device *dev,
502 		struct device_attribute *attr, char *buf)
503 {
504 	struct nd_region *nd_region = to_nd_region(dev);
505 	ssize_t rc;
506 
507 	nvdimm_bus_lock(dev);
508 	if (nd_region->pfn_seed)
509 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
510 	else
511 		rc = sprintf(buf, "\n");
512 	nvdimm_bus_unlock(dev);
513 
514 	return rc;
515 }
516 static DEVICE_ATTR_RO(pfn_seed);
517 
518 static ssize_t dax_seed_show(struct device *dev,
519 		struct device_attribute *attr, char *buf)
520 {
521 	struct nd_region *nd_region = to_nd_region(dev);
522 	ssize_t rc;
523 
524 	nvdimm_bus_lock(dev);
525 	if (nd_region->dax_seed)
526 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
527 	else
528 		rc = sprintf(buf, "\n");
529 	nvdimm_bus_unlock(dev);
530 
531 	return rc;
532 }
533 static DEVICE_ATTR_RO(dax_seed);
534 
535 static ssize_t read_only_show(struct device *dev,
536 		struct device_attribute *attr, char *buf)
537 {
538 	struct nd_region *nd_region = to_nd_region(dev);
539 
540 	return sprintf(buf, "%d\n", nd_region->ro);
541 }
542 
543 static ssize_t read_only_store(struct device *dev,
544 		struct device_attribute *attr, const char *buf, size_t len)
545 {
546 	bool ro;
547 	int rc = strtobool(buf, &ro);
548 	struct nd_region *nd_region = to_nd_region(dev);
549 
550 	if (rc)
551 		return rc;
552 
553 	nd_region->ro = ro;
554 	return len;
555 }
556 static DEVICE_ATTR_RW(read_only);
557 
558 static ssize_t region_badblocks_show(struct device *dev,
559 		struct device_attribute *attr, char *buf)
560 {
561 	struct nd_region *nd_region = to_nd_region(dev);
562 	ssize_t rc;
563 
564 	device_lock(dev);
565 	if (dev->driver)
566 		rc = badblocks_show(&nd_region->bb, buf, 0);
567 	else
568 		rc = -ENXIO;
569 	device_unlock(dev);
570 
571 	return rc;
572 }
573 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
574 
575 static ssize_t resource_show(struct device *dev,
576 		struct device_attribute *attr, char *buf)
577 {
578 	struct nd_region *nd_region = to_nd_region(dev);
579 
580 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
581 }
582 static DEVICE_ATTR_RO(resource);
583 
584 static ssize_t persistence_domain_show(struct device *dev,
585 		struct device_attribute *attr, char *buf)
586 {
587 	struct nd_region *nd_region = to_nd_region(dev);
588 
589 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
590 		return sprintf(buf, "cpu_cache\n");
591 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
592 		return sprintf(buf, "memory_controller\n");
593 	else
594 		return sprintf(buf, "\n");
595 }
596 static DEVICE_ATTR_RO(persistence_domain);
597 
598 static struct attribute *nd_region_attributes[] = {
599 	&dev_attr_size.attr,
600 	&dev_attr_nstype.attr,
601 	&dev_attr_mappings.attr,
602 	&dev_attr_btt_seed.attr,
603 	&dev_attr_pfn_seed.attr,
604 	&dev_attr_dax_seed.attr,
605 	&dev_attr_deep_flush.attr,
606 	&dev_attr_read_only.attr,
607 	&dev_attr_set_cookie.attr,
608 	&dev_attr_available_size.attr,
609 	&dev_attr_max_available_extent.attr,
610 	&dev_attr_namespace_seed.attr,
611 	&dev_attr_init_namespaces.attr,
612 	&dev_attr_badblocks.attr,
613 	&dev_attr_resource.attr,
614 	&dev_attr_persistence_domain.attr,
615 	NULL,
616 };
617 
618 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
619 {
620 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
621 	struct nd_region *nd_region = to_nd_region(dev);
622 	struct nd_interleave_set *nd_set = nd_region->nd_set;
623 	int type = nd_region_to_nstype(nd_region);
624 
625 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
626 		return 0;
627 
628 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
629 		return 0;
630 
631 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
632 		return 0;
633 
634 	if (a == &dev_attr_resource.attr) {
635 		if (is_nd_pmem(dev))
636 			return 0400;
637 		else
638 			return 0;
639 	}
640 
641 	if (a == &dev_attr_deep_flush.attr) {
642 		int has_flush = nvdimm_has_flush(nd_region);
643 
644 		if (has_flush == 1)
645 			return a->mode;
646 		else if (has_flush == 0)
647 			return 0444;
648 		else
649 			return 0;
650 	}
651 
652 	if (a == &dev_attr_persistence_domain.attr) {
653 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
654 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
655 			return 0;
656 		return a->mode;
657 	}
658 
659 	if (a != &dev_attr_set_cookie.attr
660 			&& a != &dev_attr_available_size.attr)
661 		return a->mode;
662 
663 	if ((type == ND_DEVICE_NAMESPACE_PMEM
664 				|| type == ND_DEVICE_NAMESPACE_BLK)
665 			&& a == &dev_attr_available_size.attr)
666 		return a->mode;
667 	else if (is_memory(dev) && nd_set)
668 		return a->mode;
669 
670 	return 0;
671 }
672 
673 struct attribute_group nd_region_attribute_group = {
674 	.attrs = nd_region_attributes,
675 	.is_visible = region_visible,
676 };
677 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
678 
679 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
680 		struct nd_namespace_index *nsindex)
681 {
682 	struct nd_interleave_set *nd_set = nd_region->nd_set;
683 
684 	if (!nd_set)
685 		return 0;
686 
687 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
688 			&& __le16_to_cpu(nsindex->minor) == 1)
689 		return nd_set->cookie1;
690 	return nd_set->cookie2;
691 }
692 
693 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
694 {
695 	struct nd_interleave_set *nd_set = nd_region->nd_set;
696 
697 	if (nd_set)
698 		return nd_set->altcookie;
699 	return 0;
700 }
701 
702 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
703 {
704 	struct nd_label_ent *label_ent, *e;
705 
706 	lockdep_assert_held(&nd_mapping->lock);
707 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
708 		list_del(&label_ent->list);
709 		kfree(label_ent);
710 	}
711 }
712 
713 /*
714  * Upon successful probe/remove, take/release a reference on the
715  * associated interleave set (if present), and plant new btt + namespace
716  * seeds.  Also, on the removal of a BLK region, notify the provider to
717  * disable the region.
718  */
719 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
720 		struct device *dev, bool probe)
721 {
722 	struct nd_region *nd_region;
723 
724 	if (!probe && is_nd_region(dev)) {
725 		int i;
726 
727 		nd_region = to_nd_region(dev);
728 		for (i = 0; i < nd_region->ndr_mappings; i++) {
729 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
730 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
731 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
732 
733 			mutex_lock(&nd_mapping->lock);
734 			nd_mapping_free_labels(nd_mapping);
735 			mutex_unlock(&nd_mapping->lock);
736 
737 			put_ndd(ndd);
738 			nd_mapping->ndd = NULL;
739 			if (ndd)
740 				atomic_dec(&nvdimm->busy);
741 		}
742 	}
743 	if (dev->parent && is_nd_region(dev->parent) && probe) {
744 		nd_region = to_nd_region(dev->parent);
745 		nvdimm_bus_lock(dev);
746 		if (nd_region->ns_seed == dev)
747 			nd_region_create_ns_seed(nd_region);
748 		nvdimm_bus_unlock(dev);
749 	}
750 	if (is_nd_btt(dev) && probe) {
751 		struct nd_btt *nd_btt = to_nd_btt(dev);
752 
753 		nd_region = to_nd_region(dev->parent);
754 		nvdimm_bus_lock(dev);
755 		if (nd_region->btt_seed == dev)
756 			nd_region_create_btt_seed(nd_region);
757 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
758 			nd_region_create_ns_seed(nd_region);
759 		nvdimm_bus_unlock(dev);
760 	}
761 	if (is_nd_pfn(dev) && probe) {
762 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
763 
764 		nd_region = to_nd_region(dev->parent);
765 		nvdimm_bus_lock(dev);
766 		if (nd_region->pfn_seed == dev)
767 			nd_region_create_pfn_seed(nd_region);
768 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
769 			nd_region_create_ns_seed(nd_region);
770 		nvdimm_bus_unlock(dev);
771 	}
772 	if (is_nd_dax(dev) && probe) {
773 		struct nd_dax *nd_dax = to_nd_dax(dev);
774 
775 		nd_region = to_nd_region(dev->parent);
776 		nvdimm_bus_lock(dev);
777 		if (nd_region->dax_seed == dev)
778 			nd_region_create_dax_seed(nd_region);
779 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
780 			nd_region_create_ns_seed(nd_region);
781 		nvdimm_bus_unlock(dev);
782 	}
783 }
784 
785 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
786 {
787 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
788 }
789 
790 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
791 {
792 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
793 }
794 
795 static ssize_t mappingN(struct device *dev, char *buf, int n)
796 {
797 	struct nd_region *nd_region = to_nd_region(dev);
798 	struct nd_mapping *nd_mapping;
799 	struct nvdimm *nvdimm;
800 
801 	if (n >= nd_region->ndr_mappings)
802 		return -ENXIO;
803 	nd_mapping = &nd_region->mapping[n];
804 	nvdimm = nd_mapping->nvdimm;
805 
806 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
807 			nd_mapping->start, nd_mapping->size,
808 			nd_mapping->position);
809 }
810 
811 #define REGION_MAPPING(idx) \
812 static ssize_t mapping##idx##_show(struct device *dev,		\
813 		struct device_attribute *attr, char *buf)	\
814 {								\
815 	return mappingN(dev, buf, idx);				\
816 }								\
817 static DEVICE_ATTR_RO(mapping##idx)
818 
819 /*
820  * 32 should be enough for a while, even in the presence of socket
821  * interleave a 32-way interleave set is a degenerate case.
822  */
823 REGION_MAPPING(0);
824 REGION_MAPPING(1);
825 REGION_MAPPING(2);
826 REGION_MAPPING(3);
827 REGION_MAPPING(4);
828 REGION_MAPPING(5);
829 REGION_MAPPING(6);
830 REGION_MAPPING(7);
831 REGION_MAPPING(8);
832 REGION_MAPPING(9);
833 REGION_MAPPING(10);
834 REGION_MAPPING(11);
835 REGION_MAPPING(12);
836 REGION_MAPPING(13);
837 REGION_MAPPING(14);
838 REGION_MAPPING(15);
839 REGION_MAPPING(16);
840 REGION_MAPPING(17);
841 REGION_MAPPING(18);
842 REGION_MAPPING(19);
843 REGION_MAPPING(20);
844 REGION_MAPPING(21);
845 REGION_MAPPING(22);
846 REGION_MAPPING(23);
847 REGION_MAPPING(24);
848 REGION_MAPPING(25);
849 REGION_MAPPING(26);
850 REGION_MAPPING(27);
851 REGION_MAPPING(28);
852 REGION_MAPPING(29);
853 REGION_MAPPING(30);
854 REGION_MAPPING(31);
855 
856 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
857 {
858 	struct device *dev = container_of(kobj, struct device, kobj);
859 	struct nd_region *nd_region = to_nd_region(dev);
860 
861 	if (n < nd_region->ndr_mappings)
862 		return a->mode;
863 	return 0;
864 }
865 
866 static struct attribute *mapping_attributes[] = {
867 	&dev_attr_mapping0.attr,
868 	&dev_attr_mapping1.attr,
869 	&dev_attr_mapping2.attr,
870 	&dev_attr_mapping3.attr,
871 	&dev_attr_mapping4.attr,
872 	&dev_attr_mapping5.attr,
873 	&dev_attr_mapping6.attr,
874 	&dev_attr_mapping7.attr,
875 	&dev_attr_mapping8.attr,
876 	&dev_attr_mapping9.attr,
877 	&dev_attr_mapping10.attr,
878 	&dev_attr_mapping11.attr,
879 	&dev_attr_mapping12.attr,
880 	&dev_attr_mapping13.attr,
881 	&dev_attr_mapping14.attr,
882 	&dev_attr_mapping15.attr,
883 	&dev_attr_mapping16.attr,
884 	&dev_attr_mapping17.attr,
885 	&dev_attr_mapping18.attr,
886 	&dev_attr_mapping19.attr,
887 	&dev_attr_mapping20.attr,
888 	&dev_attr_mapping21.attr,
889 	&dev_attr_mapping22.attr,
890 	&dev_attr_mapping23.attr,
891 	&dev_attr_mapping24.attr,
892 	&dev_attr_mapping25.attr,
893 	&dev_attr_mapping26.attr,
894 	&dev_attr_mapping27.attr,
895 	&dev_attr_mapping28.attr,
896 	&dev_attr_mapping29.attr,
897 	&dev_attr_mapping30.attr,
898 	&dev_attr_mapping31.attr,
899 	NULL,
900 };
901 
902 struct attribute_group nd_mapping_attribute_group = {
903 	.is_visible = mapping_visible,
904 	.attrs = mapping_attributes,
905 };
906 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
907 
908 int nd_blk_region_init(struct nd_region *nd_region)
909 {
910 	struct device *dev = &nd_region->dev;
911 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
912 
913 	if (!is_nd_blk(dev))
914 		return 0;
915 
916 	if (nd_region->ndr_mappings < 1) {
917 		dev_dbg(dev, "invalid BLK region\n");
918 		return -ENXIO;
919 	}
920 
921 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
922 }
923 
924 /**
925  * nd_region_acquire_lane - allocate and lock a lane
926  * @nd_region: region id and number of lanes possible
927  *
928  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
929  * We optimize for the common case where there are 256 lanes, one
930  * per-cpu.  For larger systems we need to lock to share lanes.  For now
931  * this implementation assumes the cost of maintaining an allocator for
932  * free lanes is on the order of the lock hold time, so it implements a
933  * static lane = cpu % num_lanes mapping.
934  *
935  * In the case of a BTT instance on top of a BLK namespace a lane may be
936  * acquired recursively.  We lock on the first instance.
937  *
938  * In the case of a BTT instance on top of PMEM, we only acquire a lane
939  * for the BTT metadata updates.
940  */
941 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
942 {
943 	unsigned int cpu, lane;
944 
945 	cpu = get_cpu();
946 	if (nd_region->num_lanes < nr_cpu_ids) {
947 		struct nd_percpu_lane *ndl_lock, *ndl_count;
948 
949 		lane = cpu % nd_region->num_lanes;
950 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
951 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
952 		if (ndl_count->count++ == 0)
953 			spin_lock(&ndl_lock->lock);
954 	} else
955 		lane = cpu;
956 
957 	return lane;
958 }
959 EXPORT_SYMBOL(nd_region_acquire_lane);
960 
961 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
962 {
963 	if (nd_region->num_lanes < nr_cpu_ids) {
964 		unsigned int cpu = get_cpu();
965 		struct nd_percpu_lane *ndl_lock, *ndl_count;
966 
967 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
968 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
969 		if (--ndl_count->count == 0)
970 			spin_unlock(&ndl_lock->lock);
971 		put_cpu();
972 	}
973 	put_cpu();
974 }
975 EXPORT_SYMBOL(nd_region_release_lane);
976 
977 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
978 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
979 		const char *caller)
980 {
981 	struct nd_region *nd_region;
982 	struct device *dev;
983 	void *region_buf;
984 	unsigned int i;
985 	int ro = 0;
986 
987 	for (i = 0; i < ndr_desc->num_mappings; i++) {
988 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
989 		struct nvdimm *nvdimm = mapping->nvdimm;
990 
991 		if ((mapping->start | mapping->size) % SZ_4K) {
992 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
993 					caller, dev_name(&nvdimm->dev), i);
994 
995 			return NULL;
996 		}
997 
998 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
999 			ro = 1;
1000 
1001 		if (test_bit(NDD_NOBLK, &nvdimm->flags)
1002 				&& dev_type == &nd_blk_device_type) {
1003 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1004 					caller, dev_name(&nvdimm->dev), i);
1005 			return NULL;
1006 		}
1007 	}
1008 
1009 	if (dev_type == &nd_blk_device_type) {
1010 		struct nd_blk_region_desc *ndbr_desc;
1011 		struct nd_blk_region *ndbr;
1012 
1013 		ndbr_desc = to_blk_region_desc(ndr_desc);
1014 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1015 				* ndr_desc->num_mappings,
1016 				GFP_KERNEL);
1017 		if (ndbr) {
1018 			nd_region = &ndbr->nd_region;
1019 			ndbr->enable = ndbr_desc->enable;
1020 			ndbr->do_io = ndbr_desc->do_io;
1021 		}
1022 		region_buf = ndbr;
1023 	} else {
1024 		nd_region = kzalloc(sizeof(struct nd_region)
1025 				+ sizeof(struct nd_mapping)
1026 				* ndr_desc->num_mappings,
1027 				GFP_KERNEL);
1028 		region_buf = nd_region;
1029 	}
1030 
1031 	if (!region_buf)
1032 		return NULL;
1033 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1034 	if (nd_region->id < 0)
1035 		goto err_id;
1036 
1037 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1038 	if (!nd_region->lane)
1039 		goto err_percpu;
1040 
1041         for (i = 0; i < nr_cpu_ids; i++) {
1042 		struct nd_percpu_lane *ndl;
1043 
1044 		ndl = per_cpu_ptr(nd_region->lane, i);
1045 		spin_lock_init(&ndl->lock);
1046 		ndl->count = 0;
1047 	}
1048 
1049 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1050 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1051 		struct nvdimm *nvdimm = mapping->nvdimm;
1052 
1053 		nd_region->mapping[i].nvdimm = nvdimm;
1054 		nd_region->mapping[i].start = mapping->start;
1055 		nd_region->mapping[i].size = mapping->size;
1056 		nd_region->mapping[i].position = mapping->position;
1057 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1058 		mutex_init(&nd_region->mapping[i].lock);
1059 
1060 		get_device(&nvdimm->dev);
1061 	}
1062 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1063 	nd_region->provider_data = ndr_desc->provider_data;
1064 	nd_region->nd_set = ndr_desc->nd_set;
1065 	nd_region->num_lanes = ndr_desc->num_lanes;
1066 	nd_region->flags = ndr_desc->flags;
1067 	nd_region->ro = ro;
1068 	nd_region->numa_node = ndr_desc->numa_node;
1069 	nd_region->target_node = ndr_desc->target_node;
1070 	ida_init(&nd_region->ns_ida);
1071 	ida_init(&nd_region->btt_ida);
1072 	ida_init(&nd_region->pfn_ida);
1073 	ida_init(&nd_region->dax_ida);
1074 	dev = &nd_region->dev;
1075 	dev_set_name(dev, "region%d", nd_region->id);
1076 	dev->parent = &nvdimm_bus->dev;
1077 	dev->type = dev_type;
1078 	dev->groups = ndr_desc->attr_groups;
1079 	dev->of_node = ndr_desc->of_node;
1080 	nd_region->ndr_size = resource_size(ndr_desc->res);
1081 	nd_region->ndr_start = ndr_desc->res->start;
1082 	if (ndr_desc->flush)
1083 		nd_region->flush = ndr_desc->flush;
1084 	else
1085 		nd_region->flush = NULL;
1086 
1087 	nd_device_register(dev);
1088 
1089 	return nd_region;
1090 
1091  err_percpu:
1092 	ida_simple_remove(&region_ida, nd_region->id);
1093  err_id:
1094 	kfree(region_buf);
1095 	return NULL;
1096 }
1097 
1098 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1099 		struct nd_region_desc *ndr_desc)
1100 {
1101 	ndr_desc->num_lanes = ND_MAX_LANES;
1102 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1103 			__func__);
1104 }
1105 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1106 
1107 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1108 		struct nd_region_desc *ndr_desc)
1109 {
1110 	if (ndr_desc->num_mappings > 1)
1111 		return NULL;
1112 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1113 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1114 			__func__);
1115 }
1116 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1117 
1118 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1119 		struct nd_region_desc *ndr_desc)
1120 {
1121 	ndr_desc->num_lanes = ND_MAX_LANES;
1122 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1123 			__func__);
1124 }
1125 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1126 
1127 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1128 {
1129 	int rc = 0;
1130 
1131 	if (!nd_region->flush)
1132 		rc = generic_nvdimm_flush(nd_region);
1133 	else {
1134 		if (nd_region->flush(nd_region, bio))
1135 			rc = -EIO;
1136 	}
1137 
1138 	return rc;
1139 }
1140 /**
1141  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1142  * @nd_region: blk or interleaved pmem region
1143  */
1144 int generic_nvdimm_flush(struct nd_region *nd_region)
1145 {
1146 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1147 	int i, idx;
1148 
1149 	/*
1150 	 * Try to encourage some diversity in flush hint addresses
1151 	 * across cpus assuming a limited number of flush hints.
1152 	 */
1153 	idx = this_cpu_read(flush_idx);
1154 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1155 
1156 	/*
1157 	 * The first wmb() is needed to 'sfence' all previous writes
1158 	 * such that they are architecturally visible for the platform
1159 	 * buffer flush.  Note that we've already arranged for pmem
1160 	 * writes to avoid the cache via memcpy_flushcache().  The final
1161 	 * wmb() ensures ordering for the NVDIMM flush write.
1162 	 */
1163 	wmb();
1164 	for (i = 0; i < nd_region->ndr_mappings; i++)
1165 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1166 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1167 	wmb();
1168 
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(nvdimm_flush);
1172 
1173 /**
1174  * nvdimm_has_flush - determine write flushing requirements
1175  * @nd_region: blk or interleaved pmem region
1176  *
1177  * Returns 1 if writes require flushing
1178  * Returns 0 if writes do not require flushing
1179  * Returns -ENXIO if flushing capability can not be determined
1180  */
1181 int nvdimm_has_flush(struct nd_region *nd_region)
1182 {
1183 	int i;
1184 
1185 	/* no nvdimm or pmem api == flushing capability unknown */
1186 	if (nd_region->ndr_mappings == 0
1187 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1188 		return -ENXIO;
1189 
1190 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1191 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1192 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1193 
1194 		/* flush hints present / available */
1195 		if (nvdimm->num_flush)
1196 			return 1;
1197 	}
1198 
1199 	/*
1200 	 * The platform defines dimm devices without hints, assume
1201 	 * platform persistence mechanism like ADR
1202 	 */
1203 	return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1206 
1207 int nvdimm_has_cache(struct nd_region *nd_region)
1208 {
1209 	return is_nd_pmem(&nd_region->dev) &&
1210 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1211 }
1212 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1213 
1214 bool is_nvdimm_sync(struct nd_region *nd_region)
1215 {
1216 	return is_nd_pmem(&nd_region->dev) &&
1217 		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1218 }
1219 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1220 
1221 struct conflict_context {
1222 	struct nd_region *nd_region;
1223 	resource_size_t start, size;
1224 };
1225 
1226 static int region_conflict(struct device *dev, void *data)
1227 {
1228 	struct nd_region *nd_region;
1229 	struct conflict_context *ctx = data;
1230 	resource_size_t res_end, region_end, region_start;
1231 
1232 	if (!is_memory(dev))
1233 		return 0;
1234 
1235 	nd_region = to_nd_region(dev);
1236 	if (nd_region == ctx->nd_region)
1237 		return 0;
1238 
1239 	res_end = ctx->start + ctx->size;
1240 	region_start = nd_region->ndr_start;
1241 	region_end = region_start + nd_region->ndr_size;
1242 	if (ctx->start >= region_start && ctx->start < region_end)
1243 		return -EBUSY;
1244 	if (res_end > region_start && res_end <= region_end)
1245 		return -EBUSY;
1246 	return 0;
1247 }
1248 
1249 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1250 		resource_size_t size)
1251 {
1252 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1253 	struct conflict_context ctx = {
1254 		.nd_region = nd_region,
1255 		.start = start,
1256 		.size = size,
1257 	};
1258 
1259 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1260 }
1261 
1262 void __exit nd_region_devs_exit(void)
1263 {
1264 	ida_destroy(&region_ida);
1265 }
1266