xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 44c462eb)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24 
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33 
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 		struct nd_region_data *ndrd)
36 {
37 	int i, j;
38 
39 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 	for (i = 0; i < nvdimm->num_flush; i++) {
42 		struct resource *res = &nvdimm->flush_wpq[i];
43 		unsigned long pfn = PHYS_PFN(res->start);
44 		void __iomem *flush_page;
45 
46 		/* check if flush hints share a page */
47 		for (j = 0; j < i; j++) {
48 			struct resource *res_j = &nvdimm->flush_wpq[j];
49 			unsigned long pfn_j = PHYS_PFN(res_j->start);
50 
51 			if (pfn == pfn_j)
52 				break;
53 		}
54 
55 		if (j < i)
56 			flush_page = (void __iomem *) ((unsigned long)
57 					ndrd->flush_wpq[dimm][j] & PAGE_MASK);
58 		else
59 			flush_page = devm_nvdimm_ioremap(dev,
60 					PHYS_PFN(pfn), PAGE_SIZE);
61 		if (!flush_page)
62 			return -ENXIO;
63 		ndrd->flush_wpq[dimm][i] = flush_page
64 			+ (res->start & ~PAGE_MASK);
65 	}
66 
67 	return 0;
68 }
69 
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 	int i, num_flush = 0;
73 	struct nd_region_data *ndrd;
74 	struct device *dev = &nd_region->dev;
75 	size_t flush_data_size = sizeof(void *);
76 
77 	nvdimm_bus_lock(&nd_region->dev);
78 	for (i = 0; i < nd_region->ndr_mappings; i++) {
79 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
81 
82 		/* at least one null hint slot per-dimm for the "no-hint" case */
83 		flush_data_size += sizeof(void *);
84 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85 		if (!nvdimm->num_flush)
86 			continue;
87 		flush_data_size += nvdimm->num_flush * sizeof(void *);
88 	}
89 	nvdimm_bus_unlock(&nd_region->dev);
90 
91 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92 	if (!ndrd)
93 		return -ENOMEM;
94 	dev_set_drvdata(dev, ndrd);
95 
96 	ndrd->flush_mask = (1 << ilog2(num_flush)) - 1;
97 	for (i = 0; i < nd_region->ndr_mappings; i++) {
98 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101 
102 		if (rc)
103 			return rc;
104 	}
105 
106 	return 0;
107 }
108 
109 static void nd_region_release(struct device *dev)
110 {
111 	struct nd_region *nd_region = to_nd_region(dev);
112 	u16 i;
113 
114 	for (i = 0; i < nd_region->ndr_mappings; i++) {
115 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
116 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
117 
118 		put_device(&nvdimm->dev);
119 	}
120 	free_percpu(nd_region->lane);
121 	ida_simple_remove(&region_ida, nd_region->id);
122 	if (is_nd_blk(dev))
123 		kfree(to_nd_blk_region(dev));
124 	else
125 		kfree(nd_region);
126 }
127 
128 static struct device_type nd_blk_device_type = {
129 	.name = "nd_blk",
130 	.release = nd_region_release,
131 };
132 
133 static struct device_type nd_pmem_device_type = {
134 	.name = "nd_pmem",
135 	.release = nd_region_release,
136 };
137 
138 static struct device_type nd_volatile_device_type = {
139 	.name = "nd_volatile",
140 	.release = nd_region_release,
141 };
142 
143 bool is_nd_pmem(struct device *dev)
144 {
145 	return dev ? dev->type == &nd_pmem_device_type : false;
146 }
147 
148 bool is_nd_blk(struct device *dev)
149 {
150 	return dev ? dev->type == &nd_blk_device_type : false;
151 }
152 
153 struct nd_region *to_nd_region(struct device *dev)
154 {
155 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
156 
157 	WARN_ON(dev->type->release != nd_region_release);
158 	return nd_region;
159 }
160 EXPORT_SYMBOL_GPL(to_nd_region);
161 
162 struct nd_blk_region *to_nd_blk_region(struct device *dev)
163 {
164 	struct nd_region *nd_region = to_nd_region(dev);
165 
166 	WARN_ON(!is_nd_blk(dev));
167 	return container_of(nd_region, struct nd_blk_region, nd_region);
168 }
169 EXPORT_SYMBOL_GPL(to_nd_blk_region);
170 
171 void *nd_region_provider_data(struct nd_region *nd_region)
172 {
173 	return nd_region->provider_data;
174 }
175 EXPORT_SYMBOL_GPL(nd_region_provider_data);
176 
177 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
178 {
179 	return ndbr->blk_provider_data;
180 }
181 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
182 
183 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
184 {
185 	ndbr->blk_provider_data = data;
186 }
187 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
188 
189 /**
190  * nd_region_to_nstype() - region to an integer namespace type
191  * @nd_region: region-device to interrogate
192  *
193  * This is the 'nstype' attribute of a region as well, an input to the
194  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
195  * namespace devices with namespace drivers.
196  */
197 int nd_region_to_nstype(struct nd_region *nd_region)
198 {
199 	if (is_nd_pmem(&nd_region->dev)) {
200 		u16 i, alias;
201 
202 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
203 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
204 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
205 
206 			if (nvdimm->flags & NDD_ALIASING)
207 				alias++;
208 		}
209 		if (alias)
210 			return ND_DEVICE_NAMESPACE_PMEM;
211 		else
212 			return ND_DEVICE_NAMESPACE_IO;
213 	} else if (is_nd_blk(&nd_region->dev)) {
214 		return ND_DEVICE_NAMESPACE_BLK;
215 	}
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(nd_region_to_nstype);
220 
221 static ssize_t size_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct nd_region *nd_region = to_nd_region(dev);
225 	unsigned long long size = 0;
226 
227 	if (is_nd_pmem(dev)) {
228 		size = nd_region->ndr_size;
229 	} else if (nd_region->ndr_mappings == 1) {
230 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
231 
232 		size = nd_mapping->size;
233 	}
234 
235 	return sprintf(buf, "%llu\n", size);
236 }
237 static DEVICE_ATTR_RO(size);
238 
239 static ssize_t mappings_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct nd_region *nd_region = to_nd_region(dev);
243 
244 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
245 }
246 static DEVICE_ATTR_RO(mappings);
247 
248 static ssize_t nstype_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct nd_region *nd_region = to_nd_region(dev);
252 
253 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
254 }
255 static DEVICE_ATTR_RO(nstype);
256 
257 static ssize_t set_cookie_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	struct nd_region *nd_region = to_nd_region(dev);
261 	struct nd_interleave_set *nd_set = nd_region->nd_set;
262 
263 	if (is_nd_pmem(dev) && nd_set)
264 		/* pass, should be precluded by region_visible */;
265 	else
266 		return -ENXIO;
267 
268 	return sprintf(buf, "%#llx\n", nd_set->cookie);
269 }
270 static DEVICE_ATTR_RO(set_cookie);
271 
272 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
273 {
274 	resource_size_t blk_max_overlap = 0, available, overlap;
275 	int i;
276 
277 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
278 
279  retry:
280 	available = 0;
281 	overlap = blk_max_overlap;
282 	for (i = 0; i < nd_region->ndr_mappings; i++) {
283 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
284 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
285 
286 		/* if a dimm is disabled the available capacity is zero */
287 		if (!ndd)
288 			return 0;
289 
290 		if (is_nd_pmem(&nd_region->dev)) {
291 			available += nd_pmem_available_dpa(nd_region,
292 					nd_mapping, &overlap);
293 			if (overlap > blk_max_overlap) {
294 				blk_max_overlap = overlap;
295 				goto retry;
296 			}
297 		} else if (is_nd_blk(&nd_region->dev)) {
298 			available += nd_blk_available_dpa(nd_mapping);
299 		}
300 	}
301 
302 	return available;
303 }
304 
305 static ssize_t available_size_show(struct device *dev,
306 		struct device_attribute *attr, char *buf)
307 {
308 	struct nd_region *nd_region = to_nd_region(dev);
309 	unsigned long long available = 0;
310 
311 	/*
312 	 * Flush in-flight updates and grab a snapshot of the available
313 	 * size.  Of course, this value is potentially invalidated the
314 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
315 	 * problem to not race itself.
316 	 */
317 	nvdimm_bus_lock(dev);
318 	wait_nvdimm_bus_probe_idle(dev);
319 	available = nd_region_available_dpa(nd_region);
320 	nvdimm_bus_unlock(dev);
321 
322 	return sprintf(buf, "%llu\n", available);
323 }
324 static DEVICE_ATTR_RO(available_size);
325 
326 static ssize_t init_namespaces_show(struct device *dev,
327 		struct device_attribute *attr, char *buf)
328 {
329 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
330 	ssize_t rc;
331 
332 	nvdimm_bus_lock(dev);
333 	if (ndrd)
334 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
335 	else
336 		rc = -ENXIO;
337 	nvdimm_bus_unlock(dev);
338 
339 	return rc;
340 }
341 static DEVICE_ATTR_RO(init_namespaces);
342 
343 static ssize_t namespace_seed_show(struct device *dev,
344 		struct device_attribute *attr, char *buf)
345 {
346 	struct nd_region *nd_region = to_nd_region(dev);
347 	ssize_t rc;
348 
349 	nvdimm_bus_lock(dev);
350 	if (nd_region->ns_seed)
351 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
352 	else
353 		rc = sprintf(buf, "\n");
354 	nvdimm_bus_unlock(dev);
355 	return rc;
356 }
357 static DEVICE_ATTR_RO(namespace_seed);
358 
359 static ssize_t btt_seed_show(struct device *dev,
360 		struct device_attribute *attr, char *buf)
361 {
362 	struct nd_region *nd_region = to_nd_region(dev);
363 	ssize_t rc;
364 
365 	nvdimm_bus_lock(dev);
366 	if (nd_region->btt_seed)
367 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
368 	else
369 		rc = sprintf(buf, "\n");
370 	nvdimm_bus_unlock(dev);
371 
372 	return rc;
373 }
374 static DEVICE_ATTR_RO(btt_seed);
375 
376 static ssize_t pfn_seed_show(struct device *dev,
377 		struct device_attribute *attr, char *buf)
378 {
379 	struct nd_region *nd_region = to_nd_region(dev);
380 	ssize_t rc;
381 
382 	nvdimm_bus_lock(dev);
383 	if (nd_region->pfn_seed)
384 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
385 	else
386 		rc = sprintf(buf, "\n");
387 	nvdimm_bus_unlock(dev);
388 
389 	return rc;
390 }
391 static DEVICE_ATTR_RO(pfn_seed);
392 
393 static ssize_t dax_seed_show(struct device *dev,
394 		struct device_attribute *attr, char *buf)
395 {
396 	struct nd_region *nd_region = to_nd_region(dev);
397 	ssize_t rc;
398 
399 	nvdimm_bus_lock(dev);
400 	if (nd_region->dax_seed)
401 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
402 	else
403 		rc = sprintf(buf, "\n");
404 	nvdimm_bus_unlock(dev);
405 
406 	return rc;
407 }
408 static DEVICE_ATTR_RO(dax_seed);
409 
410 static ssize_t read_only_show(struct device *dev,
411 		struct device_attribute *attr, char *buf)
412 {
413 	struct nd_region *nd_region = to_nd_region(dev);
414 
415 	return sprintf(buf, "%d\n", nd_region->ro);
416 }
417 
418 static ssize_t read_only_store(struct device *dev,
419 		struct device_attribute *attr, const char *buf, size_t len)
420 {
421 	bool ro;
422 	int rc = strtobool(buf, &ro);
423 	struct nd_region *nd_region = to_nd_region(dev);
424 
425 	if (rc)
426 		return rc;
427 
428 	nd_region->ro = ro;
429 	return len;
430 }
431 static DEVICE_ATTR_RW(read_only);
432 
433 static struct attribute *nd_region_attributes[] = {
434 	&dev_attr_size.attr,
435 	&dev_attr_nstype.attr,
436 	&dev_attr_mappings.attr,
437 	&dev_attr_btt_seed.attr,
438 	&dev_attr_pfn_seed.attr,
439 	&dev_attr_dax_seed.attr,
440 	&dev_attr_read_only.attr,
441 	&dev_attr_set_cookie.attr,
442 	&dev_attr_available_size.attr,
443 	&dev_attr_namespace_seed.attr,
444 	&dev_attr_init_namespaces.attr,
445 	NULL,
446 };
447 
448 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
449 {
450 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
451 	struct nd_region *nd_region = to_nd_region(dev);
452 	struct nd_interleave_set *nd_set = nd_region->nd_set;
453 	int type = nd_region_to_nstype(nd_region);
454 
455 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
456 		return 0;
457 
458 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
459 		return 0;
460 
461 	if (a != &dev_attr_set_cookie.attr
462 			&& a != &dev_attr_available_size.attr)
463 		return a->mode;
464 
465 	if ((type == ND_DEVICE_NAMESPACE_PMEM
466 				|| type == ND_DEVICE_NAMESPACE_BLK)
467 			&& a == &dev_attr_available_size.attr)
468 		return a->mode;
469 	else if (is_nd_pmem(dev) && nd_set)
470 		return a->mode;
471 
472 	return 0;
473 }
474 
475 struct attribute_group nd_region_attribute_group = {
476 	.attrs = nd_region_attributes,
477 	.is_visible = region_visible,
478 };
479 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
480 
481 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
482 {
483 	struct nd_interleave_set *nd_set = nd_region->nd_set;
484 
485 	if (nd_set)
486 		return nd_set->cookie;
487 	return 0;
488 }
489 
490 /*
491  * Upon successful probe/remove, take/release a reference on the
492  * associated interleave set (if present), and plant new btt + namespace
493  * seeds.  Also, on the removal of a BLK region, notify the provider to
494  * disable the region.
495  */
496 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
497 		struct device *dev, bool probe)
498 {
499 	struct nd_region *nd_region;
500 
501 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
502 		int i;
503 
504 		nd_region = to_nd_region(dev);
505 		for (i = 0; i < nd_region->ndr_mappings; i++) {
506 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
507 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
508 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
509 
510 			kfree(nd_mapping->labels);
511 			nd_mapping->labels = NULL;
512 			put_ndd(ndd);
513 			nd_mapping->ndd = NULL;
514 			if (ndd)
515 				atomic_dec(&nvdimm->busy);
516 		}
517 
518 		if (is_nd_pmem(dev))
519 			return;
520 	}
521 	if (dev->parent && is_nd_blk(dev->parent) && probe) {
522 		nd_region = to_nd_region(dev->parent);
523 		nvdimm_bus_lock(dev);
524 		if (nd_region->ns_seed == dev)
525 			nd_region_create_blk_seed(nd_region);
526 		nvdimm_bus_unlock(dev);
527 	}
528 	if (is_nd_btt(dev) && probe) {
529 		struct nd_btt *nd_btt = to_nd_btt(dev);
530 
531 		nd_region = to_nd_region(dev->parent);
532 		nvdimm_bus_lock(dev);
533 		if (nd_region->btt_seed == dev)
534 			nd_region_create_btt_seed(nd_region);
535 		if (nd_region->ns_seed == &nd_btt->ndns->dev &&
536 				is_nd_blk(dev->parent))
537 			nd_region_create_blk_seed(nd_region);
538 		nvdimm_bus_unlock(dev);
539 	}
540 	if (is_nd_pfn(dev) && probe) {
541 		nd_region = to_nd_region(dev->parent);
542 		nvdimm_bus_lock(dev);
543 		if (nd_region->pfn_seed == dev)
544 			nd_region_create_pfn_seed(nd_region);
545 		nvdimm_bus_unlock(dev);
546 	}
547 	if (is_nd_dax(dev) && probe) {
548 		nd_region = to_nd_region(dev->parent);
549 		nvdimm_bus_lock(dev);
550 		if (nd_region->dax_seed == dev)
551 			nd_region_create_dax_seed(nd_region);
552 		nvdimm_bus_unlock(dev);
553 	}
554 }
555 
556 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
557 {
558 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
559 }
560 
561 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
562 {
563 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
564 }
565 
566 static ssize_t mappingN(struct device *dev, char *buf, int n)
567 {
568 	struct nd_region *nd_region = to_nd_region(dev);
569 	struct nd_mapping *nd_mapping;
570 	struct nvdimm *nvdimm;
571 
572 	if (n >= nd_region->ndr_mappings)
573 		return -ENXIO;
574 	nd_mapping = &nd_region->mapping[n];
575 	nvdimm = nd_mapping->nvdimm;
576 
577 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
578 			nd_mapping->start, nd_mapping->size);
579 }
580 
581 #define REGION_MAPPING(idx) \
582 static ssize_t mapping##idx##_show(struct device *dev,		\
583 		struct device_attribute *attr, char *buf)	\
584 {								\
585 	return mappingN(dev, buf, idx);				\
586 }								\
587 static DEVICE_ATTR_RO(mapping##idx)
588 
589 /*
590  * 32 should be enough for a while, even in the presence of socket
591  * interleave a 32-way interleave set is a degenerate case.
592  */
593 REGION_MAPPING(0);
594 REGION_MAPPING(1);
595 REGION_MAPPING(2);
596 REGION_MAPPING(3);
597 REGION_MAPPING(4);
598 REGION_MAPPING(5);
599 REGION_MAPPING(6);
600 REGION_MAPPING(7);
601 REGION_MAPPING(8);
602 REGION_MAPPING(9);
603 REGION_MAPPING(10);
604 REGION_MAPPING(11);
605 REGION_MAPPING(12);
606 REGION_MAPPING(13);
607 REGION_MAPPING(14);
608 REGION_MAPPING(15);
609 REGION_MAPPING(16);
610 REGION_MAPPING(17);
611 REGION_MAPPING(18);
612 REGION_MAPPING(19);
613 REGION_MAPPING(20);
614 REGION_MAPPING(21);
615 REGION_MAPPING(22);
616 REGION_MAPPING(23);
617 REGION_MAPPING(24);
618 REGION_MAPPING(25);
619 REGION_MAPPING(26);
620 REGION_MAPPING(27);
621 REGION_MAPPING(28);
622 REGION_MAPPING(29);
623 REGION_MAPPING(30);
624 REGION_MAPPING(31);
625 
626 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
627 {
628 	struct device *dev = container_of(kobj, struct device, kobj);
629 	struct nd_region *nd_region = to_nd_region(dev);
630 
631 	if (n < nd_region->ndr_mappings)
632 		return a->mode;
633 	return 0;
634 }
635 
636 static struct attribute *mapping_attributes[] = {
637 	&dev_attr_mapping0.attr,
638 	&dev_attr_mapping1.attr,
639 	&dev_attr_mapping2.attr,
640 	&dev_attr_mapping3.attr,
641 	&dev_attr_mapping4.attr,
642 	&dev_attr_mapping5.attr,
643 	&dev_attr_mapping6.attr,
644 	&dev_attr_mapping7.attr,
645 	&dev_attr_mapping8.attr,
646 	&dev_attr_mapping9.attr,
647 	&dev_attr_mapping10.attr,
648 	&dev_attr_mapping11.attr,
649 	&dev_attr_mapping12.attr,
650 	&dev_attr_mapping13.attr,
651 	&dev_attr_mapping14.attr,
652 	&dev_attr_mapping15.attr,
653 	&dev_attr_mapping16.attr,
654 	&dev_attr_mapping17.attr,
655 	&dev_attr_mapping18.attr,
656 	&dev_attr_mapping19.attr,
657 	&dev_attr_mapping20.attr,
658 	&dev_attr_mapping21.attr,
659 	&dev_attr_mapping22.attr,
660 	&dev_attr_mapping23.attr,
661 	&dev_attr_mapping24.attr,
662 	&dev_attr_mapping25.attr,
663 	&dev_attr_mapping26.attr,
664 	&dev_attr_mapping27.attr,
665 	&dev_attr_mapping28.attr,
666 	&dev_attr_mapping29.attr,
667 	&dev_attr_mapping30.attr,
668 	&dev_attr_mapping31.attr,
669 	NULL,
670 };
671 
672 struct attribute_group nd_mapping_attribute_group = {
673 	.is_visible = mapping_visible,
674 	.attrs = mapping_attributes,
675 };
676 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
677 
678 int nd_blk_region_init(struct nd_region *nd_region)
679 {
680 	struct device *dev = &nd_region->dev;
681 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
682 
683 	if (!is_nd_blk(dev))
684 		return 0;
685 
686 	if (nd_region->ndr_mappings < 1) {
687 		dev_err(dev, "invalid BLK region\n");
688 		return -ENXIO;
689 	}
690 
691 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
692 }
693 
694 /**
695  * nd_region_acquire_lane - allocate and lock a lane
696  * @nd_region: region id and number of lanes possible
697  *
698  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
699  * We optimize for the common case where there are 256 lanes, one
700  * per-cpu.  For larger systems we need to lock to share lanes.  For now
701  * this implementation assumes the cost of maintaining an allocator for
702  * free lanes is on the order of the lock hold time, so it implements a
703  * static lane = cpu % num_lanes mapping.
704  *
705  * In the case of a BTT instance on top of a BLK namespace a lane may be
706  * acquired recursively.  We lock on the first instance.
707  *
708  * In the case of a BTT instance on top of PMEM, we only acquire a lane
709  * for the BTT metadata updates.
710  */
711 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
712 {
713 	unsigned int cpu, lane;
714 
715 	cpu = get_cpu();
716 	if (nd_region->num_lanes < nr_cpu_ids) {
717 		struct nd_percpu_lane *ndl_lock, *ndl_count;
718 
719 		lane = cpu % nd_region->num_lanes;
720 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
721 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
722 		if (ndl_count->count++ == 0)
723 			spin_lock(&ndl_lock->lock);
724 	} else
725 		lane = cpu;
726 
727 	return lane;
728 }
729 EXPORT_SYMBOL(nd_region_acquire_lane);
730 
731 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
732 {
733 	if (nd_region->num_lanes < nr_cpu_ids) {
734 		unsigned int cpu = get_cpu();
735 		struct nd_percpu_lane *ndl_lock, *ndl_count;
736 
737 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
738 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
739 		if (--ndl_count->count == 0)
740 			spin_unlock(&ndl_lock->lock);
741 		put_cpu();
742 	}
743 	put_cpu();
744 }
745 EXPORT_SYMBOL(nd_region_release_lane);
746 
747 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
748 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
749 		const char *caller)
750 {
751 	struct nd_region *nd_region;
752 	struct device *dev;
753 	void *region_buf;
754 	unsigned int i;
755 	int ro = 0;
756 
757 	for (i = 0; i < ndr_desc->num_mappings; i++) {
758 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
759 		struct nvdimm *nvdimm = mapping->nvdimm;
760 
761 		if ((mapping->start | mapping->size) % SZ_4K) {
762 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
763 					caller, dev_name(&nvdimm->dev), i);
764 
765 			return NULL;
766 		}
767 
768 		if (nvdimm->flags & NDD_UNARMED)
769 			ro = 1;
770 	}
771 
772 	if (dev_type == &nd_blk_device_type) {
773 		struct nd_blk_region_desc *ndbr_desc;
774 		struct nd_blk_region *ndbr;
775 
776 		ndbr_desc = to_blk_region_desc(ndr_desc);
777 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
778 				* ndr_desc->num_mappings,
779 				GFP_KERNEL);
780 		if (ndbr) {
781 			nd_region = &ndbr->nd_region;
782 			ndbr->enable = ndbr_desc->enable;
783 			ndbr->do_io = ndbr_desc->do_io;
784 		}
785 		region_buf = ndbr;
786 	} else {
787 		nd_region = kzalloc(sizeof(struct nd_region)
788 				+ sizeof(struct nd_mapping)
789 				* ndr_desc->num_mappings,
790 				GFP_KERNEL);
791 		region_buf = nd_region;
792 	}
793 
794 	if (!region_buf)
795 		return NULL;
796 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
797 	if (nd_region->id < 0)
798 		goto err_id;
799 
800 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
801 	if (!nd_region->lane)
802 		goto err_percpu;
803 
804         for (i = 0; i < nr_cpu_ids; i++) {
805 		struct nd_percpu_lane *ndl;
806 
807 		ndl = per_cpu_ptr(nd_region->lane, i);
808 		spin_lock_init(&ndl->lock);
809 		ndl->count = 0;
810 	}
811 
812 	for (i = 0; i < ndr_desc->num_mappings; i++) {
813 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
814 		struct nvdimm *nvdimm = mapping->nvdimm;
815 
816 		nd_region->mapping[i].nvdimm = nvdimm;
817 		nd_region->mapping[i].start = mapping->start;
818 		nd_region->mapping[i].size = mapping->size;
819 
820 		get_device(&nvdimm->dev);
821 	}
822 	nd_region->ndr_mappings = ndr_desc->num_mappings;
823 	nd_region->provider_data = ndr_desc->provider_data;
824 	nd_region->nd_set = ndr_desc->nd_set;
825 	nd_region->num_lanes = ndr_desc->num_lanes;
826 	nd_region->flags = ndr_desc->flags;
827 	nd_region->ro = ro;
828 	nd_region->numa_node = ndr_desc->numa_node;
829 	ida_init(&nd_region->ns_ida);
830 	ida_init(&nd_region->btt_ida);
831 	ida_init(&nd_region->pfn_ida);
832 	ida_init(&nd_region->dax_ida);
833 	dev = &nd_region->dev;
834 	dev_set_name(dev, "region%d", nd_region->id);
835 	dev->parent = &nvdimm_bus->dev;
836 	dev->type = dev_type;
837 	dev->groups = ndr_desc->attr_groups;
838 	nd_region->ndr_size = resource_size(ndr_desc->res);
839 	nd_region->ndr_start = ndr_desc->res->start;
840 	nd_device_register(dev);
841 
842 	return nd_region;
843 
844  err_percpu:
845 	ida_simple_remove(&region_ida, nd_region->id);
846  err_id:
847 	kfree(region_buf);
848 	return NULL;
849 }
850 
851 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
852 		struct nd_region_desc *ndr_desc)
853 {
854 	ndr_desc->num_lanes = ND_MAX_LANES;
855 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
856 			__func__);
857 }
858 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
859 
860 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
861 		struct nd_region_desc *ndr_desc)
862 {
863 	if (ndr_desc->num_mappings > 1)
864 		return NULL;
865 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
866 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
867 			__func__);
868 }
869 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
870 
871 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
872 		struct nd_region_desc *ndr_desc)
873 {
874 	ndr_desc->num_lanes = ND_MAX_LANES;
875 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
876 			__func__);
877 }
878 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
879 
880 /**
881  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
882  * @nd_region: blk or interleaved pmem region
883  */
884 void nvdimm_flush(struct nd_region *nd_region)
885 {
886 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
887 	int i, idx;
888 
889 	/*
890 	 * Try to encourage some diversity in flush hint addresses
891 	 * across cpus assuming a limited number of flush hints.
892 	 */
893 	idx = this_cpu_read(flush_idx);
894 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
895 
896 	/*
897 	 * The first wmb() is needed to 'sfence' all previous writes
898 	 * such that they are architecturally visible for the platform
899 	 * buffer flush.  Note that we've already arranged for pmem
900 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
901 	 * final wmb() ensures ordering for the NVDIMM flush write.
902 	 */
903 	wmb();
904 	for (i = 0; i < nd_region->ndr_mappings; i++)
905 		if (ndrd->flush_wpq[i][0])
906 			writeq(1, ndrd->flush_wpq[i][idx & ndrd->flush_mask]);
907 	wmb();
908 }
909 EXPORT_SYMBOL_GPL(nvdimm_flush);
910 
911 /**
912  * nvdimm_has_flush - determine write flushing requirements
913  * @nd_region: blk or interleaved pmem region
914  *
915  * Returns 1 if writes require flushing
916  * Returns 0 if writes do not require flushing
917  * Returns -ENXIO if flushing capability can not be determined
918  */
919 int nvdimm_has_flush(struct nd_region *nd_region)
920 {
921 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
922 	int i;
923 
924 	/* no nvdimm == flushing capability unknown */
925 	if (nd_region->ndr_mappings == 0)
926 		return -ENXIO;
927 
928 	for (i = 0; i < nd_region->ndr_mappings; i++)
929 		/* flush hints present, flushing required */
930 		if (ndrd->flush_wpq[i][0])
931 			return 1;
932 
933 	/*
934 	 * The platform defines dimm devices without hints, assume
935 	 * platform persistence mechanism like ADR
936 	 */
937 	return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
940 
941 void __exit nd_region_devs_exit(void)
942 {
943 	ida_destroy(&region_ida);
944 }
945