1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 if (!test_bit(ND_REGION_CXL, &nd_region->flags)) 137 memregion_free(nd_region->id); 138 kfree(nd_region); 139 } 140 141 struct nd_region *to_nd_region(struct device *dev) 142 { 143 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 144 145 WARN_ON(dev->type->release != nd_region_release); 146 return nd_region; 147 } 148 EXPORT_SYMBOL_GPL(to_nd_region); 149 150 struct device *nd_region_dev(struct nd_region *nd_region) 151 { 152 if (!nd_region) 153 return NULL; 154 return &nd_region->dev; 155 } 156 EXPORT_SYMBOL_GPL(nd_region_dev); 157 158 void *nd_region_provider_data(struct nd_region *nd_region) 159 { 160 return nd_region->provider_data; 161 } 162 EXPORT_SYMBOL_GPL(nd_region_provider_data); 163 164 /** 165 * nd_region_to_nstype() - region to an integer namespace type 166 * @nd_region: region-device to interrogate 167 * 168 * This is the 'nstype' attribute of a region as well, an input to the 169 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 170 * namespace devices with namespace drivers. 171 */ 172 int nd_region_to_nstype(struct nd_region *nd_region) 173 { 174 if (is_memory(&nd_region->dev)) { 175 u16 i, label; 176 177 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 178 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 179 struct nvdimm *nvdimm = nd_mapping->nvdimm; 180 181 if (test_bit(NDD_LABELING, &nvdimm->flags)) 182 label++; 183 } 184 if (label) 185 return ND_DEVICE_NAMESPACE_PMEM; 186 else 187 return ND_DEVICE_NAMESPACE_IO; 188 } 189 190 return 0; 191 } 192 EXPORT_SYMBOL(nd_region_to_nstype); 193 194 static unsigned long long region_size(struct nd_region *nd_region) 195 { 196 if (is_memory(&nd_region->dev)) { 197 return nd_region->ndr_size; 198 } else if (nd_region->ndr_mappings == 1) { 199 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 200 201 return nd_mapping->size; 202 } 203 204 return 0; 205 } 206 207 static ssize_t size_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct nd_region *nd_region = to_nd_region(dev); 211 212 return sprintf(buf, "%llu\n", region_size(nd_region)); 213 } 214 static DEVICE_ATTR_RO(size); 215 216 static ssize_t deep_flush_show(struct device *dev, 217 struct device_attribute *attr, char *buf) 218 { 219 struct nd_region *nd_region = to_nd_region(dev); 220 221 /* 222 * NOTE: in the nvdimm_has_flush() error case this attribute is 223 * not visible. 224 */ 225 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 226 } 227 228 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 229 const char *buf, size_t len) 230 { 231 bool flush; 232 int rc = strtobool(buf, &flush); 233 struct nd_region *nd_region = to_nd_region(dev); 234 235 if (rc) 236 return rc; 237 if (!flush) 238 return -EINVAL; 239 rc = nvdimm_flush(nd_region, NULL); 240 if (rc) 241 return rc; 242 243 return len; 244 } 245 static DEVICE_ATTR_RW(deep_flush); 246 247 static ssize_t mappings_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct nd_region *nd_region = to_nd_region(dev); 251 252 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 253 } 254 static DEVICE_ATTR_RO(mappings); 255 256 static ssize_t nstype_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct nd_region *nd_region = to_nd_region(dev); 260 261 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 262 } 263 static DEVICE_ATTR_RO(nstype); 264 265 static ssize_t set_cookie_show(struct device *dev, 266 struct device_attribute *attr, char *buf) 267 { 268 struct nd_region *nd_region = to_nd_region(dev); 269 struct nd_interleave_set *nd_set = nd_region->nd_set; 270 ssize_t rc = 0; 271 272 if (is_memory(dev) && nd_set) 273 /* pass, should be precluded by region_visible */; 274 else 275 return -ENXIO; 276 277 /* 278 * The cookie to show depends on which specification of the 279 * labels we are using. If there are not labels then default to 280 * the v1.1 namespace label cookie definition. To read all this 281 * data we need to wait for probing to settle. 282 */ 283 device_lock(dev); 284 nvdimm_bus_lock(dev); 285 wait_nvdimm_bus_probe_idle(dev); 286 if (nd_region->ndr_mappings) { 287 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 288 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 289 290 if (ndd) { 291 struct nd_namespace_index *nsindex; 292 293 nsindex = to_namespace_index(ndd, ndd->ns_current); 294 rc = sprintf(buf, "%#llx\n", 295 nd_region_interleave_set_cookie(nd_region, 296 nsindex)); 297 } 298 } 299 nvdimm_bus_unlock(dev); 300 device_unlock(dev); 301 302 if (rc) 303 return rc; 304 return sprintf(buf, "%#llx\n", nd_set->cookie1); 305 } 306 static DEVICE_ATTR_RO(set_cookie); 307 308 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 309 { 310 resource_size_t available; 311 int i; 312 313 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 314 315 available = 0; 316 for (i = 0; i < nd_region->ndr_mappings; i++) { 317 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 318 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 319 320 /* if a dimm is disabled the available capacity is zero */ 321 if (!ndd) 322 return 0; 323 324 available += nd_pmem_available_dpa(nd_region, nd_mapping); 325 } 326 327 return available; 328 } 329 330 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 331 { 332 resource_size_t avail = 0; 333 int i; 334 335 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 336 for (i = 0; i < nd_region->ndr_mappings; i++) { 337 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 338 339 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa( 340 nd_region, nd_mapping)); 341 } 342 return avail * nd_region->ndr_mappings; 343 } 344 345 static ssize_t available_size_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 struct nd_region *nd_region = to_nd_region(dev); 349 unsigned long long available = 0; 350 351 /* 352 * Flush in-flight updates and grab a snapshot of the available 353 * size. Of course, this value is potentially invalidated the 354 * memory nvdimm_bus_lock() is dropped, but that's userspace's 355 * problem to not race itself. 356 */ 357 device_lock(dev); 358 nvdimm_bus_lock(dev); 359 wait_nvdimm_bus_probe_idle(dev); 360 available = nd_region_available_dpa(nd_region); 361 nvdimm_bus_unlock(dev); 362 device_unlock(dev); 363 364 return sprintf(buf, "%llu\n", available); 365 } 366 static DEVICE_ATTR_RO(available_size); 367 368 static ssize_t max_available_extent_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct nd_region *nd_region = to_nd_region(dev); 372 unsigned long long available = 0; 373 374 device_lock(dev); 375 nvdimm_bus_lock(dev); 376 wait_nvdimm_bus_probe_idle(dev); 377 available = nd_region_allocatable_dpa(nd_region); 378 nvdimm_bus_unlock(dev); 379 device_unlock(dev); 380 381 return sprintf(buf, "%llu\n", available); 382 } 383 static DEVICE_ATTR_RO(max_available_extent); 384 385 static ssize_t init_namespaces_show(struct device *dev, 386 struct device_attribute *attr, char *buf) 387 { 388 struct nd_region_data *ndrd = dev_get_drvdata(dev); 389 ssize_t rc; 390 391 nvdimm_bus_lock(dev); 392 if (ndrd) 393 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 394 else 395 rc = -ENXIO; 396 nvdimm_bus_unlock(dev); 397 398 return rc; 399 } 400 static DEVICE_ATTR_RO(init_namespaces); 401 402 static ssize_t namespace_seed_show(struct device *dev, 403 struct device_attribute *attr, char *buf) 404 { 405 struct nd_region *nd_region = to_nd_region(dev); 406 ssize_t rc; 407 408 nvdimm_bus_lock(dev); 409 if (nd_region->ns_seed) 410 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 411 else 412 rc = sprintf(buf, "\n"); 413 nvdimm_bus_unlock(dev); 414 return rc; 415 } 416 static DEVICE_ATTR_RO(namespace_seed); 417 418 static ssize_t btt_seed_show(struct device *dev, 419 struct device_attribute *attr, char *buf) 420 { 421 struct nd_region *nd_region = to_nd_region(dev); 422 ssize_t rc; 423 424 nvdimm_bus_lock(dev); 425 if (nd_region->btt_seed) 426 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 427 else 428 rc = sprintf(buf, "\n"); 429 nvdimm_bus_unlock(dev); 430 431 return rc; 432 } 433 static DEVICE_ATTR_RO(btt_seed); 434 435 static ssize_t pfn_seed_show(struct device *dev, 436 struct device_attribute *attr, char *buf) 437 { 438 struct nd_region *nd_region = to_nd_region(dev); 439 ssize_t rc; 440 441 nvdimm_bus_lock(dev); 442 if (nd_region->pfn_seed) 443 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 444 else 445 rc = sprintf(buf, "\n"); 446 nvdimm_bus_unlock(dev); 447 448 return rc; 449 } 450 static DEVICE_ATTR_RO(pfn_seed); 451 452 static ssize_t dax_seed_show(struct device *dev, 453 struct device_attribute *attr, char *buf) 454 { 455 struct nd_region *nd_region = to_nd_region(dev); 456 ssize_t rc; 457 458 nvdimm_bus_lock(dev); 459 if (nd_region->dax_seed) 460 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 461 else 462 rc = sprintf(buf, "\n"); 463 nvdimm_bus_unlock(dev); 464 465 return rc; 466 } 467 static DEVICE_ATTR_RO(dax_seed); 468 469 static ssize_t read_only_show(struct device *dev, 470 struct device_attribute *attr, char *buf) 471 { 472 struct nd_region *nd_region = to_nd_region(dev); 473 474 return sprintf(buf, "%d\n", nd_region->ro); 475 } 476 477 static int revalidate_read_only(struct device *dev, void *data) 478 { 479 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 480 return 0; 481 } 482 483 static ssize_t read_only_store(struct device *dev, 484 struct device_attribute *attr, const char *buf, size_t len) 485 { 486 bool ro; 487 int rc = strtobool(buf, &ro); 488 struct nd_region *nd_region = to_nd_region(dev); 489 490 if (rc) 491 return rc; 492 493 nd_region->ro = ro; 494 device_for_each_child(dev, NULL, revalidate_read_only); 495 return len; 496 } 497 static DEVICE_ATTR_RW(read_only); 498 499 static ssize_t align_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct nd_region *nd_region = to_nd_region(dev); 503 504 return sprintf(buf, "%#lx\n", nd_region->align); 505 } 506 507 static ssize_t align_store(struct device *dev, 508 struct device_attribute *attr, const char *buf, size_t len) 509 { 510 struct nd_region *nd_region = to_nd_region(dev); 511 unsigned long val, dpa; 512 u32 mappings, remainder; 513 int rc; 514 515 rc = kstrtoul(buf, 0, &val); 516 if (rc) 517 return rc; 518 519 /* 520 * Ensure space-align is evenly divisible by the region 521 * interleave-width because the kernel typically has no facility 522 * to determine which DIMM(s), dimm-physical-addresses, would 523 * contribute to the tail capacity in system-physical-address 524 * space for the namespace. 525 */ 526 mappings = max_t(u32, 1, nd_region->ndr_mappings); 527 dpa = div_u64_rem(val, mappings, &remainder); 528 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 529 || val > region_size(nd_region) || remainder) 530 return -EINVAL; 531 532 /* 533 * Given that space allocation consults this value multiple 534 * times ensure it does not change for the duration of the 535 * allocation. 536 */ 537 nvdimm_bus_lock(dev); 538 nd_region->align = val; 539 nvdimm_bus_unlock(dev); 540 541 return len; 542 } 543 static DEVICE_ATTR_RW(align); 544 545 static ssize_t region_badblocks_show(struct device *dev, 546 struct device_attribute *attr, char *buf) 547 { 548 struct nd_region *nd_region = to_nd_region(dev); 549 ssize_t rc; 550 551 device_lock(dev); 552 if (dev->driver) 553 rc = badblocks_show(&nd_region->bb, buf, 0); 554 else 555 rc = -ENXIO; 556 device_unlock(dev); 557 558 return rc; 559 } 560 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 561 562 static ssize_t resource_show(struct device *dev, 563 struct device_attribute *attr, char *buf) 564 { 565 struct nd_region *nd_region = to_nd_region(dev); 566 567 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 568 } 569 static DEVICE_ATTR_ADMIN_RO(resource); 570 571 static ssize_t persistence_domain_show(struct device *dev, 572 struct device_attribute *attr, char *buf) 573 { 574 struct nd_region *nd_region = to_nd_region(dev); 575 576 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 577 return sprintf(buf, "cpu_cache\n"); 578 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 579 return sprintf(buf, "memory_controller\n"); 580 else 581 return sprintf(buf, "\n"); 582 } 583 static DEVICE_ATTR_RO(persistence_domain); 584 585 static struct attribute *nd_region_attributes[] = { 586 &dev_attr_size.attr, 587 &dev_attr_align.attr, 588 &dev_attr_nstype.attr, 589 &dev_attr_mappings.attr, 590 &dev_attr_btt_seed.attr, 591 &dev_attr_pfn_seed.attr, 592 &dev_attr_dax_seed.attr, 593 &dev_attr_deep_flush.attr, 594 &dev_attr_read_only.attr, 595 &dev_attr_set_cookie.attr, 596 &dev_attr_available_size.attr, 597 &dev_attr_max_available_extent.attr, 598 &dev_attr_namespace_seed.attr, 599 &dev_attr_init_namespaces.attr, 600 &dev_attr_badblocks.attr, 601 &dev_attr_resource.attr, 602 &dev_attr_persistence_domain.attr, 603 NULL, 604 }; 605 606 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 607 { 608 struct device *dev = container_of(kobj, typeof(*dev), kobj); 609 struct nd_region *nd_region = to_nd_region(dev); 610 struct nd_interleave_set *nd_set = nd_region->nd_set; 611 int type = nd_region_to_nstype(nd_region); 612 613 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 614 return 0; 615 616 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 617 return 0; 618 619 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 620 return 0; 621 622 if (a == &dev_attr_resource.attr && !is_memory(dev)) 623 return 0; 624 625 if (a == &dev_attr_deep_flush.attr) { 626 int has_flush = nvdimm_has_flush(nd_region); 627 628 if (has_flush == 1) 629 return a->mode; 630 else if (has_flush == 0) 631 return 0444; 632 else 633 return 0; 634 } 635 636 if (a == &dev_attr_persistence_domain.attr) { 637 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 638 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 639 return 0; 640 return a->mode; 641 } 642 643 if (a == &dev_attr_align.attr) 644 return a->mode; 645 646 if (a != &dev_attr_set_cookie.attr 647 && a != &dev_attr_available_size.attr) 648 return a->mode; 649 650 if (type == ND_DEVICE_NAMESPACE_PMEM && 651 a == &dev_attr_available_size.attr) 652 return a->mode; 653 else if (is_memory(dev) && nd_set) 654 return a->mode; 655 656 return 0; 657 } 658 659 static ssize_t mappingN(struct device *dev, char *buf, int n) 660 { 661 struct nd_region *nd_region = to_nd_region(dev); 662 struct nd_mapping *nd_mapping; 663 struct nvdimm *nvdimm; 664 665 if (n >= nd_region->ndr_mappings) 666 return -ENXIO; 667 nd_mapping = &nd_region->mapping[n]; 668 nvdimm = nd_mapping->nvdimm; 669 670 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 671 nd_mapping->start, nd_mapping->size, 672 nd_mapping->position); 673 } 674 675 #define REGION_MAPPING(idx) \ 676 static ssize_t mapping##idx##_show(struct device *dev, \ 677 struct device_attribute *attr, char *buf) \ 678 { \ 679 return mappingN(dev, buf, idx); \ 680 } \ 681 static DEVICE_ATTR_RO(mapping##idx) 682 683 /* 684 * 32 should be enough for a while, even in the presence of socket 685 * interleave a 32-way interleave set is a degenerate case. 686 */ 687 REGION_MAPPING(0); 688 REGION_MAPPING(1); 689 REGION_MAPPING(2); 690 REGION_MAPPING(3); 691 REGION_MAPPING(4); 692 REGION_MAPPING(5); 693 REGION_MAPPING(6); 694 REGION_MAPPING(7); 695 REGION_MAPPING(8); 696 REGION_MAPPING(9); 697 REGION_MAPPING(10); 698 REGION_MAPPING(11); 699 REGION_MAPPING(12); 700 REGION_MAPPING(13); 701 REGION_MAPPING(14); 702 REGION_MAPPING(15); 703 REGION_MAPPING(16); 704 REGION_MAPPING(17); 705 REGION_MAPPING(18); 706 REGION_MAPPING(19); 707 REGION_MAPPING(20); 708 REGION_MAPPING(21); 709 REGION_MAPPING(22); 710 REGION_MAPPING(23); 711 REGION_MAPPING(24); 712 REGION_MAPPING(25); 713 REGION_MAPPING(26); 714 REGION_MAPPING(27); 715 REGION_MAPPING(28); 716 REGION_MAPPING(29); 717 REGION_MAPPING(30); 718 REGION_MAPPING(31); 719 720 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 721 { 722 struct device *dev = container_of(kobj, struct device, kobj); 723 struct nd_region *nd_region = to_nd_region(dev); 724 725 if (n < nd_region->ndr_mappings) 726 return a->mode; 727 return 0; 728 } 729 730 static struct attribute *mapping_attributes[] = { 731 &dev_attr_mapping0.attr, 732 &dev_attr_mapping1.attr, 733 &dev_attr_mapping2.attr, 734 &dev_attr_mapping3.attr, 735 &dev_attr_mapping4.attr, 736 &dev_attr_mapping5.attr, 737 &dev_attr_mapping6.attr, 738 &dev_attr_mapping7.attr, 739 &dev_attr_mapping8.attr, 740 &dev_attr_mapping9.attr, 741 &dev_attr_mapping10.attr, 742 &dev_attr_mapping11.attr, 743 &dev_attr_mapping12.attr, 744 &dev_attr_mapping13.attr, 745 &dev_attr_mapping14.attr, 746 &dev_attr_mapping15.attr, 747 &dev_attr_mapping16.attr, 748 &dev_attr_mapping17.attr, 749 &dev_attr_mapping18.attr, 750 &dev_attr_mapping19.attr, 751 &dev_attr_mapping20.attr, 752 &dev_attr_mapping21.attr, 753 &dev_attr_mapping22.attr, 754 &dev_attr_mapping23.attr, 755 &dev_attr_mapping24.attr, 756 &dev_attr_mapping25.attr, 757 &dev_attr_mapping26.attr, 758 &dev_attr_mapping27.attr, 759 &dev_attr_mapping28.attr, 760 &dev_attr_mapping29.attr, 761 &dev_attr_mapping30.attr, 762 &dev_attr_mapping31.attr, 763 NULL, 764 }; 765 766 static const struct attribute_group nd_mapping_attribute_group = { 767 .is_visible = mapping_visible, 768 .attrs = mapping_attributes, 769 }; 770 771 static const struct attribute_group nd_region_attribute_group = { 772 .attrs = nd_region_attributes, 773 .is_visible = region_visible, 774 }; 775 776 static const struct attribute_group *nd_region_attribute_groups[] = { 777 &nd_device_attribute_group, 778 &nd_region_attribute_group, 779 &nd_numa_attribute_group, 780 &nd_mapping_attribute_group, 781 NULL, 782 }; 783 784 static const struct device_type nd_pmem_device_type = { 785 .name = "nd_pmem", 786 .release = nd_region_release, 787 .groups = nd_region_attribute_groups, 788 }; 789 790 static const struct device_type nd_volatile_device_type = { 791 .name = "nd_volatile", 792 .release = nd_region_release, 793 .groups = nd_region_attribute_groups, 794 }; 795 796 bool is_nd_pmem(struct device *dev) 797 { 798 return dev ? dev->type == &nd_pmem_device_type : false; 799 } 800 801 bool is_nd_volatile(struct device *dev) 802 { 803 return dev ? dev->type == &nd_volatile_device_type : false; 804 } 805 806 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 807 struct nd_namespace_index *nsindex) 808 { 809 struct nd_interleave_set *nd_set = nd_region->nd_set; 810 811 if (!nd_set) 812 return 0; 813 814 if (nsindex && __le16_to_cpu(nsindex->major) == 1 815 && __le16_to_cpu(nsindex->minor) == 1) 816 return nd_set->cookie1; 817 return nd_set->cookie2; 818 } 819 820 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 821 { 822 struct nd_interleave_set *nd_set = nd_region->nd_set; 823 824 if (nd_set) 825 return nd_set->altcookie; 826 return 0; 827 } 828 829 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 830 { 831 struct nd_label_ent *label_ent, *e; 832 833 lockdep_assert_held(&nd_mapping->lock); 834 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 835 list_del(&label_ent->list); 836 kfree(label_ent); 837 } 838 } 839 840 /* 841 * When a namespace is activated create new seeds for the next 842 * namespace, or namespace-personality to be configured. 843 */ 844 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 845 { 846 nvdimm_bus_lock(dev); 847 if (nd_region->ns_seed == dev) { 848 nd_region_create_ns_seed(nd_region); 849 } else if (is_nd_btt(dev)) { 850 struct nd_btt *nd_btt = to_nd_btt(dev); 851 852 if (nd_region->btt_seed == dev) 853 nd_region_create_btt_seed(nd_region); 854 if (nd_region->ns_seed == &nd_btt->ndns->dev) 855 nd_region_create_ns_seed(nd_region); 856 } else if (is_nd_pfn(dev)) { 857 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 858 859 if (nd_region->pfn_seed == dev) 860 nd_region_create_pfn_seed(nd_region); 861 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 862 nd_region_create_ns_seed(nd_region); 863 } else if (is_nd_dax(dev)) { 864 struct nd_dax *nd_dax = to_nd_dax(dev); 865 866 if (nd_region->dax_seed == dev) 867 nd_region_create_dax_seed(nd_region); 868 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 869 nd_region_create_ns_seed(nd_region); 870 } 871 nvdimm_bus_unlock(dev); 872 } 873 874 /** 875 * nd_region_acquire_lane - allocate and lock a lane 876 * @nd_region: region id and number of lanes possible 877 * 878 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 879 * We optimize for the common case where there are 256 lanes, one 880 * per-cpu. For larger systems we need to lock to share lanes. For now 881 * this implementation assumes the cost of maintaining an allocator for 882 * free lanes is on the order of the lock hold time, so it implements a 883 * static lane = cpu % num_lanes mapping. 884 * 885 * In the case of a BTT instance on top of a BLK namespace a lane may be 886 * acquired recursively. We lock on the first instance. 887 * 888 * In the case of a BTT instance on top of PMEM, we only acquire a lane 889 * for the BTT metadata updates. 890 */ 891 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 892 { 893 unsigned int cpu, lane; 894 895 cpu = get_cpu(); 896 if (nd_region->num_lanes < nr_cpu_ids) { 897 struct nd_percpu_lane *ndl_lock, *ndl_count; 898 899 lane = cpu % nd_region->num_lanes; 900 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 901 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 902 if (ndl_count->count++ == 0) 903 spin_lock(&ndl_lock->lock); 904 } else 905 lane = cpu; 906 907 return lane; 908 } 909 EXPORT_SYMBOL(nd_region_acquire_lane); 910 911 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 912 { 913 if (nd_region->num_lanes < nr_cpu_ids) { 914 unsigned int cpu = get_cpu(); 915 struct nd_percpu_lane *ndl_lock, *ndl_count; 916 917 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 918 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 919 if (--ndl_count->count == 0) 920 spin_unlock(&ndl_lock->lock); 921 put_cpu(); 922 } 923 put_cpu(); 924 } 925 EXPORT_SYMBOL(nd_region_release_lane); 926 927 /* 928 * PowerPC requires this alignment for memremap_pages(). All other archs 929 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 930 */ 931 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 932 933 static unsigned long default_align(struct nd_region *nd_region) 934 { 935 unsigned long align; 936 u32 remainder; 937 int mappings; 938 939 align = MEMREMAP_COMPAT_ALIGN_MAX; 940 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX) 941 align = PAGE_SIZE; 942 943 mappings = max_t(u16, 1, nd_region->ndr_mappings); 944 div_u64_rem(align, mappings, &remainder); 945 if (remainder) 946 align *= mappings; 947 948 return align; 949 } 950 951 static struct lock_class_key nvdimm_region_key; 952 953 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 954 struct nd_region_desc *ndr_desc, 955 const struct device_type *dev_type, const char *caller) 956 { 957 struct nd_region *nd_region; 958 struct device *dev; 959 unsigned int i; 960 int ro = 0; 961 962 for (i = 0; i < ndr_desc->num_mappings; i++) { 963 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 964 struct nvdimm *nvdimm = mapping->nvdimm; 965 966 if ((mapping->start | mapping->size) % PAGE_SIZE) { 967 dev_err(&nvdimm_bus->dev, 968 "%s: %s mapping%d is not %ld aligned\n", 969 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 970 return NULL; 971 } 972 973 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 974 ro = 1; 975 976 } 977 978 nd_region = 979 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), 980 GFP_KERNEL); 981 982 if (!nd_region) 983 return NULL; 984 /* CXL pre-assigns memregion ids before creating nvdimm regions */ 985 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) { 986 nd_region->id = ndr_desc->memregion; 987 } else { 988 nd_region->id = memregion_alloc(GFP_KERNEL); 989 if (nd_region->id < 0) 990 goto err_id; 991 } 992 993 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 994 if (!nd_region->lane) 995 goto err_percpu; 996 997 for (i = 0; i < nr_cpu_ids; i++) { 998 struct nd_percpu_lane *ndl; 999 1000 ndl = per_cpu_ptr(nd_region->lane, i); 1001 spin_lock_init(&ndl->lock); 1002 ndl->count = 0; 1003 } 1004 1005 for (i = 0; i < ndr_desc->num_mappings; i++) { 1006 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1007 struct nvdimm *nvdimm = mapping->nvdimm; 1008 1009 nd_region->mapping[i].nvdimm = nvdimm; 1010 nd_region->mapping[i].start = mapping->start; 1011 nd_region->mapping[i].size = mapping->size; 1012 nd_region->mapping[i].position = mapping->position; 1013 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1014 mutex_init(&nd_region->mapping[i].lock); 1015 1016 get_device(&nvdimm->dev); 1017 } 1018 nd_region->ndr_mappings = ndr_desc->num_mappings; 1019 nd_region->provider_data = ndr_desc->provider_data; 1020 nd_region->nd_set = ndr_desc->nd_set; 1021 nd_region->num_lanes = ndr_desc->num_lanes; 1022 nd_region->flags = ndr_desc->flags; 1023 nd_region->ro = ro; 1024 nd_region->numa_node = ndr_desc->numa_node; 1025 nd_region->target_node = ndr_desc->target_node; 1026 ida_init(&nd_region->ns_ida); 1027 ida_init(&nd_region->btt_ida); 1028 ida_init(&nd_region->pfn_ida); 1029 ida_init(&nd_region->dax_ida); 1030 dev = &nd_region->dev; 1031 dev_set_name(dev, "region%d", nd_region->id); 1032 dev->parent = &nvdimm_bus->dev; 1033 dev->type = dev_type; 1034 dev->groups = ndr_desc->attr_groups; 1035 dev->of_node = ndr_desc->of_node; 1036 nd_region->ndr_size = resource_size(ndr_desc->res); 1037 nd_region->ndr_start = ndr_desc->res->start; 1038 nd_region->align = default_align(nd_region); 1039 if (ndr_desc->flush) 1040 nd_region->flush = ndr_desc->flush; 1041 else 1042 nd_region->flush = NULL; 1043 1044 device_initialize(dev); 1045 lockdep_set_class(&dev->mutex, &nvdimm_region_key); 1046 nd_device_register(dev); 1047 1048 return nd_region; 1049 1050 err_percpu: 1051 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags)) 1052 memregion_free(nd_region->id); 1053 err_id: 1054 kfree(nd_region); 1055 return NULL; 1056 } 1057 1058 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1059 struct nd_region_desc *ndr_desc) 1060 { 1061 ndr_desc->num_lanes = ND_MAX_LANES; 1062 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1063 __func__); 1064 } 1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1066 1067 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1068 struct nd_region_desc *ndr_desc) 1069 { 1070 ndr_desc->num_lanes = ND_MAX_LANES; 1071 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1072 __func__); 1073 } 1074 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1075 1076 void nvdimm_region_delete(struct nd_region *nd_region) 1077 { 1078 if (nd_region) 1079 nd_device_unregister(&nd_region->dev, ND_SYNC); 1080 } 1081 EXPORT_SYMBOL_GPL(nvdimm_region_delete); 1082 1083 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1084 { 1085 int rc = 0; 1086 1087 if (!nd_region->flush) 1088 rc = generic_nvdimm_flush(nd_region); 1089 else { 1090 if (nd_region->flush(nd_region, bio)) 1091 rc = -EIO; 1092 } 1093 1094 return rc; 1095 } 1096 /** 1097 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media 1098 * @nd_region: interleaved pmem region 1099 */ 1100 int generic_nvdimm_flush(struct nd_region *nd_region) 1101 { 1102 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1103 int i, idx; 1104 1105 /* 1106 * Try to encourage some diversity in flush hint addresses 1107 * across cpus assuming a limited number of flush hints. 1108 */ 1109 idx = this_cpu_read(flush_idx); 1110 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1111 1112 /* 1113 * The pmem_wmb() is needed to 'sfence' all 1114 * previous writes such that they are architecturally visible for 1115 * the platform buffer flush. Note that we've already arranged for pmem 1116 * writes to avoid the cache via memcpy_flushcache(). The final 1117 * wmb() ensures ordering for the NVDIMM flush write. 1118 */ 1119 pmem_wmb(); 1120 for (i = 0; i < nd_region->ndr_mappings; i++) 1121 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1122 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1123 wmb(); 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(nvdimm_flush); 1128 1129 /** 1130 * nvdimm_has_flush - determine write flushing requirements 1131 * @nd_region: interleaved pmem region 1132 * 1133 * Returns 1 if writes require flushing 1134 * Returns 0 if writes do not require flushing 1135 * Returns -ENXIO if flushing capability can not be determined 1136 */ 1137 int nvdimm_has_flush(struct nd_region *nd_region) 1138 { 1139 int i; 1140 1141 /* no nvdimm or pmem api == flushing capability unknown */ 1142 if (nd_region->ndr_mappings == 0 1143 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1144 return -ENXIO; 1145 1146 /* Test if an explicit flush function is defined */ 1147 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1148 return 1; 1149 1150 /* Test if any flush hints for the region are available */ 1151 for (i = 0; i < nd_region->ndr_mappings; i++) { 1152 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1153 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1154 1155 /* flush hints present / available */ 1156 if (nvdimm->num_flush) 1157 return 1; 1158 } 1159 1160 /* 1161 * The platform defines dimm devices without hints nor explicit flush, 1162 * assume platform persistence mechanism like ADR 1163 */ 1164 return 0; 1165 } 1166 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1167 1168 int nvdimm_has_cache(struct nd_region *nd_region) 1169 { 1170 return is_nd_pmem(&nd_region->dev) && 1171 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1172 } 1173 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1174 1175 bool is_nvdimm_sync(struct nd_region *nd_region) 1176 { 1177 if (is_nd_volatile(&nd_region->dev)) 1178 return true; 1179 1180 return is_nd_pmem(&nd_region->dev) && 1181 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1182 } 1183 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1184 1185 struct conflict_context { 1186 struct nd_region *nd_region; 1187 resource_size_t start, size; 1188 }; 1189 1190 static int region_conflict(struct device *dev, void *data) 1191 { 1192 struct nd_region *nd_region; 1193 struct conflict_context *ctx = data; 1194 resource_size_t res_end, region_end, region_start; 1195 1196 if (!is_memory(dev)) 1197 return 0; 1198 1199 nd_region = to_nd_region(dev); 1200 if (nd_region == ctx->nd_region) 1201 return 0; 1202 1203 res_end = ctx->start + ctx->size; 1204 region_start = nd_region->ndr_start; 1205 region_end = region_start + nd_region->ndr_size; 1206 if (ctx->start >= region_start && ctx->start < region_end) 1207 return -EBUSY; 1208 if (res_end > region_start && res_end <= region_end) 1209 return -EBUSY; 1210 return 0; 1211 } 1212 1213 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1214 resource_size_t size) 1215 { 1216 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1217 struct conflict_context ctx = { 1218 .nd_region = nd_region, 1219 .start = start, 1220 .size = size, 1221 }; 1222 1223 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1224 } 1225