1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 memregion_free(nd_region->id); 137 if (is_nd_blk(dev)) 138 kfree(to_nd_blk_region(dev)); 139 else 140 kfree(nd_region); 141 } 142 143 struct nd_region *to_nd_region(struct device *dev) 144 { 145 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 146 147 WARN_ON(dev->type->release != nd_region_release); 148 return nd_region; 149 } 150 EXPORT_SYMBOL_GPL(to_nd_region); 151 152 struct device *nd_region_dev(struct nd_region *nd_region) 153 { 154 if (!nd_region) 155 return NULL; 156 return &nd_region->dev; 157 } 158 EXPORT_SYMBOL_GPL(nd_region_dev); 159 160 struct nd_blk_region *to_nd_blk_region(struct device *dev) 161 { 162 struct nd_region *nd_region = to_nd_region(dev); 163 164 WARN_ON(!is_nd_blk(dev)); 165 return container_of(nd_region, struct nd_blk_region, nd_region); 166 } 167 EXPORT_SYMBOL_GPL(to_nd_blk_region); 168 169 void *nd_region_provider_data(struct nd_region *nd_region) 170 { 171 return nd_region->provider_data; 172 } 173 EXPORT_SYMBOL_GPL(nd_region_provider_data); 174 175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 176 { 177 return ndbr->blk_provider_data; 178 } 179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 180 181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 182 { 183 ndbr->blk_provider_data = data; 184 } 185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 186 187 /** 188 * nd_region_to_nstype() - region to an integer namespace type 189 * @nd_region: region-device to interrogate 190 * 191 * This is the 'nstype' attribute of a region as well, an input to the 192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 193 * namespace devices with namespace drivers. 194 */ 195 int nd_region_to_nstype(struct nd_region *nd_region) 196 { 197 if (is_memory(&nd_region->dev)) { 198 u16 i, label; 199 200 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 201 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 202 struct nvdimm *nvdimm = nd_mapping->nvdimm; 203 204 if (test_bit(NDD_LABELING, &nvdimm->flags)) 205 label++; 206 } 207 if (label) 208 return ND_DEVICE_NAMESPACE_PMEM; 209 else 210 return ND_DEVICE_NAMESPACE_IO; 211 } else if (is_nd_blk(&nd_region->dev)) { 212 return ND_DEVICE_NAMESPACE_BLK; 213 } 214 215 return 0; 216 } 217 EXPORT_SYMBOL(nd_region_to_nstype); 218 219 static unsigned long long region_size(struct nd_region *nd_region) 220 { 221 if (is_memory(&nd_region->dev)) { 222 return nd_region->ndr_size; 223 } else if (nd_region->ndr_mappings == 1) { 224 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 225 226 return nd_mapping->size; 227 } 228 229 return 0; 230 } 231 232 static ssize_t size_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct nd_region *nd_region = to_nd_region(dev); 236 237 return sprintf(buf, "%llu\n", region_size(nd_region)); 238 } 239 static DEVICE_ATTR_RO(size); 240 241 static ssize_t deep_flush_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 struct nd_region *nd_region = to_nd_region(dev); 245 246 /* 247 * NOTE: in the nvdimm_has_flush() error case this attribute is 248 * not visible. 249 */ 250 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 251 } 252 253 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t len) 255 { 256 bool flush; 257 int rc = strtobool(buf, &flush); 258 struct nd_region *nd_region = to_nd_region(dev); 259 260 if (rc) 261 return rc; 262 if (!flush) 263 return -EINVAL; 264 rc = nvdimm_flush(nd_region, NULL); 265 if (rc) 266 return rc; 267 268 return len; 269 } 270 static DEVICE_ATTR_RW(deep_flush); 271 272 static ssize_t mappings_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct nd_region *nd_region = to_nd_region(dev); 276 277 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 278 } 279 static DEVICE_ATTR_RO(mappings); 280 281 static ssize_t nstype_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct nd_region *nd_region = to_nd_region(dev); 285 286 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 287 } 288 static DEVICE_ATTR_RO(nstype); 289 290 static ssize_t set_cookie_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct nd_region *nd_region = to_nd_region(dev); 294 struct nd_interleave_set *nd_set = nd_region->nd_set; 295 ssize_t rc = 0; 296 297 if (is_memory(dev) && nd_set) 298 /* pass, should be precluded by region_visible */; 299 else 300 return -ENXIO; 301 302 /* 303 * The cookie to show depends on which specification of the 304 * labels we are using. If there are not labels then default to 305 * the v1.1 namespace label cookie definition. To read all this 306 * data we need to wait for probing to settle. 307 */ 308 nd_device_lock(dev); 309 nvdimm_bus_lock(dev); 310 wait_nvdimm_bus_probe_idle(dev); 311 if (nd_region->ndr_mappings) { 312 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 313 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 314 315 if (ndd) { 316 struct nd_namespace_index *nsindex; 317 318 nsindex = to_namespace_index(ndd, ndd->ns_current); 319 rc = sprintf(buf, "%#llx\n", 320 nd_region_interleave_set_cookie(nd_region, 321 nsindex)); 322 } 323 } 324 nvdimm_bus_unlock(dev); 325 nd_device_unlock(dev); 326 327 if (rc) 328 return rc; 329 return sprintf(buf, "%#llx\n", nd_set->cookie1); 330 } 331 static DEVICE_ATTR_RO(set_cookie); 332 333 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 334 { 335 resource_size_t blk_max_overlap = 0, available, overlap; 336 int i; 337 338 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 339 340 retry: 341 available = 0; 342 overlap = blk_max_overlap; 343 for (i = 0; i < nd_region->ndr_mappings; i++) { 344 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 345 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 346 347 /* if a dimm is disabled the available capacity is zero */ 348 if (!ndd) 349 return 0; 350 351 if (is_memory(&nd_region->dev)) { 352 available += nd_pmem_available_dpa(nd_region, 353 nd_mapping, &overlap); 354 if (overlap > blk_max_overlap) { 355 blk_max_overlap = overlap; 356 goto retry; 357 } 358 } else if (is_nd_blk(&nd_region->dev)) 359 available += nd_blk_available_dpa(nd_region); 360 } 361 362 return available; 363 } 364 365 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 366 { 367 resource_size_t available = 0; 368 int i; 369 370 if (is_memory(&nd_region->dev)) 371 available = PHYS_ADDR_MAX; 372 373 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 374 for (i = 0; i < nd_region->ndr_mappings; i++) { 375 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 376 377 if (is_memory(&nd_region->dev)) 378 available = min(available, 379 nd_pmem_max_contiguous_dpa(nd_region, 380 nd_mapping)); 381 else if (is_nd_blk(&nd_region->dev)) 382 available += nd_blk_available_dpa(nd_region); 383 } 384 if (is_memory(&nd_region->dev)) 385 return available * nd_region->ndr_mappings; 386 return available; 387 } 388 389 static ssize_t available_size_show(struct device *dev, 390 struct device_attribute *attr, char *buf) 391 { 392 struct nd_region *nd_region = to_nd_region(dev); 393 unsigned long long available = 0; 394 395 /* 396 * Flush in-flight updates and grab a snapshot of the available 397 * size. Of course, this value is potentially invalidated the 398 * memory nvdimm_bus_lock() is dropped, but that's userspace's 399 * problem to not race itself. 400 */ 401 nd_device_lock(dev); 402 nvdimm_bus_lock(dev); 403 wait_nvdimm_bus_probe_idle(dev); 404 available = nd_region_available_dpa(nd_region); 405 nvdimm_bus_unlock(dev); 406 nd_device_unlock(dev); 407 408 return sprintf(buf, "%llu\n", available); 409 } 410 static DEVICE_ATTR_RO(available_size); 411 412 static ssize_t max_available_extent_show(struct device *dev, 413 struct device_attribute *attr, char *buf) 414 { 415 struct nd_region *nd_region = to_nd_region(dev); 416 unsigned long long available = 0; 417 418 nd_device_lock(dev); 419 nvdimm_bus_lock(dev); 420 wait_nvdimm_bus_probe_idle(dev); 421 available = nd_region_allocatable_dpa(nd_region); 422 nvdimm_bus_unlock(dev); 423 nd_device_unlock(dev); 424 425 return sprintf(buf, "%llu\n", available); 426 } 427 static DEVICE_ATTR_RO(max_available_extent); 428 429 static ssize_t init_namespaces_show(struct device *dev, 430 struct device_attribute *attr, char *buf) 431 { 432 struct nd_region_data *ndrd = dev_get_drvdata(dev); 433 ssize_t rc; 434 435 nvdimm_bus_lock(dev); 436 if (ndrd) 437 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 438 else 439 rc = -ENXIO; 440 nvdimm_bus_unlock(dev); 441 442 return rc; 443 } 444 static DEVICE_ATTR_RO(init_namespaces); 445 446 static ssize_t namespace_seed_show(struct device *dev, 447 struct device_attribute *attr, char *buf) 448 { 449 struct nd_region *nd_region = to_nd_region(dev); 450 ssize_t rc; 451 452 nvdimm_bus_lock(dev); 453 if (nd_region->ns_seed) 454 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 455 else 456 rc = sprintf(buf, "\n"); 457 nvdimm_bus_unlock(dev); 458 return rc; 459 } 460 static DEVICE_ATTR_RO(namespace_seed); 461 462 static ssize_t btt_seed_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct nd_region *nd_region = to_nd_region(dev); 466 ssize_t rc; 467 468 nvdimm_bus_lock(dev); 469 if (nd_region->btt_seed) 470 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 471 else 472 rc = sprintf(buf, "\n"); 473 nvdimm_bus_unlock(dev); 474 475 return rc; 476 } 477 static DEVICE_ATTR_RO(btt_seed); 478 479 static ssize_t pfn_seed_show(struct device *dev, 480 struct device_attribute *attr, char *buf) 481 { 482 struct nd_region *nd_region = to_nd_region(dev); 483 ssize_t rc; 484 485 nvdimm_bus_lock(dev); 486 if (nd_region->pfn_seed) 487 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 488 else 489 rc = sprintf(buf, "\n"); 490 nvdimm_bus_unlock(dev); 491 492 return rc; 493 } 494 static DEVICE_ATTR_RO(pfn_seed); 495 496 static ssize_t dax_seed_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct nd_region *nd_region = to_nd_region(dev); 500 ssize_t rc; 501 502 nvdimm_bus_lock(dev); 503 if (nd_region->dax_seed) 504 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 505 else 506 rc = sprintf(buf, "\n"); 507 nvdimm_bus_unlock(dev); 508 509 return rc; 510 } 511 static DEVICE_ATTR_RO(dax_seed); 512 513 static ssize_t read_only_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 struct nd_region *nd_region = to_nd_region(dev); 517 518 return sprintf(buf, "%d\n", nd_region->ro); 519 } 520 521 static int revalidate_read_only(struct device *dev, void *data) 522 { 523 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 524 return 0; 525 } 526 527 static ssize_t read_only_store(struct device *dev, 528 struct device_attribute *attr, const char *buf, size_t len) 529 { 530 bool ro; 531 int rc = strtobool(buf, &ro); 532 struct nd_region *nd_region = to_nd_region(dev); 533 534 if (rc) 535 return rc; 536 537 nd_region->ro = ro; 538 device_for_each_child(dev, NULL, revalidate_read_only); 539 return len; 540 } 541 static DEVICE_ATTR_RW(read_only); 542 543 static ssize_t align_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct nd_region *nd_region = to_nd_region(dev); 547 548 return sprintf(buf, "%#lx\n", nd_region->align); 549 } 550 551 static ssize_t align_store(struct device *dev, 552 struct device_attribute *attr, const char *buf, size_t len) 553 { 554 struct nd_region *nd_region = to_nd_region(dev); 555 unsigned long val, dpa; 556 u32 remainder; 557 int rc; 558 559 rc = kstrtoul(buf, 0, &val); 560 if (rc) 561 return rc; 562 563 if (!nd_region->ndr_mappings) 564 return -ENXIO; 565 566 /* 567 * Ensure space-align is evenly divisible by the region 568 * interleave-width because the kernel typically has no facility 569 * to determine which DIMM(s), dimm-physical-addresses, would 570 * contribute to the tail capacity in system-physical-address 571 * space for the namespace. 572 */ 573 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder); 574 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 575 || val > region_size(nd_region) || remainder) 576 return -EINVAL; 577 578 /* 579 * Given that space allocation consults this value multiple 580 * times ensure it does not change for the duration of the 581 * allocation. 582 */ 583 nvdimm_bus_lock(dev); 584 nd_region->align = val; 585 nvdimm_bus_unlock(dev); 586 587 return len; 588 } 589 static DEVICE_ATTR_RW(align); 590 591 static ssize_t region_badblocks_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct nd_region *nd_region = to_nd_region(dev); 595 ssize_t rc; 596 597 nd_device_lock(dev); 598 if (dev->driver) 599 rc = badblocks_show(&nd_region->bb, buf, 0); 600 else 601 rc = -ENXIO; 602 nd_device_unlock(dev); 603 604 return rc; 605 } 606 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 607 608 static ssize_t resource_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct nd_region *nd_region = to_nd_region(dev); 612 613 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 614 } 615 static DEVICE_ATTR_ADMIN_RO(resource); 616 617 static ssize_t persistence_domain_show(struct device *dev, 618 struct device_attribute *attr, char *buf) 619 { 620 struct nd_region *nd_region = to_nd_region(dev); 621 622 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 623 return sprintf(buf, "cpu_cache\n"); 624 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 625 return sprintf(buf, "memory_controller\n"); 626 else 627 return sprintf(buf, "\n"); 628 } 629 static DEVICE_ATTR_RO(persistence_domain); 630 631 static struct attribute *nd_region_attributes[] = { 632 &dev_attr_size.attr, 633 &dev_attr_align.attr, 634 &dev_attr_nstype.attr, 635 &dev_attr_mappings.attr, 636 &dev_attr_btt_seed.attr, 637 &dev_attr_pfn_seed.attr, 638 &dev_attr_dax_seed.attr, 639 &dev_attr_deep_flush.attr, 640 &dev_attr_read_only.attr, 641 &dev_attr_set_cookie.attr, 642 &dev_attr_available_size.attr, 643 &dev_attr_max_available_extent.attr, 644 &dev_attr_namespace_seed.attr, 645 &dev_attr_init_namespaces.attr, 646 &dev_attr_badblocks.attr, 647 &dev_attr_resource.attr, 648 &dev_attr_persistence_domain.attr, 649 NULL, 650 }; 651 652 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 653 { 654 struct device *dev = container_of(kobj, typeof(*dev), kobj); 655 struct nd_region *nd_region = to_nd_region(dev); 656 struct nd_interleave_set *nd_set = nd_region->nd_set; 657 int type = nd_region_to_nstype(nd_region); 658 659 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 660 return 0; 661 662 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 663 return 0; 664 665 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 666 return 0; 667 668 if (a == &dev_attr_resource.attr && !is_memory(dev)) 669 return 0; 670 671 if (a == &dev_attr_deep_flush.attr) { 672 int has_flush = nvdimm_has_flush(nd_region); 673 674 if (has_flush == 1) 675 return a->mode; 676 else if (has_flush == 0) 677 return 0444; 678 else 679 return 0; 680 } 681 682 if (a == &dev_attr_persistence_domain.attr) { 683 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 684 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 685 return 0; 686 return a->mode; 687 } 688 689 if (a == &dev_attr_align.attr) 690 return a->mode; 691 692 if (a != &dev_attr_set_cookie.attr 693 && a != &dev_attr_available_size.attr) 694 return a->mode; 695 696 if ((type == ND_DEVICE_NAMESPACE_PMEM 697 || type == ND_DEVICE_NAMESPACE_BLK) 698 && a == &dev_attr_available_size.attr) 699 return a->mode; 700 else if (is_memory(dev) && nd_set) 701 return a->mode; 702 703 return 0; 704 } 705 706 static ssize_t mappingN(struct device *dev, char *buf, int n) 707 { 708 struct nd_region *nd_region = to_nd_region(dev); 709 struct nd_mapping *nd_mapping; 710 struct nvdimm *nvdimm; 711 712 if (n >= nd_region->ndr_mappings) 713 return -ENXIO; 714 nd_mapping = &nd_region->mapping[n]; 715 nvdimm = nd_mapping->nvdimm; 716 717 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 718 nd_mapping->start, nd_mapping->size, 719 nd_mapping->position); 720 } 721 722 #define REGION_MAPPING(idx) \ 723 static ssize_t mapping##idx##_show(struct device *dev, \ 724 struct device_attribute *attr, char *buf) \ 725 { \ 726 return mappingN(dev, buf, idx); \ 727 } \ 728 static DEVICE_ATTR_RO(mapping##idx) 729 730 /* 731 * 32 should be enough for a while, even in the presence of socket 732 * interleave a 32-way interleave set is a degenerate case. 733 */ 734 REGION_MAPPING(0); 735 REGION_MAPPING(1); 736 REGION_MAPPING(2); 737 REGION_MAPPING(3); 738 REGION_MAPPING(4); 739 REGION_MAPPING(5); 740 REGION_MAPPING(6); 741 REGION_MAPPING(7); 742 REGION_MAPPING(8); 743 REGION_MAPPING(9); 744 REGION_MAPPING(10); 745 REGION_MAPPING(11); 746 REGION_MAPPING(12); 747 REGION_MAPPING(13); 748 REGION_MAPPING(14); 749 REGION_MAPPING(15); 750 REGION_MAPPING(16); 751 REGION_MAPPING(17); 752 REGION_MAPPING(18); 753 REGION_MAPPING(19); 754 REGION_MAPPING(20); 755 REGION_MAPPING(21); 756 REGION_MAPPING(22); 757 REGION_MAPPING(23); 758 REGION_MAPPING(24); 759 REGION_MAPPING(25); 760 REGION_MAPPING(26); 761 REGION_MAPPING(27); 762 REGION_MAPPING(28); 763 REGION_MAPPING(29); 764 REGION_MAPPING(30); 765 REGION_MAPPING(31); 766 767 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 768 { 769 struct device *dev = container_of(kobj, struct device, kobj); 770 struct nd_region *nd_region = to_nd_region(dev); 771 772 if (n < nd_region->ndr_mappings) 773 return a->mode; 774 return 0; 775 } 776 777 static struct attribute *mapping_attributes[] = { 778 &dev_attr_mapping0.attr, 779 &dev_attr_mapping1.attr, 780 &dev_attr_mapping2.attr, 781 &dev_attr_mapping3.attr, 782 &dev_attr_mapping4.attr, 783 &dev_attr_mapping5.attr, 784 &dev_attr_mapping6.attr, 785 &dev_attr_mapping7.attr, 786 &dev_attr_mapping8.attr, 787 &dev_attr_mapping9.attr, 788 &dev_attr_mapping10.attr, 789 &dev_attr_mapping11.attr, 790 &dev_attr_mapping12.attr, 791 &dev_attr_mapping13.attr, 792 &dev_attr_mapping14.attr, 793 &dev_attr_mapping15.attr, 794 &dev_attr_mapping16.attr, 795 &dev_attr_mapping17.attr, 796 &dev_attr_mapping18.attr, 797 &dev_attr_mapping19.attr, 798 &dev_attr_mapping20.attr, 799 &dev_attr_mapping21.attr, 800 &dev_attr_mapping22.attr, 801 &dev_attr_mapping23.attr, 802 &dev_attr_mapping24.attr, 803 &dev_attr_mapping25.attr, 804 &dev_attr_mapping26.attr, 805 &dev_attr_mapping27.attr, 806 &dev_attr_mapping28.attr, 807 &dev_attr_mapping29.attr, 808 &dev_attr_mapping30.attr, 809 &dev_attr_mapping31.attr, 810 NULL, 811 }; 812 813 static const struct attribute_group nd_mapping_attribute_group = { 814 .is_visible = mapping_visible, 815 .attrs = mapping_attributes, 816 }; 817 818 static const struct attribute_group nd_region_attribute_group = { 819 .attrs = nd_region_attributes, 820 .is_visible = region_visible, 821 }; 822 823 static const struct attribute_group *nd_region_attribute_groups[] = { 824 &nd_device_attribute_group, 825 &nd_region_attribute_group, 826 &nd_numa_attribute_group, 827 &nd_mapping_attribute_group, 828 NULL, 829 }; 830 831 static const struct device_type nd_blk_device_type = { 832 .name = "nd_blk", 833 .release = nd_region_release, 834 .groups = nd_region_attribute_groups, 835 }; 836 837 static const struct device_type nd_pmem_device_type = { 838 .name = "nd_pmem", 839 .release = nd_region_release, 840 .groups = nd_region_attribute_groups, 841 }; 842 843 static const struct device_type nd_volatile_device_type = { 844 .name = "nd_volatile", 845 .release = nd_region_release, 846 .groups = nd_region_attribute_groups, 847 }; 848 849 bool is_nd_pmem(struct device *dev) 850 { 851 return dev ? dev->type == &nd_pmem_device_type : false; 852 } 853 854 bool is_nd_blk(struct device *dev) 855 { 856 return dev ? dev->type == &nd_blk_device_type : false; 857 } 858 859 bool is_nd_volatile(struct device *dev) 860 { 861 return dev ? dev->type == &nd_volatile_device_type : false; 862 } 863 864 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 865 struct nd_namespace_index *nsindex) 866 { 867 struct nd_interleave_set *nd_set = nd_region->nd_set; 868 869 if (!nd_set) 870 return 0; 871 872 if (nsindex && __le16_to_cpu(nsindex->major) == 1 873 && __le16_to_cpu(nsindex->minor) == 1) 874 return nd_set->cookie1; 875 return nd_set->cookie2; 876 } 877 878 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 879 { 880 struct nd_interleave_set *nd_set = nd_region->nd_set; 881 882 if (nd_set) 883 return nd_set->altcookie; 884 return 0; 885 } 886 887 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 888 { 889 struct nd_label_ent *label_ent, *e; 890 891 lockdep_assert_held(&nd_mapping->lock); 892 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 893 list_del(&label_ent->list); 894 kfree(label_ent); 895 } 896 } 897 898 /* 899 * When a namespace is activated create new seeds for the next 900 * namespace, or namespace-personality to be configured. 901 */ 902 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 903 { 904 nvdimm_bus_lock(dev); 905 if (nd_region->ns_seed == dev) { 906 nd_region_create_ns_seed(nd_region); 907 } else if (is_nd_btt(dev)) { 908 struct nd_btt *nd_btt = to_nd_btt(dev); 909 910 if (nd_region->btt_seed == dev) 911 nd_region_create_btt_seed(nd_region); 912 if (nd_region->ns_seed == &nd_btt->ndns->dev) 913 nd_region_create_ns_seed(nd_region); 914 } else if (is_nd_pfn(dev)) { 915 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 916 917 if (nd_region->pfn_seed == dev) 918 nd_region_create_pfn_seed(nd_region); 919 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 920 nd_region_create_ns_seed(nd_region); 921 } else if (is_nd_dax(dev)) { 922 struct nd_dax *nd_dax = to_nd_dax(dev); 923 924 if (nd_region->dax_seed == dev) 925 nd_region_create_dax_seed(nd_region); 926 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 927 nd_region_create_ns_seed(nd_region); 928 } 929 nvdimm_bus_unlock(dev); 930 } 931 932 int nd_blk_region_init(struct nd_region *nd_region) 933 { 934 struct device *dev = &nd_region->dev; 935 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 936 937 if (!is_nd_blk(dev)) 938 return 0; 939 940 if (nd_region->ndr_mappings < 1) { 941 dev_dbg(dev, "invalid BLK region\n"); 942 return -ENXIO; 943 } 944 945 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 946 } 947 948 /** 949 * nd_region_acquire_lane - allocate and lock a lane 950 * @nd_region: region id and number of lanes possible 951 * 952 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 953 * We optimize for the common case where there are 256 lanes, one 954 * per-cpu. For larger systems we need to lock to share lanes. For now 955 * this implementation assumes the cost of maintaining an allocator for 956 * free lanes is on the order of the lock hold time, so it implements a 957 * static lane = cpu % num_lanes mapping. 958 * 959 * In the case of a BTT instance on top of a BLK namespace a lane may be 960 * acquired recursively. We lock on the first instance. 961 * 962 * In the case of a BTT instance on top of PMEM, we only acquire a lane 963 * for the BTT metadata updates. 964 */ 965 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 966 { 967 unsigned int cpu, lane; 968 969 cpu = get_cpu(); 970 if (nd_region->num_lanes < nr_cpu_ids) { 971 struct nd_percpu_lane *ndl_lock, *ndl_count; 972 973 lane = cpu % nd_region->num_lanes; 974 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 975 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 976 if (ndl_count->count++ == 0) 977 spin_lock(&ndl_lock->lock); 978 } else 979 lane = cpu; 980 981 return lane; 982 } 983 EXPORT_SYMBOL(nd_region_acquire_lane); 984 985 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 986 { 987 if (nd_region->num_lanes < nr_cpu_ids) { 988 unsigned int cpu = get_cpu(); 989 struct nd_percpu_lane *ndl_lock, *ndl_count; 990 991 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 992 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 993 if (--ndl_count->count == 0) 994 spin_unlock(&ndl_lock->lock); 995 put_cpu(); 996 } 997 put_cpu(); 998 } 999 EXPORT_SYMBOL(nd_region_release_lane); 1000 1001 /* 1002 * PowerPC requires this alignment for memremap_pages(). All other archs 1003 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 1004 */ 1005 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 1006 1007 static unsigned long default_align(struct nd_region *nd_region) 1008 { 1009 unsigned long align; 1010 int i, mappings; 1011 u32 remainder; 1012 1013 if (is_nd_blk(&nd_region->dev)) 1014 align = PAGE_SIZE; 1015 else 1016 align = MEMREMAP_COMPAT_ALIGN_MAX; 1017 1018 for (i = 0; i < nd_region->ndr_mappings; i++) { 1019 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1020 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1021 1022 if (test_bit(NDD_ALIASING, &nvdimm->flags)) { 1023 align = MEMREMAP_COMPAT_ALIGN_MAX; 1024 break; 1025 } 1026 } 1027 1028 mappings = max_t(u16, 1, nd_region->ndr_mappings); 1029 div_u64_rem(align, mappings, &remainder); 1030 if (remainder) 1031 align *= mappings; 1032 1033 return align; 1034 } 1035 1036 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 1037 struct nd_region_desc *ndr_desc, 1038 const struct device_type *dev_type, const char *caller) 1039 { 1040 struct nd_region *nd_region; 1041 struct device *dev; 1042 void *region_buf; 1043 unsigned int i; 1044 int ro = 0; 1045 1046 for (i = 0; i < ndr_desc->num_mappings; i++) { 1047 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1048 struct nvdimm *nvdimm = mapping->nvdimm; 1049 1050 if ((mapping->start | mapping->size) % PAGE_SIZE) { 1051 dev_err(&nvdimm_bus->dev, 1052 "%s: %s mapping%d is not %ld aligned\n", 1053 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 1054 return NULL; 1055 } 1056 1057 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 1058 ro = 1; 1059 1060 if (test_bit(NDD_NOBLK, &nvdimm->flags) 1061 && dev_type == &nd_blk_device_type) { 1062 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", 1063 caller, dev_name(&nvdimm->dev), i); 1064 return NULL; 1065 } 1066 } 1067 1068 if (dev_type == &nd_blk_device_type) { 1069 struct nd_blk_region_desc *ndbr_desc; 1070 struct nd_blk_region *ndbr; 1071 1072 ndbr_desc = to_blk_region_desc(ndr_desc); 1073 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 1074 * ndr_desc->num_mappings, 1075 GFP_KERNEL); 1076 if (ndbr) { 1077 nd_region = &ndbr->nd_region; 1078 ndbr->enable = ndbr_desc->enable; 1079 ndbr->do_io = ndbr_desc->do_io; 1080 } 1081 region_buf = ndbr; 1082 } else { 1083 nd_region = kzalloc(struct_size(nd_region, mapping, 1084 ndr_desc->num_mappings), 1085 GFP_KERNEL); 1086 region_buf = nd_region; 1087 } 1088 1089 if (!region_buf) 1090 return NULL; 1091 nd_region->id = memregion_alloc(GFP_KERNEL); 1092 if (nd_region->id < 0) 1093 goto err_id; 1094 1095 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1096 if (!nd_region->lane) 1097 goto err_percpu; 1098 1099 for (i = 0; i < nr_cpu_ids; i++) { 1100 struct nd_percpu_lane *ndl; 1101 1102 ndl = per_cpu_ptr(nd_region->lane, i); 1103 spin_lock_init(&ndl->lock); 1104 ndl->count = 0; 1105 } 1106 1107 for (i = 0; i < ndr_desc->num_mappings; i++) { 1108 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1109 struct nvdimm *nvdimm = mapping->nvdimm; 1110 1111 nd_region->mapping[i].nvdimm = nvdimm; 1112 nd_region->mapping[i].start = mapping->start; 1113 nd_region->mapping[i].size = mapping->size; 1114 nd_region->mapping[i].position = mapping->position; 1115 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1116 mutex_init(&nd_region->mapping[i].lock); 1117 1118 get_device(&nvdimm->dev); 1119 } 1120 nd_region->ndr_mappings = ndr_desc->num_mappings; 1121 nd_region->provider_data = ndr_desc->provider_data; 1122 nd_region->nd_set = ndr_desc->nd_set; 1123 nd_region->num_lanes = ndr_desc->num_lanes; 1124 nd_region->flags = ndr_desc->flags; 1125 nd_region->ro = ro; 1126 nd_region->numa_node = ndr_desc->numa_node; 1127 nd_region->target_node = ndr_desc->target_node; 1128 ida_init(&nd_region->ns_ida); 1129 ida_init(&nd_region->btt_ida); 1130 ida_init(&nd_region->pfn_ida); 1131 ida_init(&nd_region->dax_ida); 1132 dev = &nd_region->dev; 1133 dev_set_name(dev, "region%d", nd_region->id); 1134 dev->parent = &nvdimm_bus->dev; 1135 dev->type = dev_type; 1136 dev->groups = ndr_desc->attr_groups; 1137 dev->of_node = ndr_desc->of_node; 1138 nd_region->ndr_size = resource_size(ndr_desc->res); 1139 nd_region->ndr_start = ndr_desc->res->start; 1140 nd_region->align = default_align(nd_region); 1141 if (ndr_desc->flush) 1142 nd_region->flush = ndr_desc->flush; 1143 else 1144 nd_region->flush = NULL; 1145 1146 nd_device_register(dev); 1147 1148 return nd_region; 1149 1150 err_percpu: 1151 memregion_free(nd_region->id); 1152 err_id: 1153 kfree(region_buf); 1154 return NULL; 1155 } 1156 1157 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1158 struct nd_region_desc *ndr_desc) 1159 { 1160 ndr_desc->num_lanes = ND_MAX_LANES; 1161 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1162 __func__); 1163 } 1164 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1165 1166 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1167 struct nd_region_desc *ndr_desc) 1168 { 1169 if (ndr_desc->num_mappings > 1) 1170 return NULL; 1171 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1172 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1173 __func__); 1174 } 1175 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1176 1177 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1178 struct nd_region_desc *ndr_desc) 1179 { 1180 ndr_desc->num_lanes = ND_MAX_LANES; 1181 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1182 __func__); 1183 } 1184 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1185 1186 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1187 { 1188 int rc = 0; 1189 1190 if (!nd_region->flush) 1191 rc = generic_nvdimm_flush(nd_region); 1192 else { 1193 if (nd_region->flush(nd_region, bio)) 1194 rc = -EIO; 1195 } 1196 1197 return rc; 1198 } 1199 /** 1200 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1201 * @nd_region: blk or interleaved pmem region 1202 */ 1203 int generic_nvdimm_flush(struct nd_region *nd_region) 1204 { 1205 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1206 int i, idx; 1207 1208 /* 1209 * Try to encourage some diversity in flush hint addresses 1210 * across cpus assuming a limited number of flush hints. 1211 */ 1212 idx = this_cpu_read(flush_idx); 1213 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1214 1215 /* 1216 * The pmem_wmb() is needed to 'sfence' all 1217 * previous writes such that they are architecturally visible for 1218 * the platform buffer flush. Note that we've already arranged for pmem 1219 * writes to avoid the cache via memcpy_flushcache(). The final 1220 * wmb() ensures ordering for the NVDIMM flush write. 1221 */ 1222 pmem_wmb(); 1223 for (i = 0; i < nd_region->ndr_mappings; i++) 1224 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1225 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1226 wmb(); 1227 1228 return 0; 1229 } 1230 EXPORT_SYMBOL_GPL(nvdimm_flush); 1231 1232 /** 1233 * nvdimm_has_flush - determine write flushing requirements 1234 * @nd_region: blk or interleaved pmem region 1235 * 1236 * Returns 1 if writes require flushing 1237 * Returns 0 if writes do not require flushing 1238 * Returns -ENXIO if flushing capability can not be determined 1239 */ 1240 int nvdimm_has_flush(struct nd_region *nd_region) 1241 { 1242 int i; 1243 1244 /* no nvdimm or pmem api == flushing capability unknown */ 1245 if (nd_region->ndr_mappings == 0 1246 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1247 return -ENXIO; 1248 1249 /* Test if an explicit flush function is defined */ 1250 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1251 return 1; 1252 1253 /* Test if any flush hints for the region are available */ 1254 for (i = 0; i < nd_region->ndr_mappings; i++) { 1255 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1256 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1257 1258 /* flush hints present / available */ 1259 if (nvdimm->num_flush) 1260 return 1; 1261 } 1262 1263 /* 1264 * The platform defines dimm devices without hints nor explicit flush, 1265 * assume platform persistence mechanism like ADR 1266 */ 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1270 1271 int nvdimm_has_cache(struct nd_region *nd_region) 1272 { 1273 return is_nd_pmem(&nd_region->dev) && 1274 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1275 } 1276 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1277 1278 bool is_nvdimm_sync(struct nd_region *nd_region) 1279 { 1280 if (is_nd_volatile(&nd_region->dev)) 1281 return true; 1282 1283 return is_nd_pmem(&nd_region->dev) && 1284 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1285 } 1286 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1287 1288 struct conflict_context { 1289 struct nd_region *nd_region; 1290 resource_size_t start, size; 1291 }; 1292 1293 static int region_conflict(struct device *dev, void *data) 1294 { 1295 struct nd_region *nd_region; 1296 struct conflict_context *ctx = data; 1297 resource_size_t res_end, region_end, region_start; 1298 1299 if (!is_memory(dev)) 1300 return 0; 1301 1302 nd_region = to_nd_region(dev); 1303 if (nd_region == ctx->nd_region) 1304 return 0; 1305 1306 res_end = ctx->start + ctx->size; 1307 region_start = nd_region->ndr_start; 1308 region_end = region_start + nd_region->ndr_size; 1309 if (ctx->start >= region_start && ctx->start < region_end) 1310 return -EBUSY; 1311 if (res_end > region_start && res_end <= region_end) 1312 return -EBUSY; 1313 return 0; 1314 } 1315 1316 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1317 resource_size_t size) 1318 { 1319 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1320 struct conflict_context ctx = { 1321 .nd_region = nd_region, 1322 .start = start, 1323 .size = size, 1324 }; 1325 1326 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1327 } 1328