1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/highmem.h> 7 #include <linux/sched.h> 8 #include <linux/slab.h> 9 #include <linux/hash.h> 10 #include <linux/sort.h> 11 #include <linux/io.h> 12 #include <linux/nd.h> 13 #include "nd-core.h" 14 #include "nd.h" 15 16 /* 17 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 18 * irrelevant. 19 */ 20 #include <linux/io-64-nonatomic-hi-lo.h> 21 22 static DEFINE_IDA(region_ida); 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 ida_simple_remove(®ion_ida, nd_region->id); 137 if (is_nd_blk(dev)) 138 kfree(to_nd_blk_region(dev)); 139 else 140 kfree(nd_region); 141 } 142 143 static struct device_type nd_blk_device_type = { 144 .name = "nd_blk", 145 .release = nd_region_release, 146 }; 147 148 static struct device_type nd_pmem_device_type = { 149 .name = "nd_pmem", 150 .release = nd_region_release, 151 }; 152 153 static struct device_type nd_volatile_device_type = { 154 .name = "nd_volatile", 155 .release = nd_region_release, 156 }; 157 158 bool is_nd_pmem(struct device *dev) 159 { 160 return dev ? dev->type == &nd_pmem_device_type : false; 161 } 162 163 bool is_nd_blk(struct device *dev) 164 { 165 return dev ? dev->type == &nd_blk_device_type : false; 166 } 167 168 bool is_nd_volatile(struct device *dev) 169 { 170 return dev ? dev->type == &nd_volatile_device_type : false; 171 } 172 173 struct nd_region *to_nd_region(struct device *dev) 174 { 175 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 176 177 WARN_ON(dev->type->release != nd_region_release); 178 return nd_region; 179 } 180 EXPORT_SYMBOL_GPL(to_nd_region); 181 182 struct device *nd_region_dev(struct nd_region *nd_region) 183 { 184 if (!nd_region) 185 return NULL; 186 return &nd_region->dev; 187 } 188 EXPORT_SYMBOL_GPL(nd_region_dev); 189 190 struct nd_blk_region *to_nd_blk_region(struct device *dev) 191 { 192 struct nd_region *nd_region = to_nd_region(dev); 193 194 WARN_ON(!is_nd_blk(dev)); 195 return container_of(nd_region, struct nd_blk_region, nd_region); 196 } 197 EXPORT_SYMBOL_GPL(to_nd_blk_region); 198 199 void *nd_region_provider_data(struct nd_region *nd_region) 200 { 201 return nd_region->provider_data; 202 } 203 EXPORT_SYMBOL_GPL(nd_region_provider_data); 204 205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 206 { 207 return ndbr->blk_provider_data; 208 } 209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 210 211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 212 { 213 ndbr->blk_provider_data = data; 214 } 215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 216 217 /** 218 * nd_region_to_nstype() - region to an integer namespace type 219 * @nd_region: region-device to interrogate 220 * 221 * This is the 'nstype' attribute of a region as well, an input to the 222 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 223 * namespace devices with namespace drivers. 224 */ 225 int nd_region_to_nstype(struct nd_region *nd_region) 226 { 227 if (is_memory(&nd_region->dev)) { 228 u16 i, alias; 229 230 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 231 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 232 struct nvdimm *nvdimm = nd_mapping->nvdimm; 233 234 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 235 alias++; 236 } 237 if (alias) 238 return ND_DEVICE_NAMESPACE_PMEM; 239 else 240 return ND_DEVICE_NAMESPACE_IO; 241 } else if (is_nd_blk(&nd_region->dev)) { 242 return ND_DEVICE_NAMESPACE_BLK; 243 } 244 245 return 0; 246 } 247 EXPORT_SYMBOL(nd_region_to_nstype); 248 249 static ssize_t size_show(struct device *dev, 250 struct device_attribute *attr, char *buf) 251 { 252 struct nd_region *nd_region = to_nd_region(dev); 253 unsigned long long size = 0; 254 255 if (is_memory(dev)) { 256 size = nd_region->ndr_size; 257 } else if (nd_region->ndr_mappings == 1) { 258 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 259 260 size = nd_mapping->size; 261 } 262 263 return sprintf(buf, "%llu\n", size); 264 } 265 static DEVICE_ATTR_RO(size); 266 267 static ssize_t deep_flush_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct nd_region *nd_region = to_nd_region(dev); 271 272 /* 273 * NOTE: in the nvdimm_has_flush() error case this attribute is 274 * not visible. 275 */ 276 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 277 } 278 279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 280 const char *buf, size_t len) 281 { 282 bool flush; 283 int rc = strtobool(buf, &flush); 284 struct nd_region *nd_region = to_nd_region(dev); 285 286 if (rc) 287 return rc; 288 if (!flush) 289 return -EINVAL; 290 nvdimm_flush(nd_region); 291 292 return len; 293 } 294 static DEVICE_ATTR_RW(deep_flush); 295 296 static ssize_t mappings_show(struct device *dev, 297 struct device_attribute *attr, char *buf) 298 { 299 struct nd_region *nd_region = to_nd_region(dev); 300 301 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 302 } 303 static DEVICE_ATTR_RO(mappings); 304 305 static ssize_t nstype_show(struct device *dev, 306 struct device_attribute *attr, char *buf) 307 { 308 struct nd_region *nd_region = to_nd_region(dev); 309 310 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 311 } 312 static DEVICE_ATTR_RO(nstype); 313 314 static ssize_t set_cookie_show(struct device *dev, 315 struct device_attribute *attr, char *buf) 316 { 317 struct nd_region *nd_region = to_nd_region(dev); 318 struct nd_interleave_set *nd_set = nd_region->nd_set; 319 ssize_t rc = 0; 320 321 if (is_memory(dev) && nd_set) 322 /* pass, should be precluded by region_visible */; 323 else 324 return -ENXIO; 325 326 /* 327 * The cookie to show depends on which specification of the 328 * labels we are using. If there are not labels then default to 329 * the v1.1 namespace label cookie definition. To read all this 330 * data we need to wait for probing to settle. 331 */ 332 device_lock(dev); 333 nvdimm_bus_lock(dev); 334 wait_nvdimm_bus_probe_idle(dev); 335 if (nd_region->ndr_mappings) { 336 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 337 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 338 339 if (ndd) { 340 struct nd_namespace_index *nsindex; 341 342 nsindex = to_namespace_index(ndd, ndd->ns_current); 343 rc = sprintf(buf, "%#llx\n", 344 nd_region_interleave_set_cookie(nd_region, 345 nsindex)); 346 } 347 } 348 nvdimm_bus_unlock(dev); 349 device_unlock(dev); 350 351 if (rc) 352 return rc; 353 return sprintf(buf, "%#llx\n", nd_set->cookie1); 354 } 355 static DEVICE_ATTR_RO(set_cookie); 356 357 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 358 { 359 resource_size_t blk_max_overlap = 0, available, overlap; 360 int i; 361 362 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 363 364 retry: 365 available = 0; 366 overlap = blk_max_overlap; 367 for (i = 0; i < nd_region->ndr_mappings; i++) { 368 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 369 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 370 371 /* if a dimm is disabled the available capacity is zero */ 372 if (!ndd) 373 return 0; 374 375 if (is_memory(&nd_region->dev)) { 376 available += nd_pmem_available_dpa(nd_region, 377 nd_mapping, &overlap); 378 if (overlap > blk_max_overlap) { 379 blk_max_overlap = overlap; 380 goto retry; 381 } 382 } else if (is_nd_blk(&nd_region->dev)) 383 available += nd_blk_available_dpa(nd_region); 384 } 385 386 return available; 387 } 388 389 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 390 { 391 resource_size_t available = 0; 392 int i; 393 394 if (is_memory(&nd_region->dev)) 395 available = PHYS_ADDR_MAX; 396 397 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 398 for (i = 0; i < nd_region->ndr_mappings; i++) { 399 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 400 401 if (is_memory(&nd_region->dev)) 402 available = min(available, 403 nd_pmem_max_contiguous_dpa(nd_region, 404 nd_mapping)); 405 else if (is_nd_blk(&nd_region->dev)) 406 available += nd_blk_available_dpa(nd_region); 407 } 408 if (is_memory(&nd_region->dev)) 409 return available * nd_region->ndr_mappings; 410 return available; 411 } 412 413 static ssize_t available_size_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct nd_region *nd_region = to_nd_region(dev); 417 unsigned long long available = 0; 418 419 /* 420 * Flush in-flight updates and grab a snapshot of the available 421 * size. Of course, this value is potentially invalidated the 422 * memory nvdimm_bus_lock() is dropped, but that's userspace's 423 * problem to not race itself. 424 */ 425 nvdimm_bus_lock(dev); 426 wait_nvdimm_bus_probe_idle(dev); 427 available = nd_region_available_dpa(nd_region); 428 nvdimm_bus_unlock(dev); 429 430 return sprintf(buf, "%llu\n", available); 431 } 432 static DEVICE_ATTR_RO(available_size); 433 434 static ssize_t max_available_extent_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 struct nd_region *nd_region = to_nd_region(dev); 438 unsigned long long available = 0; 439 440 nvdimm_bus_lock(dev); 441 wait_nvdimm_bus_probe_idle(dev); 442 available = nd_region_allocatable_dpa(nd_region); 443 nvdimm_bus_unlock(dev); 444 445 return sprintf(buf, "%llu\n", available); 446 } 447 static DEVICE_ATTR_RO(max_available_extent); 448 449 static ssize_t init_namespaces_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct nd_region_data *ndrd = dev_get_drvdata(dev); 453 ssize_t rc; 454 455 nvdimm_bus_lock(dev); 456 if (ndrd) 457 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 458 else 459 rc = -ENXIO; 460 nvdimm_bus_unlock(dev); 461 462 return rc; 463 } 464 static DEVICE_ATTR_RO(init_namespaces); 465 466 static ssize_t namespace_seed_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct nd_region *nd_region = to_nd_region(dev); 470 ssize_t rc; 471 472 nvdimm_bus_lock(dev); 473 if (nd_region->ns_seed) 474 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 475 else 476 rc = sprintf(buf, "\n"); 477 nvdimm_bus_unlock(dev); 478 return rc; 479 } 480 static DEVICE_ATTR_RO(namespace_seed); 481 482 static ssize_t btt_seed_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct nd_region *nd_region = to_nd_region(dev); 486 ssize_t rc; 487 488 nvdimm_bus_lock(dev); 489 if (nd_region->btt_seed) 490 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 491 else 492 rc = sprintf(buf, "\n"); 493 nvdimm_bus_unlock(dev); 494 495 return rc; 496 } 497 static DEVICE_ATTR_RO(btt_seed); 498 499 static ssize_t pfn_seed_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct nd_region *nd_region = to_nd_region(dev); 503 ssize_t rc; 504 505 nvdimm_bus_lock(dev); 506 if (nd_region->pfn_seed) 507 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 508 else 509 rc = sprintf(buf, "\n"); 510 nvdimm_bus_unlock(dev); 511 512 return rc; 513 } 514 static DEVICE_ATTR_RO(pfn_seed); 515 516 static ssize_t dax_seed_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct nd_region *nd_region = to_nd_region(dev); 520 ssize_t rc; 521 522 nvdimm_bus_lock(dev); 523 if (nd_region->dax_seed) 524 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 525 else 526 rc = sprintf(buf, "\n"); 527 nvdimm_bus_unlock(dev); 528 529 return rc; 530 } 531 static DEVICE_ATTR_RO(dax_seed); 532 533 static ssize_t read_only_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct nd_region *nd_region = to_nd_region(dev); 537 538 return sprintf(buf, "%d\n", nd_region->ro); 539 } 540 541 static ssize_t read_only_store(struct device *dev, 542 struct device_attribute *attr, const char *buf, size_t len) 543 { 544 bool ro; 545 int rc = strtobool(buf, &ro); 546 struct nd_region *nd_region = to_nd_region(dev); 547 548 if (rc) 549 return rc; 550 551 nd_region->ro = ro; 552 return len; 553 } 554 static DEVICE_ATTR_RW(read_only); 555 556 static ssize_t region_badblocks_show(struct device *dev, 557 struct device_attribute *attr, char *buf) 558 { 559 struct nd_region *nd_region = to_nd_region(dev); 560 ssize_t rc; 561 562 device_lock(dev); 563 if (dev->driver) 564 rc = badblocks_show(&nd_region->bb, buf, 0); 565 else 566 rc = -ENXIO; 567 device_unlock(dev); 568 569 return rc; 570 } 571 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 572 573 static ssize_t resource_show(struct device *dev, 574 struct device_attribute *attr, char *buf) 575 { 576 struct nd_region *nd_region = to_nd_region(dev); 577 578 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 579 } 580 static DEVICE_ATTR_RO(resource); 581 582 static ssize_t persistence_domain_show(struct device *dev, 583 struct device_attribute *attr, char *buf) 584 { 585 struct nd_region *nd_region = to_nd_region(dev); 586 587 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 588 return sprintf(buf, "cpu_cache\n"); 589 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 590 return sprintf(buf, "memory_controller\n"); 591 else 592 return sprintf(buf, "\n"); 593 } 594 static DEVICE_ATTR_RO(persistence_domain); 595 596 static struct attribute *nd_region_attributes[] = { 597 &dev_attr_size.attr, 598 &dev_attr_nstype.attr, 599 &dev_attr_mappings.attr, 600 &dev_attr_btt_seed.attr, 601 &dev_attr_pfn_seed.attr, 602 &dev_attr_dax_seed.attr, 603 &dev_attr_deep_flush.attr, 604 &dev_attr_read_only.attr, 605 &dev_attr_set_cookie.attr, 606 &dev_attr_available_size.attr, 607 &dev_attr_max_available_extent.attr, 608 &dev_attr_namespace_seed.attr, 609 &dev_attr_init_namespaces.attr, 610 &dev_attr_badblocks.attr, 611 &dev_attr_resource.attr, 612 &dev_attr_persistence_domain.attr, 613 NULL, 614 }; 615 616 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 617 { 618 struct device *dev = container_of(kobj, typeof(*dev), kobj); 619 struct nd_region *nd_region = to_nd_region(dev); 620 struct nd_interleave_set *nd_set = nd_region->nd_set; 621 int type = nd_region_to_nstype(nd_region); 622 623 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 624 return 0; 625 626 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 627 return 0; 628 629 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 630 return 0; 631 632 if (a == &dev_attr_resource.attr) { 633 if (is_nd_pmem(dev)) 634 return 0400; 635 else 636 return 0; 637 } 638 639 if (a == &dev_attr_deep_flush.attr) { 640 int has_flush = nvdimm_has_flush(nd_region); 641 642 if (has_flush == 1) 643 return a->mode; 644 else if (has_flush == 0) 645 return 0444; 646 else 647 return 0; 648 } 649 650 if (a == &dev_attr_persistence_domain.attr) { 651 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 652 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 653 return 0; 654 return a->mode; 655 } 656 657 if (a != &dev_attr_set_cookie.attr 658 && a != &dev_attr_available_size.attr) 659 return a->mode; 660 661 if ((type == ND_DEVICE_NAMESPACE_PMEM 662 || type == ND_DEVICE_NAMESPACE_BLK) 663 && a == &dev_attr_available_size.attr) 664 return a->mode; 665 else if (is_memory(dev) && nd_set) 666 return a->mode; 667 668 return 0; 669 } 670 671 struct attribute_group nd_region_attribute_group = { 672 .attrs = nd_region_attributes, 673 .is_visible = region_visible, 674 }; 675 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 676 677 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 678 struct nd_namespace_index *nsindex) 679 { 680 struct nd_interleave_set *nd_set = nd_region->nd_set; 681 682 if (!nd_set) 683 return 0; 684 685 if (nsindex && __le16_to_cpu(nsindex->major) == 1 686 && __le16_to_cpu(nsindex->minor) == 1) 687 return nd_set->cookie1; 688 return nd_set->cookie2; 689 } 690 691 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 692 { 693 struct nd_interleave_set *nd_set = nd_region->nd_set; 694 695 if (nd_set) 696 return nd_set->altcookie; 697 return 0; 698 } 699 700 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 701 { 702 struct nd_label_ent *label_ent, *e; 703 704 lockdep_assert_held(&nd_mapping->lock); 705 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 706 list_del(&label_ent->list); 707 kfree(label_ent); 708 } 709 } 710 711 /* 712 * Upon successful probe/remove, take/release a reference on the 713 * associated interleave set (if present), and plant new btt + namespace 714 * seeds. Also, on the removal of a BLK region, notify the provider to 715 * disable the region. 716 */ 717 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 718 struct device *dev, bool probe) 719 { 720 struct nd_region *nd_region; 721 722 if (!probe && is_nd_region(dev)) { 723 int i; 724 725 nd_region = to_nd_region(dev); 726 for (i = 0; i < nd_region->ndr_mappings; i++) { 727 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 728 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 729 struct nvdimm *nvdimm = nd_mapping->nvdimm; 730 731 mutex_lock(&nd_mapping->lock); 732 nd_mapping_free_labels(nd_mapping); 733 mutex_unlock(&nd_mapping->lock); 734 735 put_ndd(ndd); 736 nd_mapping->ndd = NULL; 737 if (ndd) 738 atomic_dec(&nvdimm->busy); 739 } 740 } 741 if (dev->parent && is_nd_region(dev->parent) && probe) { 742 nd_region = to_nd_region(dev->parent); 743 nvdimm_bus_lock(dev); 744 if (nd_region->ns_seed == dev) 745 nd_region_create_ns_seed(nd_region); 746 nvdimm_bus_unlock(dev); 747 } 748 if (is_nd_btt(dev) && probe) { 749 struct nd_btt *nd_btt = to_nd_btt(dev); 750 751 nd_region = to_nd_region(dev->parent); 752 nvdimm_bus_lock(dev); 753 if (nd_region->btt_seed == dev) 754 nd_region_create_btt_seed(nd_region); 755 if (nd_region->ns_seed == &nd_btt->ndns->dev) 756 nd_region_create_ns_seed(nd_region); 757 nvdimm_bus_unlock(dev); 758 } 759 if (is_nd_pfn(dev) && probe) { 760 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 761 762 nd_region = to_nd_region(dev->parent); 763 nvdimm_bus_lock(dev); 764 if (nd_region->pfn_seed == dev) 765 nd_region_create_pfn_seed(nd_region); 766 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 767 nd_region_create_ns_seed(nd_region); 768 nvdimm_bus_unlock(dev); 769 } 770 if (is_nd_dax(dev) && probe) { 771 struct nd_dax *nd_dax = to_nd_dax(dev); 772 773 nd_region = to_nd_region(dev->parent); 774 nvdimm_bus_lock(dev); 775 if (nd_region->dax_seed == dev) 776 nd_region_create_dax_seed(nd_region); 777 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 778 nd_region_create_ns_seed(nd_region); 779 nvdimm_bus_unlock(dev); 780 } 781 } 782 783 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 784 { 785 nd_region_notify_driver_action(nvdimm_bus, dev, true); 786 } 787 788 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 789 { 790 nd_region_notify_driver_action(nvdimm_bus, dev, false); 791 } 792 793 static ssize_t mappingN(struct device *dev, char *buf, int n) 794 { 795 struct nd_region *nd_region = to_nd_region(dev); 796 struct nd_mapping *nd_mapping; 797 struct nvdimm *nvdimm; 798 799 if (n >= nd_region->ndr_mappings) 800 return -ENXIO; 801 nd_mapping = &nd_region->mapping[n]; 802 nvdimm = nd_mapping->nvdimm; 803 804 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 805 nd_mapping->start, nd_mapping->size, 806 nd_mapping->position); 807 } 808 809 #define REGION_MAPPING(idx) \ 810 static ssize_t mapping##idx##_show(struct device *dev, \ 811 struct device_attribute *attr, char *buf) \ 812 { \ 813 return mappingN(dev, buf, idx); \ 814 } \ 815 static DEVICE_ATTR_RO(mapping##idx) 816 817 /* 818 * 32 should be enough for a while, even in the presence of socket 819 * interleave a 32-way interleave set is a degenerate case. 820 */ 821 REGION_MAPPING(0); 822 REGION_MAPPING(1); 823 REGION_MAPPING(2); 824 REGION_MAPPING(3); 825 REGION_MAPPING(4); 826 REGION_MAPPING(5); 827 REGION_MAPPING(6); 828 REGION_MAPPING(7); 829 REGION_MAPPING(8); 830 REGION_MAPPING(9); 831 REGION_MAPPING(10); 832 REGION_MAPPING(11); 833 REGION_MAPPING(12); 834 REGION_MAPPING(13); 835 REGION_MAPPING(14); 836 REGION_MAPPING(15); 837 REGION_MAPPING(16); 838 REGION_MAPPING(17); 839 REGION_MAPPING(18); 840 REGION_MAPPING(19); 841 REGION_MAPPING(20); 842 REGION_MAPPING(21); 843 REGION_MAPPING(22); 844 REGION_MAPPING(23); 845 REGION_MAPPING(24); 846 REGION_MAPPING(25); 847 REGION_MAPPING(26); 848 REGION_MAPPING(27); 849 REGION_MAPPING(28); 850 REGION_MAPPING(29); 851 REGION_MAPPING(30); 852 REGION_MAPPING(31); 853 854 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 855 { 856 struct device *dev = container_of(kobj, struct device, kobj); 857 struct nd_region *nd_region = to_nd_region(dev); 858 859 if (n < nd_region->ndr_mappings) 860 return a->mode; 861 return 0; 862 } 863 864 static struct attribute *mapping_attributes[] = { 865 &dev_attr_mapping0.attr, 866 &dev_attr_mapping1.attr, 867 &dev_attr_mapping2.attr, 868 &dev_attr_mapping3.attr, 869 &dev_attr_mapping4.attr, 870 &dev_attr_mapping5.attr, 871 &dev_attr_mapping6.attr, 872 &dev_attr_mapping7.attr, 873 &dev_attr_mapping8.attr, 874 &dev_attr_mapping9.attr, 875 &dev_attr_mapping10.attr, 876 &dev_attr_mapping11.attr, 877 &dev_attr_mapping12.attr, 878 &dev_attr_mapping13.attr, 879 &dev_attr_mapping14.attr, 880 &dev_attr_mapping15.attr, 881 &dev_attr_mapping16.attr, 882 &dev_attr_mapping17.attr, 883 &dev_attr_mapping18.attr, 884 &dev_attr_mapping19.attr, 885 &dev_attr_mapping20.attr, 886 &dev_attr_mapping21.attr, 887 &dev_attr_mapping22.attr, 888 &dev_attr_mapping23.attr, 889 &dev_attr_mapping24.attr, 890 &dev_attr_mapping25.attr, 891 &dev_attr_mapping26.attr, 892 &dev_attr_mapping27.attr, 893 &dev_attr_mapping28.attr, 894 &dev_attr_mapping29.attr, 895 &dev_attr_mapping30.attr, 896 &dev_attr_mapping31.attr, 897 NULL, 898 }; 899 900 struct attribute_group nd_mapping_attribute_group = { 901 .is_visible = mapping_visible, 902 .attrs = mapping_attributes, 903 }; 904 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 905 906 int nd_blk_region_init(struct nd_region *nd_region) 907 { 908 struct device *dev = &nd_region->dev; 909 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 910 911 if (!is_nd_blk(dev)) 912 return 0; 913 914 if (nd_region->ndr_mappings < 1) { 915 dev_dbg(dev, "invalid BLK region\n"); 916 return -ENXIO; 917 } 918 919 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 920 } 921 922 /** 923 * nd_region_acquire_lane - allocate and lock a lane 924 * @nd_region: region id and number of lanes possible 925 * 926 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 927 * We optimize for the common case where there are 256 lanes, one 928 * per-cpu. For larger systems we need to lock to share lanes. For now 929 * this implementation assumes the cost of maintaining an allocator for 930 * free lanes is on the order of the lock hold time, so it implements a 931 * static lane = cpu % num_lanes mapping. 932 * 933 * In the case of a BTT instance on top of a BLK namespace a lane may be 934 * acquired recursively. We lock on the first instance. 935 * 936 * In the case of a BTT instance on top of PMEM, we only acquire a lane 937 * for the BTT metadata updates. 938 */ 939 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 940 { 941 unsigned int cpu, lane; 942 943 cpu = get_cpu(); 944 if (nd_region->num_lanes < nr_cpu_ids) { 945 struct nd_percpu_lane *ndl_lock, *ndl_count; 946 947 lane = cpu % nd_region->num_lanes; 948 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 949 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 950 if (ndl_count->count++ == 0) 951 spin_lock(&ndl_lock->lock); 952 } else 953 lane = cpu; 954 955 return lane; 956 } 957 EXPORT_SYMBOL(nd_region_acquire_lane); 958 959 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 960 { 961 if (nd_region->num_lanes < nr_cpu_ids) { 962 unsigned int cpu = get_cpu(); 963 struct nd_percpu_lane *ndl_lock, *ndl_count; 964 965 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 966 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 967 if (--ndl_count->count == 0) 968 spin_unlock(&ndl_lock->lock); 969 put_cpu(); 970 } 971 put_cpu(); 972 } 973 EXPORT_SYMBOL(nd_region_release_lane); 974 975 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 976 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 977 const char *caller) 978 { 979 struct nd_region *nd_region; 980 struct device *dev; 981 void *region_buf; 982 unsigned int i; 983 int ro = 0; 984 985 for (i = 0; i < ndr_desc->num_mappings; i++) { 986 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 987 struct nvdimm *nvdimm = mapping->nvdimm; 988 989 if ((mapping->start | mapping->size) % SZ_4K) { 990 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 991 caller, dev_name(&nvdimm->dev), i); 992 993 return NULL; 994 } 995 996 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 997 ro = 1; 998 999 if (test_bit(NDD_NOBLK, &nvdimm->flags) 1000 && dev_type == &nd_blk_device_type) { 1001 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", 1002 caller, dev_name(&nvdimm->dev), i); 1003 return NULL; 1004 } 1005 } 1006 1007 if (dev_type == &nd_blk_device_type) { 1008 struct nd_blk_region_desc *ndbr_desc; 1009 struct nd_blk_region *ndbr; 1010 1011 ndbr_desc = to_blk_region_desc(ndr_desc); 1012 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 1013 * ndr_desc->num_mappings, 1014 GFP_KERNEL); 1015 if (ndbr) { 1016 nd_region = &ndbr->nd_region; 1017 ndbr->enable = ndbr_desc->enable; 1018 ndbr->do_io = ndbr_desc->do_io; 1019 } 1020 region_buf = ndbr; 1021 } else { 1022 nd_region = kzalloc(sizeof(struct nd_region) 1023 + sizeof(struct nd_mapping) 1024 * ndr_desc->num_mappings, 1025 GFP_KERNEL); 1026 region_buf = nd_region; 1027 } 1028 1029 if (!region_buf) 1030 return NULL; 1031 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 1032 if (nd_region->id < 0) 1033 goto err_id; 1034 1035 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1036 if (!nd_region->lane) 1037 goto err_percpu; 1038 1039 for (i = 0; i < nr_cpu_ids; i++) { 1040 struct nd_percpu_lane *ndl; 1041 1042 ndl = per_cpu_ptr(nd_region->lane, i); 1043 spin_lock_init(&ndl->lock); 1044 ndl->count = 0; 1045 } 1046 1047 for (i = 0; i < ndr_desc->num_mappings; i++) { 1048 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1049 struct nvdimm *nvdimm = mapping->nvdimm; 1050 1051 nd_region->mapping[i].nvdimm = nvdimm; 1052 nd_region->mapping[i].start = mapping->start; 1053 nd_region->mapping[i].size = mapping->size; 1054 nd_region->mapping[i].position = mapping->position; 1055 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1056 mutex_init(&nd_region->mapping[i].lock); 1057 1058 get_device(&nvdimm->dev); 1059 } 1060 nd_region->ndr_mappings = ndr_desc->num_mappings; 1061 nd_region->provider_data = ndr_desc->provider_data; 1062 nd_region->nd_set = ndr_desc->nd_set; 1063 nd_region->num_lanes = ndr_desc->num_lanes; 1064 nd_region->flags = ndr_desc->flags; 1065 nd_region->ro = ro; 1066 nd_region->numa_node = ndr_desc->numa_node; 1067 nd_region->target_node = ndr_desc->target_node; 1068 ida_init(&nd_region->ns_ida); 1069 ida_init(&nd_region->btt_ida); 1070 ida_init(&nd_region->pfn_ida); 1071 ida_init(&nd_region->dax_ida); 1072 dev = &nd_region->dev; 1073 dev_set_name(dev, "region%d", nd_region->id); 1074 dev->parent = &nvdimm_bus->dev; 1075 dev->type = dev_type; 1076 dev->groups = ndr_desc->attr_groups; 1077 dev->of_node = ndr_desc->of_node; 1078 nd_region->ndr_size = resource_size(ndr_desc->res); 1079 nd_region->ndr_start = ndr_desc->res->start; 1080 nd_device_register(dev); 1081 1082 return nd_region; 1083 1084 err_percpu: 1085 ida_simple_remove(®ion_ida, nd_region->id); 1086 err_id: 1087 kfree(region_buf); 1088 return NULL; 1089 } 1090 1091 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1092 struct nd_region_desc *ndr_desc) 1093 { 1094 ndr_desc->num_lanes = ND_MAX_LANES; 1095 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1096 __func__); 1097 } 1098 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1099 1100 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1101 struct nd_region_desc *ndr_desc) 1102 { 1103 if (ndr_desc->num_mappings > 1) 1104 return NULL; 1105 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1106 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1107 __func__); 1108 } 1109 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1110 1111 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1112 struct nd_region_desc *ndr_desc) 1113 { 1114 ndr_desc->num_lanes = ND_MAX_LANES; 1115 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1116 __func__); 1117 } 1118 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1119 1120 /** 1121 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1122 * @nd_region: blk or interleaved pmem region 1123 */ 1124 void nvdimm_flush(struct nd_region *nd_region) 1125 { 1126 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1127 int i, idx; 1128 1129 /* 1130 * Try to encourage some diversity in flush hint addresses 1131 * across cpus assuming a limited number of flush hints. 1132 */ 1133 idx = this_cpu_read(flush_idx); 1134 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1135 1136 /* 1137 * The first wmb() is needed to 'sfence' all previous writes 1138 * such that they are architecturally visible for the platform 1139 * buffer flush. Note that we've already arranged for pmem 1140 * writes to avoid the cache via memcpy_flushcache(). The final 1141 * wmb() ensures ordering for the NVDIMM flush write. 1142 */ 1143 wmb(); 1144 for (i = 0; i < nd_region->ndr_mappings; i++) 1145 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1146 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1147 wmb(); 1148 } 1149 EXPORT_SYMBOL_GPL(nvdimm_flush); 1150 1151 /** 1152 * nvdimm_has_flush - determine write flushing requirements 1153 * @nd_region: blk or interleaved pmem region 1154 * 1155 * Returns 1 if writes require flushing 1156 * Returns 0 if writes do not require flushing 1157 * Returns -ENXIO if flushing capability can not be determined 1158 */ 1159 int nvdimm_has_flush(struct nd_region *nd_region) 1160 { 1161 int i; 1162 1163 /* no nvdimm or pmem api == flushing capability unknown */ 1164 if (nd_region->ndr_mappings == 0 1165 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1166 return -ENXIO; 1167 1168 for (i = 0; i < nd_region->ndr_mappings; i++) { 1169 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1170 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1171 1172 /* flush hints present / available */ 1173 if (nvdimm->num_flush) 1174 return 1; 1175 } 1176 1177 /* 1178 * The platform defines dimm devices without hints, assume 1179 * platform persistence mechanism like ADR 1180 */ 1181 return 0; 1182 } 1183 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1184 1185 int nvdimm_has_cache(struct nd_region *nd_region) 1186 { 1187 return is_nd_pmem(&nd_region->dev) && 1188 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1189 } 1190 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1191 1192 struct conflict_context { 1193 struct nd_region *nd_region; 1194 resource_size_t start, size; 1195 }; 1196 1197 static int region_conflict(struct device *dev, void *data) 1198 { 1199 struct nd_region *nd_region; 1200 struct conflict_context *ctx = data; 1201 resource_size_t res_end, region_end, region_start; 1202 1203 if (!is_memory(dev)) 1204 return 0; 1205 1206 nd_region = to_nd_region(dev); 1207 if (nd_region == ctx->nd_region) 1208 return 0; 1209 1210 res_end = ctx->start + ctx->size; 1211 region_start = nd_region->ndr_start; 1212 region_end = region_start + nd_region->ndr_size; 1213 if (ctx->start >= region_start && ctx->start < region_end) 1214 return -EBUSY; 1215 if (res_end > region_start && res_end <= region_end) 1216 return -EBUSY; 1217 return 0; 1218 } 1219 1220 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1221 resource_size_t size) 1222 { 1223 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1224 struct conflict_context ctx = { 1225 .nd_region = nd_region, 1226 .start = start, 1227 .size = size, 1228 }; 1229 1230 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1231 } 1232 1233 void __exit nd_region_devs_exit(void) 1234 { 1235 ida_destroy(®ion_ida); 1236 } 1237