1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 memregion_free(nd_region->id); 137 kfree(nd_region); 138 } 139 140 struct nd_region *to_nd_region(struct device *dev) 141 { 142 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 143 144 WARN_ON(dev->type->release != nd_region_release); 145 return nd_region; 146 } 147 EXPORT_SYMBOL_GPL(to_nd_region); 148 149 struct device *nd_region_dev(struct nd_region *nd_region) 150 { 151 if (!nd_region) 152 return NULL; 153 return &nd_region->dev; 154 } 155 EXPORT_SYMBOL_GPL(nd_region_dev); 156 157 void *nd_region_provider_data(struct nd_region *nd_region) 158 { 159 return nd_region->provider_data; 160 } 161 EXPORT_SYMBOL_GPL(nd_region_provider_data); 162 163 /** 164 * nd_region_to_nstype() - region to an integer namespace type 165 * @nd_region: region-device to interrogate 166 * 167 * This is the 'nstype' attribute of a region as well, an input to the 168 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 169 * namespace devices with namespace drivers. 170 */ 171 int nd_region_to_nstype(struct nd_region *nd_region) 172 { 173 if (is_memory(&nd_region->dev)) { 174 u16 i, label; 175 176 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 177 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 178 struct nvdimm *nvdimm = nd_mapping->nvdimm; 179 180 if (test_bit(NDD_LABELING, &nvdimm->flags)) 181 label++; 182 } 183 if (label) 184 return ND_DEVICE_NAMESPACE_PMEM; 185 else 186 return ND_DEVICE_NAMESPACE_IO; 187 } 188 189 return 0; 190 } 191 EXPORT_SYMBOL(nd_region_to_nstype); 192 193 static unsigned long long region_size(struct nd_region *nd_region) 194 { 195 if (is_memory(&nd_region->dev)) { 196 return nd_region->ndr_size; 197 } else if (nd_region->ndr_mappings == 1) { 198 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 199 200 return nd_mapping->size; 201 } 202 203 return 0; 204 } 205 206 static ssize_t size_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct nd_region *nd_region = to_nd_region(dev); 210 211 return sprintf(buf, "%llu\n", region_size(nd_region)); 212 } 213 static DEVICE_ATTR_RO(size); 214 215 static ssize_t deep_flush_show(struct device *dev, 216 struct device_attribute *attr, char *buf) 217 { 218 struct nd_region *nd_region = to_nd_region(dev); 219 220 /* 221 * NOTE: in the nvdimm_has_flush() error case this attribute is 222 * not visible. 223 */ 224 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 225 } 226 227 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 228 const char *buf, size_t len) 229 { 230 bool flush; 231 int rc = strtobool(buf, &flush); 232 struct nd_region *nd_region = to_nd_region(dev); 233 234 if (rc) 235 return rc; 236 if (!flush) 237 return -EINVAL; 238 rc = nvdimm_flush(nd_region, NULL); 239 if (rc) 240 return rc; 241 242 return len; 243 } 244 static DEVICE_ATTR_RW(deep_flush); 245 246 static ssize_t mappings_show(struct device *dev, 247 struct device_attribute *attr, char *buf) 248 { 249 struct nd_region *nd_region = to_nd_region(dev); 250 251 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 252 } 253 static DEVICE_ATTR_RO(mappings); 254 255 static ssize_t nstype_show(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct nd_region *nd_region = to_nd_region(dev); 259 260 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 261 } 262 static DEVICE_ATTR_RO(nstype); 263 264 static ssize_t set_cookie_show(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct nd_region *nd_region = to_nd_region(dev); 268 struct nd_interleave_set *nd_set = nd_region->nd_set; 269 ssize_t rc = 0; 270 271 if (is_memory(dev) && nd_set) 272 /* pass, should be precluded by region_visible */; 273 else 274 return -ENXIO; 275 276 /* 277 * The cookie to show depends on which specification of the 278 * labels we are using. If there are not labels then default to 279 * the v1.1 namespace label cookie definition. To read all this 280 * data we need to wait for probing to settle. 281 */ 282 nd_device_lock(dev); 283 nvdimm_bus_lock(dev); 284 wait_nvdimm_bus_probe_idle(dev); 285 if (nd_region->ndr_mappings) { 286 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 287 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 288 289 if (ndd) { 290 struct nd_namespace_index *nsindex; 291 292 nsindex = to_namespace_index(ndd, ndd->ns_current); 293 rc = sprintf(buf, "%#llx\n", 294 nd_region_interleave_set_cookie(nd_region, 295 nsindex)); 296 } 297 } 298 nvdimm_bus_unlock(dev); 299 nd_device_unlock(dev); 300 301 if (rc) 302 return rc; 303 return sprintf(buf, "%#llx\n", nd_set->cookie1); 304 } 305 static DEVICE_ATTR_RO(set_cookie); 306 307 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 308 { 309 resource_size_t available; 310 int i; 311 312 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 313 314 available = 0; 315 for (i = 0; i < nd_region->ndr_mappings; i++) { 316 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 317 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 318 319 /* if a dimm is disabled the available capacity is zero */ 320 if (!ndd) 321 return 0; 322 323 available += nd_pmem_available_dpa(nd_region, nd_mapping); 324 } 325 326 return available; 327 } 328 329 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 330 { 331 resource_size_t avail = 0; 332 int i; 333 334 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 335 for (i = 0; i < nd_region->ndr_mappings; i++) { 336 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 337 338 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa( 339 nd_region, nd_mapping)); 340 } 341 return avail * nd_region->ndr_mappings; 342 } 343 344 static ssize_t available_size_show(struct device *dev, 345 struct device_attribute *attr, char *buf) 346 { 347 struct nd_region *nd_region = to_nd_region(dev); 348 unsigned long long available = 0; 349 350 /* 351 * Flush in-flight updates and grab a snapshot of the available 352 * size. Of course, this value is potentially invalidated the 353 * memory nvdimm_bus_lock() is dropped, but that's userspace's 354 * problem to not race itself. 355 */ 356 nd_device_lock(dev); 357 nvdimm_bus_lock(dev); 358 wait_nvdimm_bus_probe_idle(dev); 359 available = nd_region_available_dpa(nd_region); 360 nvdimm_bus_unlock(dev); 361 nd_device_unlock(dev); 362 363 return sprintf(buf, "%llu\n", available); 364 } 365 static DEVICE_ATTR_RO(available_size); 366 367 static ssize_t max_available_extent_show(struct device *dev, 368 struct device_attribute *attr, char *buf) 369 { 370 struct nd_region *nd_region = to_nd_region(dev); 371 unsigned long long available = 0; 372 373 nd_device_lock(dev); 374 nvdimm_bus_lock(dev); 375 wait_nvdimm_bus_probe_idle(dev); 376 available = nd_region_allocatable_dpa(nd_region); 377 nvdimm_bus_unlock(dev); 378 nd_device_unlock(dev); 379 380 return sprintf(buf, "%llu\n", available); 381 } 382 static DEVICE_ATTR_RO(max_available_extent); 383 384 static ssize_t init_namespaces_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct nd_region_data *ndrd = dev_get_drvdata(dev); 388 ssize_t rc; 389 390 nvdimm_bus_lock(dev); 391 if (ndrd) 392 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 393 else 394 rc = -ENXIO; 395 nvdimm_bus_unlock(dev); 396 397 return rc; 398 } 399 static DEVICE_ATTR_RO(init_namespaces); 400 401 static ssize_t namespace_seed_show(struct device *dev, 402 struct device_attribute *attr, char *buf) 403 { 404 struct nd_region *nd_region = to_nd_region(dev); 405 ssize_t rc; 406 407 nvdimm_bus_lock(dev); 408 if (nd_region->ns_seed) 409 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 410 else 411 rc = sprintf(buf, "\n"); 412 nvdimm_bus_unlock(dev); 413 return rc; 414 } 415 static DEVICE_ATTR_RO(namespace_seed); 416 417 static ssize_t btt_seed_show(struct device *dev, 418 struct device_attribute *attr, char *buf) 419 { 420 struct nd_region *nd_region = to_nd_region(dev); 421 ssize_t rc; 422 423 nvdimm_bus_lock(dev); 424 if (nd_region->btt_seed) 425 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 426 else 427 rc = sprintf(buf, "\n"); 428 nvdimm_bus_unlock(dev); 429 430 return rc; 431 } 432 static DEVICE_ATTR_RO(btt_seed); 433 434 static ssize_t pfn_seed_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 struct nd_region *nd_region = to_nd_region(dev); 438 ssize_t rc; 439 440 nvdimm_bus_lock(dev); 441 if (nd_region->pfn_seed) 442 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 443 else 444 rc = sprintf(buf, "\n"); 445 nvdimm_bus_unlock(dev); 446 447 return rc; 448 } 449 static DEVICE_ATTR_RO(pfn_seed); 450 451 static ssize_t dax_seed_show(struct device *dev, 452 struct device_attribute *attr, char *buf) 453 { 454 struct nd_region *nd_region = to_nd_region(dev); 455 ssize_t rc; 456 457 nvdimm_bus_lock(dev); 458 if (nd_region->dax_seed) 459 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 460 else 461 rc = sprintf(buf, "\n"); 462 nvdimm_bus_unlock(dev); 463 464 return rc; 465 } 466 static DEVICE_ATTR_RO(dax_seed); 467 468 static ssize_t read_only_show(struct device *dev, 469 struct device_attribute *attr, char *buf) 470 { 471 struct nd_region *nd_region = to_nd_region(dev); 472 473 return sprintf(buf, "%d\n", nd_region->ro); 474 } 475 476 static int revalidate_read_only(struct device *dev, void *data) 477 { 478 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 479 return 0; 480 } 481 482 static ssize_t read_only_store(struct device *dev, 483 struct device_attribute *attr, const char *buf, size_t len) 484 { 485 bool ro; 486 int rc = strtobool(buf, &ro); 487 struct nd_region *nd_region = to_nd_region(dev); 488 489 if (rc) 490 return rc; 491 492 nd_region->ro = ro; 493 device_for_each_child(dev, NULL, revalidate_read_only); 494 return len; 495 } 496 static DEVICE_ATTR_RW(read_only); 497 498 static ssize_t align_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct nd_region *nd_region = to_nd_region(dev); 502 503 return sprintf(buf, "%#lx\n", nd_region->align); 504 } 505 506 static ssize_t align_store(struct device *dev, 507 struct device_attribute *attr, const char *buf, size_t len) 508 { 509 struct nd_region *nd_region = to_nd_region(dev); 510 unsigned long val, dpa; 511 u32 remainder; 512 int rc; 513 514 rc = kstrtoul(buf, 0, &val); 515 if (rc) 516 return rc; 517 518 if (!nd_region->ndr_mappings) 519 return -ENXIO; 520 521 /* 522 * Ensure space-align is evenly divisible by the region 523 * interleave-width because the kernel typically has no facility 524 * to determine which DIMM(s), dimm-physical-addresses, would 525 * contribute to the tail capacity in system-physical-address 526 * space for the namespace. 527 */ 528 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder); 529 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 530 || val > region_size(nd_region) || remainder) 531 return -EINVAL; 532 533 /* 534 * Given that space allocation consults this value multiple 535 * times ensure it does not change for the duration of the 536 * allocation. 537 */ 538 nvdimm_bus_lock(dev); 539 nd_region->align = val; 540 nvdimm_bus_unlock(dev); 541 542 return len; 543 } 544 static DEVICE_ATTR_RW(align); 545 546 static ssize_t region_badblocks_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct nd_region *nd_region = to_nd_region(dev); 550 ssize_t rc; 551 552 nd_device_lock(dev); 553 if (dev->driver) 554 rc = badblocks_show(&nd_region->bb, buf, 0); 555 else 556 rc = -ENXIO; 557 nd_device_unlock(dev); 558 559 return rc; 560 } 561 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 562 563 static ssize_t resource_show(struct device *dev, 564 struct device_attribute *attr, char *buf) 565 { 566 struct nd_region *nd_region = to_nd_region(dev); 567 568 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 569 } 570 static DEVICE_ATTR_ADMIN_RO(resource); 571 572 static ssize_t persistence_domain_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct nd_region *nd_region = to_nd_region(dev); 576 577 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 578 return sprintf(buf, "cpu_cache\n"); 579 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 580 return sprintf(buf, "memory_controller\n"); 581 else 582 return sprintf(buf, "\n"); 583 } 584 static DEVICE_ATTR_RO(persistence_domain); 585 586 static struct attribute *nd_region_attributes[] = { 587 &dev_attr_size.attr, 588 &dev_attr_align.attr, 589 &dev_attr_nstype.attr, 590 &dev_attr_mappings.attr, 591 &dev_attr_btt_seed.attr, 592 &dev_attr_pfn_seed.attr, 593 &dev_attr_dax_seed.attr, 594 &dev_attr_deep_flush.attr, 595 &dev_attr_read_only.attr, 596 &dev_attr_set_cookie.attr, 597 &dev_attr_available_size.attr, 598 &dev_attr_max_available_extent.attr, 599 &dev_attr_namespace_seed.attr, 600 &dev_attr_init_namespaces.attr, 601 &dev_attr_badblocks.attr, 602 &dev_attr_resource.attr, 603 &dev_attr_persistence_domain.attr, 604 NULL, 605 }; 606 607 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 608 { 609 struct device *dev = container_of(kobj, typeof(*dev), kobj); 610 struct nd_region *nd_region = to_nd_region(dev); 611 struct nd_interleave_set *nd_set = nd_region->nd_set; 612 int type = nd_region_to_nstype(nd_region); 613 614 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 615 return 0; 616 617 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 618 return 0; 619 620 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 621 return 0; 622 623 if (a == &dev_attr_resource.attr && !is_memory(dev)) 624 return 0; 625 626 if (a == &dev_attr_deep_flush.attr) { 627 int has_flush = nvdimm_has_flush(nd_region); 628 629 if (has_flush == 1) 630 return a->mode; 631 else if (has_flush == 0) 632 return 0444; 633 else 634 return 0; 635 } 636 637 if (a == &dev_attr_persistence_domain.attr) { 638 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 639 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 640 return 0; 641 return a->mode; 642 } 643 644 if (a == &dev_attr_align.attr) 645 return a->mode; 646 647 if (a != &dev_attr_set_cookie.attr 648 && a != &dev_attr_available_size.attr) 649 return a->mode; 650 651 if (type == ND_DEVICE_NAMESPACE_PMEM && 652 a == &dev_attr_available_size.attr) 653 return a->mode; 654 else if (is_memory(dev) && nd_set) 655 return a->mode; 656 657 return 0; 658 } 659 660 static ssize_t mappingN(struct device *dev, char *buf, int n) 661 { 662 struct nd_region *nd_region = to_nd_region(dev); 663 struct nd_mapping *nd_mapping; 664 struct nvdimm *nvdimm; 665 666 if (n >= nd_region->ndr_mappings) 667 return -ENXIO; 668 nd_mapping = &nd_region->mapping[n]; 669 nvdimm = nd_mapping->nvdimm; 670 671 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 672 nd_mapping->start, nd_mapping->size, 673 nd_mapping->position); 674 } 675 676 #define REGION_MAPPING(idx) \ 677 static ssize_t mapping##idx##_show(struct device *dev, \ 678 struct device_attribute *attr, char *buf) \ 679 { \ 680 return mappingN(dev, buf, idx); \ 681 } \ 682 static DEVICE_ATTR_RO(mapping##idx) 683 684 /* 685 * 32 should be enough for a while, even in the presence of socket 686 * interleave a 32-way interleave set is a degenerate case. 687 */ 688 REGION_MAPPING(0); 689 REGION_MAPPING(1); 690 REGION_MAPPING(2); 691 REGION_MAPPING(3); 692 REGION_MAPPING(4); 693 REGION_MAPPING(5); 694 REGION_MAPPING(6); 695 REGION_MAPPING(7); 696 REGION_MAPPING(8); 697 REGION_MAPPING(9); 698 REGION_MAPPING(10); 699 REGION_MAPPING(11); 700 REGION_MAPPING(12); 701 REGION_MAPPING(13); 702 REGION_MAPPING(14); 703 REGION_MAPPING(15); 704 REGION_MAPPING(16); 705 REGION_MAPPING(17); 706 REGION_MAPPING(18); 707 REGION_MAPPING(19); 708 REGION_MAPPING(20); 709 REGION_MAPPING(21); 710 REGION_MAPPING(22); 711 REGION_MAPPING(23); 712 REGION_MAPPING(24); 713 REGION_MAPPING(25); 714 REGION_MAPPING(26); 715 REGION_MAPPING(27); 716 REGION_MAPPING(28); 717 REGION_MAPPING(29); 718 REGION_MAPPING(30); 719 REGION_MAPPING(31); 720 721 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 722 { 723 struct device *dev = container_of(kobj, struct device, kobj); 724 struct nd_region *nd_region = to_nd_region(dev); 725 726 if (n < nd_region->ndr_mappings) 727 return a->mode; 728 return 0; 729 } 730 731 static struct attribute *mapping_attributes[] = { 732 &dev_attr_mapping0.attr, 733 &dev_attr_mapping1.attr, 734 &dev_attr_mapping2.attr, 735 &dev_attr_mapping3.attr, 736 &dev_attr_mapping4.attr, 737 &dev_attr_mapping5.attr, 738 &dev_attr_mapping6.attr, 739 &dev_attr_mapping7.attr, 740 &dev_attr_mapping8.attr, 741 &dev_attr_mapping9.attr, 742 &dev_attr_mapping10.attr, 743 &dev_attr_mapping11.attr, 744 &dev_attr_mapping12.attr, 745 &dev_attr_mapping13.attr, 746 &dev_attr_mapping14.attr, 747 &dev_attr_mapping15.attr, 748 &dev_attr_mapping16.attr, 749 &dev_attr_mapping17.attr, 750 &dev_attr_mapping18.attr, 751 &dev_attr_mapping19.attr, 752 &dev_attr_mapping20.attr, 753 &dev_attr_mapping21.attr, 754 &dev_attr_mapping22.attr, 755 &dev_attr_mapping23.attr, 756 &dev_attr_mapping24.attr, 757 &dev_attr_mapping25.attr, 758 &dev_attr_mapping26.attr, 759 &dev_attr_mapping27.attr, 760 &dev_attr_mapping28.attr, 761 &dev_attr_mapping29.attr, 762 &dev_attr_mapping30.attr, 763 &dev_attr_mapping31.attr, 764 NULL, 765 }; 766 767 static const struct attribute_group nd_mapping_attribute_group = { 768 .is_visible = mapping_visible, 769 .attrs = mapping_attributes, 770 }; 771 772 static const struct attribute_group nd_region_attribute_group = { 773 .attrs = nd_region_attributes, 774 .is_visible = region_visible, 775 }; 776 777 static const struct attribute_group *nd_region_attribute_groups[] = { 778 &nd_device_attribute_group, 779 &nd_region_attribute_group, 780 &nd_numa_attribute_group, 781 &nd_mapping_attribute_group, 782 NULL, 783 }; 784 785 static const struct device_type nd_pmem_device_type = { 786 .name = "nd_pmem", 787 .release = nd_region_release, 788 .groups = nd_region_attribute_groups, 789 }; 790 791 static const struct device_type nd_volatile_device_type = { 792 .name = "nd_volatile", 793 .release = nd_region_release, 794 .groups = nd_region_attribute_groups, 795 }; 796 797 bool is_nd_pmem(struct device *dev) 798 { 799 return dev ? dev->type == &nd_pmem_device_type : false; 800 } 801 802 bool is_nd_volatile(struct device *dev) 803 { 804 return dev ? dev->type == &nd_volatile_device_type : false; 805 } 806 807 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 808 struct nd_namespace_index *nsindex) 809 { 810 struct nd_interleave_set *nd_set = nd_region->nd_set; 811 812 if (!nd_set) 813 return 0; 814 815 if (nsindex && __le16_to_cpu(nsindex->major) == 1 816 && __le16_to_cpu(nsindex->minor) == 1) 817 return nd_set->cookie1; 818 return nd_set->cookie2; 819 } 820 821 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 822 { 823 struct nd_interleave_set *nd_set = nd_region->nd_set; 824 825 if (nd_set) 826 return nd_set->altcookie; 827 return 0; 828 } 829 830 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 831 { 832 struct nd_label_ent *label_ent, *e; 833 834 lockdep_assert_held(&nd_mapping->lock); 835 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 836 list_del(&label_ent->list); 837 kfree(label_ent); 838 } 839 } 840 841 /* 842 * When a namespace is activated create new seeds for the next 843 * namespace, or namespace-personality to be configured. 844 */ 845 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 846 { 847 nvdimm_bus_lock(dev); 848 if (nd_region->ns_seed == dev) { 849 nd_region_create_ns_seed(nd_region); 850 } else if (is_nd_btt(dev)) { 851 struct nd_btt *nd_btt = to_nd_btt(dev); 852 853 if (nd_region->btt_seed == dev) 854 nd_region_create_btt_seed(nd_region); 855 if (nd_region->ns_seed == &nd_btt->ndns->dev) 856 nd_region_create_ns_seed(nd_region); 857 } else if (is_nd_pfn(dev)) { 858 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 859 860 if (nd_region->pfn_seed == dev) 861 nd_region_create_pfn_seed(nd_region); 862 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 863 nd_region_create_ns_seed(nd_region); 864 } else if (is_nd_dax(dev)) { 865 struct nd_dax *nd_dax = to_nd_dax(dev); 866 867 if (nd_region->dax_seed == dev) 868 nd_region_create_dax_seed(nd_region); 869 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 870 nd_region_create_ns_seed(nd_region); 871 } 872 nvdimm_bus_unlock(dev); 873 } 874 875 /** 876 * nd_region_acquire_lane - allocate and lock a lane 877 * @nd_region: region id and number of lanes possible 878 * 879 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 880 * We optimize for the common case where there are 256 lanes, one 881 * per-cpu. For larger systems we need to lock to share lanes. For now 882 * this implementation assumes the cost of maintaining an allocator for 883 * free lanes is on the order of the lock hold time, so it implements a 884 * static lane = cpu % num_lanes mapping. 885 * 886 * In the case of a BTT instance on top of a BLK namespace a lane may be 887 * acquired recursively. We lock on the first instance. 888 * 889 * In the case of a BTT instance on top of PMEM, we only acquire a lane 890 * for the BTT metadata updates. 891 */ 892 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 893 { 894 unsigned int cpu, lane; 895 896 cpu = get_cpu(); 897 if (nd_region->num_lanes < nr_cpu_ids) { 898 struct nd_percpu_lane *ndl_lock, *ndl_count; 899 900 lane = cpu % nd_region->num_lanes; 901 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 902 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 903 if (ndl_count->count++ == 0) 904 spin_lock(&ndl_lock->lock); 905 } else 906 lane = cpu; 907 908 return lane; 909 } 910 EXPORT_SYMBOL(nd_region_acquire_lane); 911 912 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 913 { 914 if (nd_region->num_lanes < nr_cpu_ids) { 915 unsigned int cpu = get_cpu(); 916 struct nd_percpu_lane *ndl_lock, *ndl_count; 917 918 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 919 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 920 if (--ndl_count->count == 0) 921 spin_unlock(&ndl_lock->lock); 922 put_cpu(); 923 } 924 put_cpu(); 925 } 926 EXPORT_SYMBOL(nd_region_release_lane); 927 928 /* 929 * PowerPC requires this alignment for memremap_pages(). All other archs 930 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 931 */ 932 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 933 934 static unsigned long default_align(struct nd_region *nd_region) 935 { 936 unsigned long align; 937 u32 remainder; 938 int mappings; 939 940 align = MEMREMAP_COMPAT_ALIGN_MAX; 941 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX) 942 align = PAGE_SIZE; 943 944 mappings = max_t(u16, 1, nd_region->ndr_mappings); 945 div_u64_rem(align, mappings, &remainder); 946 if (remainder) 947 align *= mappings; 948 949 return align; 950 } 951 952 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 953 struct nd_region_desc *ndr_desc, 954 const struct device_type *dev_type, const char *caller) 955 { 956 struct nd_region *nd_region; 957 struct device *dev; 958 unsigned int i; 959 int ro = 0; 960 961 for (i = 0; i < ndr_desc->num_mappings; i++) { 962 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 963 struct nvdimm *nvdimm = mapping->nvdimm; 964 965 if ((mapping->start | mapping->size) % PAGE_SIZE) { 966 dev_err(&nvdimm_bus->dev, 967 "%s: %s mapping%d is not %ld aligned\n", 968 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 969 return NULL; 970 } 971 972 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 973 ro = 1; 974 975 } 976 977 nd_region = 978 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), 979 GFP_KERNEL); 980 981 if (!nd_region) 982 return NULL; 983 nd_region->id = memregion_alloc(GFP_KERNEL); 984 if (nd_region->id < 0) 985 goto err_id; 986 987 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 988 if (!nd_region->lane) 989 goto err_percpu; 990 991 for (i = 0; i < nr_cpu_ids; i++) { 992 struct nd_percpu_lane *ndl; 993 994 ndl = per_cpu_ptr(nd_region->lane, i); 995 spin_lock_init(&ndl->lock); 996 ndl->count = 0; 997 } 998 999 for (i = 0; i < ndr_desc->num_mappings; i++) { 1000 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1001 struct nvdimm *nvdimm = mapping->nvdimm; 1002 1003 nd_region->mapping[i].nvdimm = nvdimm; 1004 nd_region->mapping[i].start = mapping->start; 1005 nd_region->mapping[i].size = mapping->size; 1006 nd_region->mapping[i].position = mapping->position; 1007 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1008 mutex_init(&nd_region->mapping[i].lock); 1009 1010 get_device(&nvdimm->dev); 1011 } 1012 nd_region->ndr_mappings = ndr_desc->num_mappings; 1013 nd_region->provider_data = ndr_desc->provider_data; 1014 nd_region->nd_set = ndr_desc->nd_set; 1015 nd_region->num_lanes = ndr_desc->num_lanes; 1016 nd_region->flags = ndr_desc->flags; 1017 nd_region->ro = ro; 1018 nd_region->numa_node = ndr_desc->numa_node; 1019 nd_region->target_node = ndr_desc->target_node; 1020 ida_init(&nd_region->ns_ida); 1021 ida_init(&nd_region->btt_ida); 1022 ida_init(&nd_region->pfn_ida); 1023 ida_init(&nd_region->dax_ida); 1024 dev = &nd_region->dev; 1025 dev_set_name(dev, "region%d", nd_region->id); 1026 dev->parent = &nvdimm_bus->dev; 1027 dev->type = dev_type; 1028 dev->groups = ndr_desc->attr_groups; 1029 dev->of_node = ndr_desc->of_node; 1030 nd_region->ndr_size = resource_size(ndr_desc->res); 1031 nd_region->ndr_start = ndr_desc->res->start; 1032 nd_region->align = default_align(nd_region); 1033 if (ndr_desc->flush) 1034 nd_region->flush = ndr_desc->flush; 1035 else 1036 nd_region->flush = NULL; 1037 1038 nd_device_register(dev); 1039 1040 return nd_region; 1041 1042 err_percpu: 1043 memregion_free(nd_region->id); 1044 err_id: 1045 kfree(nd_region); 1046 return NULL; 1047 } 1048 1049 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1050 struct nd_region_desc *ndr_desc) 1051 { 1052 ndr_desc->num_lanes = ND_MAX_LANES; 1053 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1054 __func__); 1055 } 1056 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1057 1058 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1059 struct nd_region_desc *ndr_desc) 1060 { 1061 ndr_desc->num_lanes = ND_MAX_LANES; 1062 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1063 __func__); 1064 } 1065 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1066 1067 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1068 { 1069 int rc = 0; 1070 1071 if (!nd_region->flush) 1072 rc = generic_nvdimm_flush(nd_region); 1073 else { 1074 if (nd_region->flush(nd_region, bio)) 1075 rc = -EIO; 1076 } 1077 1078 return rc; 1079 } 1080 /** 1081 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1082 * @nd_region: interleaved pmem region 1083 */ 1084 int generic_nvdimm_flush(struct nd_region *nd_region) 1085 { 1086 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1087 int i, idx; 1088 1089 /* 1090 * Try to encourage some diversity in flush hint addresses 1091 * across cpus assuming a limited number of flush hints. 1092 */ 1093 idx = this_cpu_read(flush_idx); 1094 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1095 1096 /* 1097 * The pmem_wmb() is needed to 'sfence' all 1098 * previous writes such that they are architecturally visible for 1099 * the platform buffer flush. Note that we've already arranged for pmem 1100 * writes to avoid the cache via memcpy_flushcache(). The final 1101 * wmb() ensures ordering for the NVDIMM flush write. 1102 */ 1103 pmem_wmb(); 1104 for (i = 0; i < nd_region->ndr_mappings; i++) 1105 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1106 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1107 wmb(); 1108 1109 return 0; 1110 } 1111 EXPORT_SYMBOL_GPL(nvdimm_flush); 1112 1113 /** 1114 * nvdimm_has_flush - determine write flushing requirements 1115 * @nd_region: interleaved pmem region 1116 * 1117 * Returns 1 if writes require flushing 1118 * Returns 0 if writes do not require flushing 1119 * Returns -ENXIO if flushing capability can not be determined 1120 */ 1121 int nvdimm_has_flush(struct nd_region *nd_region) 1122 { 1123 int i; 1124 1125 /* no nvdimm or pmem api == flushing capability unknown */ 1126 if (nd_region->ndr_mappings == 0 1127 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1128 return -ENXIO; 1129 1130 /* Test if an explicit flush function is defined */ 1131 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1132 return 1; 1133 1134 /* Test if any flush hints for the region are available */ 1135 for (i = 0; i < nd_region->ndr_mappings; i++) { 1136 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1137 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1138 1139 /* flush hints present / available */ 1140 if (nvdimm->num_flush) 1141 return 1; 1142 } 1143 1144 /* 1145 * The platform defines dimm devices without hints nor explicit flush, 1146 * assume platform persistence mechanism like ADR 1147 */ 1148 return 0; 1149 } 1150 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1151 1152 int nvdimm_has_cache(struct nd_region *nd_region) 1153 { 1154 return is_nd_pmem(&nd_region->dev) && 1155 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1156 } 1157 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1158 1159 bool is_nvdimm_sync(struct nd_region *nd_region) 1160 { 1161 if (is_nd_volatile(&nd_region->dev)) 1162 return true; 1163 1164 return is_nd_pmem(&nd_region->dev) && 1165 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1166 } 1167 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1168 1169 struct conflict_context { 1170 struct nd_region *nd_region; 1171 resource_size_t start, size; 1172 }; 1173 1174 static int region_conflict(struct device *dev, void *data) 1175 { 1176 struct nd_region *nd_region; 1177 struct conflict_context *ctx = data; 1178 resource_size_t res_end, region_end, region_start; 1179 1180 if (!is_memory(dev)) 1181 return 0; 1182 1183 nd_region = to_nd_region(dev); 1184 if (nd_region == ctx->nd_region) 1185 return 0; 1186 1187 res_end = ctx->start + ctx->size; 1188 region_start = nd_region->ndr_start; 1189 region_end = region_start + nd_region->ndr_size; 1190 if (ctx->start >= region_start && ctx->start < region_end) 1191 return -EBUSY; 1192 if (res_end > region_start && res_end <= region_end) 1193 return -EBUSY; 1194 return 0; 1195 } 1196 1197 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1198 resource_size_t size) 1199 { 1200 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1201 struct conflict_context ctx = { 1202 .nd_region = nd_region, 1203 .start = start, 1204 .size = size, 1205 }; 1206 1207 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1208 } 1209