1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/sort.h> 19 #include <linux/io.h> 20 #include <linux/nd.h> 21 #include "nd-core.h" 22 #include "nd.h" 23 24 /* 25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 26 * irrelevant. 27 */ 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 30 static DEFINE_IDA(region_ida); 31 static DEFINE_PER_CPU(int, flush_idx); 32 33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 34 struct nd_region_data *ndrd) 35 { 36 int i, j; 37 38 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 39 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 40 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 41 struct resource *res = &nvdimm->flush_wpq[i]; 42 unsigned long pfn = PHYS_PFN(res->start); 43 void __iomem *flush_page; 44 45 /* check if flush hints share a page */ 46 for (j = 0; j < i; j++) { 47 struct resource *res_j = &nvdimm->flush_wpq[j]; 48 unsigned long pfn_j = PHYS_PFN(res_j->start); 49 50 if (pfn == pfn_j) 51 break; 52 } 53 54 if (j < i) 55 flush_page = (void __iomem *) ((unsigned long) 56 ndrd_get_flush_wpq(ndrd, dimm, j) 57 & PAGE_MASK); 58 else 59 flush_page = devm_nvdimm_ioremap(dev, 60 PFN_PHYS(pfn), PAGE_SIZE); 61 if (!flush_page) 62 return -ENXIO; 63 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 64 + (res->start & ~PAGE_MASK)); 65 } 66 67 return 0; 68 } 69 70 int nd_region_activate(struct nd_region *nd_region) 71 { 72 int i, j, num_flush = 0; 73 struct nd_region_data *ndrd; 74 struct device *dev = &nd_region->dev; 75 size_t flush_data_size = sizeof(void *); 76 77 nvdimm_bus_lock(&nd_region->dev); 78 for (i = 0; i < nd_region->ndr_mappings; i++) { 79 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 80 struct nvdimm *nvdimm = nd_mapping->nvdimm; 81 82 /* at least one null hint slot per-dimm for the "no-hint" case */ 83 flush_data_size += sizeof(void *); 84 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 85 if (!nvdimm->num_flush) 86 continue; 87 flush_data_size += nvdimm->num_flush * sizeof(void *); 88 } 89 nvdimm_bus_unlock(&nd_region->dev); 90 91 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 92 if (!ndrd) 93 return -ENOMEM; 94 dev_set_drvdata(dev, ndrd); 95 96 if (!num_flush) 97 return 0; 98 99 ndrd->hints_shift = ilog2(num_flush); 100 for (i = 0; i < nd_region->ndr_mappings; i++) { 101 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 102 struct nvdimm *nvdimm = nd_mapping->nvdimm; 103 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 104 105 if (rc) 106 return rc; 107 } 108 109 /* 110 * Clear out entries that are duplicates. This should prevent the 111 * extra flushings. 112 */ 113 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 114 /* ignore if NULL already */ 115 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 116 continue; 117 118 for (j = i + 1; j < nd_region->ndr_mappings; j++) 119 if (ndrd_get_flush_wpq(ndrd, i, 0) == 120 ndrd_get_flush_wpq(ndrd, j, 0)) 121 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 122 } 123 124 return 0; 125 } 126 127 static void nd_region_release(struct device *dev) 128 { 129 struct nd_region *nd_region = to_nd_region(dev); 130 u16 i; 131 132 for (i = 0; i < nd_region->ndr_mappings; i++) { 133 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 134 struct nvdimm *nvdimm = nd_mapping->nvdimm; 135 136 put_device(&nvdimm->dev); 137 } 138 free_percpu(nd_region->lane); 139 ida_simple_remove(®ion_ida, nd_region->id); 140 if (is_nd_blk(dev)) 141 kfree(to_nd_blk_region(dev)); 142 else 143 kfree(nd_region); 144 } 145 146 static struct device_type nd_blk_device_type = { 147 .name = "nd_blk", 148 .release = nd_region_release, 149 }; 150 151 static struct device_type nd_pmem_device_type = { 152 .name = "nd_pmem", 153 .release = nd_region_release, 154 }; 155 156 static struct device_type nd_volatile_device_type = { 157 .name = "nd_volatile", 158 .release = nd_region_release, 159 }; 160 161 bool is_nd_pmem(struct device *dev) 162 { 163 return dev ? dev->type == &nd_pmem_device_type : false; 164 } 165 166 bool is_nd_blk(struct device *dev) 167 { 168 return dev ? dev->type == &nd_blk_device_type : false; 169 } 170 171 bool is_nd_volatile(struct device *dev) 172 { 173 return dev ? dev->type == &nd_volatile_device_type : false; 174 } 175 176 struct nd_region *to_nd_region(struct device *dev) 177 { 178 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 179 180 WARN_ON(dev->type->release != nd_region_release); 181 return nd_region; 182 } 183 EXPORT_SYMBOL_GPL(to_nd_region); 184 185 struct nd_blk_region *to_nd_blk_region(struct device *dev) 186 { 187 struct nd_region *nd_region = to_nd_region(dev); 188 189 WARN_ON(!is_nd_blk(dev)); 190 return container_of(nd_region, struct nd_blk_region, nd_region); 191 } 192 EXPORT_SYMBOL_GPL(to_nd_blk_region); 193 194 void *nd_region_provider_data(struct nd_region *nd_region) 195 { 196 return nd_region->provider_data; 197 } 198 EXPORT_SYMBOL_GPL(nd_region_provider_data); 199 200 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 201 { 202 return ndbr->blk_provider_data; 203 } 204 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 205 206 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 207 { 208 ndbr->blk_provider_data = data; 209 } 210 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 211 212 /** 213 * nd_region_to_nstype() - region to an integer namespace type 214 * @nd_region: region-device to interrogate 215 * 216 * This is the 'nstype' attribute of a region as well, an input to the 217 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 218 * namespace devices with namespace drivers. 219 */ 220 int nd_region_to_nstype(struct nd_region *nd_region) 221 { 222 if (is_memory(&nd_region->dev)) { 223 u16 i, alias; 224 225 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 226 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 227 struct nvdimm *nvdimm = nd_mapping->nvdimm; 228 229 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 230 alias++; 231 } 232 if (alias) 233 return ND_DEVICE_NAMESPACE_PMEM; 234 else 235 return ND_DEVICE_NAMESPACE_IO; 236 } else if (is_nd_blk(&nd_region->dev)) { 237 return ND_DEVICE_NAMESPACE_BLK; 238 } 239 240 return 0; 241 } 242 EXPORT_SYMBOL(nd_region_to_nstype); 243 244 static ssize_t size_show(struct device *dev, 245 struct device_attribute *attr, char *buf) 246 { 247 struct nd_region *nd_region = to_nd_region(dev); 248 unsigned long long size = 0; 249 250 if (is_memory(dev)) { 251 size = nd_region->ndr_size; 252 } else if (nd_region->ndr_mappings == 1) { 253 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 254 255 size = nd_mapping->size; 256 } 257 258 return sprintf(buf, "%llu\n", size); 259 } 260 static DEVICE_ATTR_RO(size); 261 262 static ssize_t deep_flush_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct nd_region *nd_region = to_nd_region(dev); 266 267 /* 268 * NOTE: in the nvdimm_has_flush() error case this attribute is 269 * not visible. 270 */ 271 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 272 } 273 274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 275 const char *buf, size_t len) 276 { 277 bool flush; 278 int rc = strtobool(buf, &flush); 279 struct nd_region *nd_region = to_nd_region(dev); 280 281 if (rc) 282 return rc; 283 if (!flush) 284 return -EINVAL; 285 nvdimm_flush(nd_region); 286 287 return len; 288 } 289 static DEVICE_ATTR_RW(deep_flush); 290 291 static ssize_t mappings_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct nd_region *nd_region = to_nd_region(dev); 295 296 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 297 } 298 static DEVICE_ATTR_RO(mappings); 299 300 static ssize_t nstype_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct nd_region *nd_region = to_nd_region(dev); 304 305 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 306 } 307 static DEVICE_ATTR_RO(nstype); 308 309 static ssize_t set_cookie_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct nd_region *nd_region = to_nd_region(dev); 313 struct nd_interleave_set *nd_set = nd_region->nd_set; 314 ssize_t rc = 0; 315 316 if (is_memory(dev) && nd_set) 317 /* pass, should be precluded by region_visible */; 318 else 319 return -ENXIO; 320 321 /* 322 * The cookie to show depends on which specification of the 323 * labels we are using. If there are not labels then default to 324 * the v1.1 namespace label cookie definition. To read all this 325 * data we need to wait for probing to settle. 326 */ 327 device_lock(dev); 328 nvdimm_bus_lock(dev); 329 wait_nvdimm_bus_probe_idle(dev); 330 if (nd_region->ndr_mappings) { 331 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 332 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 333 334 if (ndd) { 335 struct nd_namespace_index *nsindex; 336 337 nsindex = to_namespace_index(ndd, ndd->ns_current); 338 rc = sprintf(buf, "%#llx\n", 339 nd_region_interleave_set_cookie(nd_region, 340 nsindex)); 341 } 342 } 343 nvdimm_bus_unlock(dev); 344 device_unlock(dev); 345 346 if (rc) 347 return rc; 348 return sprintf(buf, "%#llx\n", nd_set->cookie1); 349 } 350 static DEVICE_ATTR_RO(set_cookie); 351 352 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 353 { 354 resource_size_t blk_max_overlap = 0, available, overlap; 355 int i; 356 357 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 358 359 retry: 360 available = 0; 361 overlap = blk_max_overlap; 362 for (i = 0; i < nd_region->ndr_mappings; i++) { 363 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 364 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 365 366 /* if a dimm is disabled the available capacity is zero */ 367 if (!ndd) 368 return 0; 369 370 if (is_memory(&nd_region->dev)) { 371 available += nd_pmem_available_dpa(nd_region, 372 nd_mapping, &overlap); 373 if (overlap > blk_max_overlap) { 374 blk_max_overlap = overlap; 375 goto retry; 376 } 377 } else if (is_nd_blk(&nd_region->dev)) 378 available += nd_blk_available_dpa(nd_region); 379 } 380 381 return available; 382 } 383 384 static ssize_t available_size_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct nd_region *nd_region = to_nd_region(dev); 388 unsigned long long available = 0; 389 390 /* 391 * Flush in-flight updates and grab a snapshot of the available 392 * size. Of course, this value is potentially invalidated the 393 * memory nvdimm_bus_lock() is dropped, but that's userspace's 394 * problem to not race itself. 395 */ 396 nvdimm_bus_lock(dev); 397 wait_nvdimm_bus_probe_idle(dev); 398 available = nd_region_available_dpa(nd_region); 399 nvdimm_bus_unlock(dev); 400 401 return sprintf(buf, "%llu\n", available); 402 } 403 static DEVICE_ATTR_RO(available_size); 404 405 static ssize_t init_namespaces_show(struct device *dev, 406 struct device_attribute *attr, char *buf) 407 { 408 struct nd_region_data *ndrd = dev_get_drvdata(dev); 409 ssize_t rc; 410 411 nvdimm_bus_lock(dev); 412 if (ndrd) 413 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 414 else 415 rc = -ENXIO; 416 nvdimm_bus_unlock(dev); 417 418 return rc; 419 } 420 static DEVICE_ATTR_RO(init_namespaces); 421 422 static ssize_t namespace_seed_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 struct nd_region *nd_region = to_nd_region(dev); 426 ssize_t rc; 427 428 nvdimm_bus_lock(dev); 429 if (nd_region->ns_seed) 430 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 431 else 432 rc = sprintf(buf, "\n"); 433 nvdimm_bus_unlock(dev); 434 return rc; 435 } 436 static DEVICE_ATTR_RO(namespace_seed); 437 438 static ssize_t btt_seed_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct nd_region *nd_region = to_nd_region(dev); 442 ssize_t rc; 443 444 nvdimm_bus_lock(dev); 445 if (nd_region->btt_seed) 446 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 447 else 448 rc = sprintf(buf, "\n"); 449 nvdimm_bus_unlock(dev); 450 451 return rc; 452 } 453 static DEVICE_ATTR_RO(btt_seed); 454 455 static ssize_t pfn_seed_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct nd_region *nd_region = to_nd_region(dev); 459 ssize_t rc; 460 461 nvdimm_bus_lock(dev); 462 if (nd_region->pfn_seed) 463 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 464 else 465 rc = sprintf(buf, "\n"); 466 nvdimm_bus_unlock(dev); 467 468 return rc; 469 } 470 static DEVICE_ATTR_RO(pfn_seed); 471 472 static ssize_t dax_seed_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct nd_region *nd_region = to_nd_region(dev); 476 ssize_t rc; 477 478 nvdimm_bus_lock(dev); 479 if (nd_region->dax_seed) 480 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 481 else 482 rc = sprintf(buf, "\n"); 483 nvdimm_bus_unlock(dev); 484 485 return rc; 486 } 487 static DEVICE_ATTR_RO(dax_seed); 488 489 static ssize_t read_only_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct nd_region *nd_region = to_nd_region(dev); 493 494 return sprintf(buf, "%d\n", nd_region->ro); 495 } 496 497 static ssize_t read_only_store(struct device *dev, 498 struct device_attribute *attr, const char *buf, size_t len) 499 { 500 bool ro; 501 int rc = strtobool(buf, &ro); 502 struct nd_region *nd_region = to_nd_region(dev); 503 504 if (rc) 505 return rc; 506 507 nd_region->ro = ro; 508 return len; 509 } 510 static DEVICE_ATTR_RW(read_only); 511 512 static ssize_t region_badblocks_show(struct device *dev, 513 struct device_attribute *attr, char *buf) 514 { 515 struct nd_region *nd_region = to_nd_region(dev); 516 517 return badblocks_show(&nd_region->bb, buf, 0); 518 } 519 520 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 521 522 static ssize_t resource_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct nd_region *nd_region = to_nd_region(dev); 526 527 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 528 } 529 static DEVICE_ATTR_RO(resource); 530 531 static struct attribute *nd_region_attributes[] = { 532 &dev_attr_size.attr, 533 &dev_attr_nstype.attr, 534 &dev_attr_mappings.attr, 535 &dev_attr_btt_seed.attr, 536 &dev_attr_pfn_seed.attr, 537 &dev_attr_dax_seed.attr, 538 &dev_attr_deep_flush.attr, 539 &dev_attr_read_only.attr, 540 &dev_attr_set_cookie.attr, 541 &dev_attr_available_size.attr, 542 &dev_attr_namespace_seed.attr, 543 &dev_attr_init_namespaces.attr, 544 &dev_attr_badblocks.attr, 545 &dev_attr_resource.attr, 546 NULL, 547 }; 548 549 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 550 { 551 struct device *dev = container_of(kobj, typeof(*dev), kobj); 552 struct nd_region *nd_region = to_nd_region(dev); 553 struct nd_interleave_set *nd_set = nd_region->nd_set; 554 int type = nd_region_to_nstype(nd_region); 555 556 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 557 return 0; 558 559 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 560 return 0; 561 562 if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr) 563 return 0; 564 565 if (a == &dev_attr_resource.attr) { 566 if (is_nd_pmem(dev)) 567 return 0400; 568 else 569 return 0; 570 } 571 572 if (a == &dev_attr_deep_flush.attr) { 573 int has_flush = nvdimm_has_flush(nd_region); 574 575 if (has_flush == 1) 576 return a->mode; 577 else if (has_flush == 0) 578 return 0444; 579 else 580 return 0; 581 } 582 583 if (a != &dev_attr_set_cookie.attr 584 && a != &dev_attr_available_size.attr) 585 return a->mode; 586 587 if ((type == ND_DEVICE_NAMESPACE_PMEM 588 || type == ND_DEVICE_NAMESPACE_BLK) 589 && a == &dev_attr_available_size.attr) 590 return a->mode; 591 else if (is_memory(dev) && nd_set) 592 return a->mode; 593 594 return 0; 595 } 596 597 struct attribute_group nd_region_attribute_group = { 598 .attrs = nd_region_attributes, 599 .is_visible = region_visible, 600 }; 601 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 602 603 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 604 struct nd_namespace_index *nsindex) 605 { 606 struct nd_interleave_set *nd_set = nd_region->nd_set; 607 608 if (!nd_set) 609 return 0; 610 611 if (nsindex && __le16_to_cpu(nsindex->major) == 1 612 && __le16_to_cpu(nsindex->minor) == 1) 613 return nd_set->cookie1; 614 return nd_set->cookie2; 615 } 616 617 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 618 { 619 struct nd_interleave_set *nd_set = nd_region->nd_set; 620 621 if (nd_set) 622 return nd_set->altcookie; 623 return 0; 624 } 625 626 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 627 { 628 struct nd_label_ent *label_ent, *e; 629 630 lockdep_assert_held(&nd_mapping->lock); 631 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 632 list_del(&label_ent->list); 633 kfree(label_ent); 634 } 635 } 636 637 /* 638 * Upon successful probe/remove, take/release a reference on the 639 * associated interleave set (if present), and plant new btt + namespace 640 * seeds. Also, on the removal of a BLK region, notify the provider to 641 * disable the region. 642 */ 643 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 644 struct device *dev, bool probe) 645 { 646 struct nd_region *nd_region; 647 648 if (!probe && is_nd_region(dev)) { 649 int i; 650 651 nd_region = to_nd_region(dev); 652 for (i = 0; i < nd_region->ndr_mappings; i++) { 653 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 654 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 655 struct nvdimm *nvdimm = nd_mapping->nvdimm; 656 657 mutex_lock(&nd_mapping->lock); 658 nd_mapping_free_labels(nd_mapping); 659 mutex_unlock(&nd_mapping->lock); 660 661 put_ndd(ndd); 662 nd_mapping->ndd = NULL; 663 if (ndd) 664 atomic_dec(&nvdimm->busy); 665 } 666 } 667 if (dev->parent && is_nd_region(dev->parent) && probe) { 668 nd_region = to_nd_region(dev->parent); 669 nvdimm_bus_lock(dev); 670 if (nd_region->ns_seed == dev) 671 nd_region_create_ns_seed(nd_region); 672 nvdimm_bus_unlock(dev); 673 } 674 if (is_nd_btt(dev) && probe) { 675 struct nd_btt *nd_btt = to_nd_btt(dev); 676 677 nd_region = to_nd_region(dev->parent); 678 nvdimm_bus_lock(dev); 679 if (nd_region->btt_seed == dev) 680 nd_region_create_btt_seed(nd_region); 681 if (nd_region->ns_seed == &nd_btt->ndns->dev) 682 nd_region_create_ns_seed(nd_region); 683 nvdimm_bus_unlock(dev); 684 } 685 if (is_nd_pfn(dev) && probe) { 686 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 687 688 nd_region = to_nd_region(dev->parent); 689 nvdimm_bus_lock(dev); 690 if (nd_region->pfn_seed == dev) 691 nd_region_create_pfn_seed(nd_region); 692 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 693 nd_region_create_ns_seed(nd_region); 694 nvdimm_bus_unlock(dev); 695 } 696 if (is_nd_dax(dev) && probe) { 697 struct nd_dax *nd_dax = to_nd_dax(dev); 698 699 nd_region = to_nd_region(dev->parent); 700 nvdimm_bus_lock(dev); 701 if (nd_region->dax_seed == dev) 702 nd_region_create_dax_seed(nd_region); 703 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 704 nd_region_create_ns_seed(nd_region); 705 nvdimm_bus_unlock(dev); 706 } 707 } 708 709 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 710 { 711 nd_region_notify_driver_action(nvdimm_bus, dev, true); 712 } 713 714 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 715 { 716 nd_region_notify_driver_action(nvdimm_bus, dev, false); 717 } 718 719 static ssize_t mappingN(struct device *dev, char *buf, int n) 720 { 721 struct nd_region *nd_region = to_nd_region(dev); 722 struct nd_mapping *nd_mapping; 723 struct nvdimm *nvdimm; 724 725 if (n >= nd_region->ndr_mappings) 726 return -ENXIO; 727 nd_mapping = &nd_region->mapping[n]; 728 nvdimm = nd_mapping->nvdimm; 729 730 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 731 nd_mapping->start, nd_mapping->size, 732 nd_mapping->position); 733 } 734 735 #define REGION_MAPPING(idx) \ 736 static ssize_t mapping##idx##_show(struct device *dev, \ 737 struct device_attribute *attr, char *buf) \ 738 { \ 739 return mappingN(dev, buf, idx); \ 740 } \ 741 static DEVICE_ATTR_RO(mapping##idx) 742 743 /* 744 * 32 should be enough for a while, even in the presence of socket 745 * interleave a 32-way interleave set is a degenerate case. 746 */ 747 REGION_MAPPING(0); 748 REGION_MAPPING(1); 749 REGION_MAPPING(2); 750 REGION_MAPPING(3); 751 REGION_MAPPING(4); 752 REGION_MAPPING(5); 753 REGION_MAPPING(6); 754 REGION_MAPPING(7); 755 REGION_MAPPING(8); 756 REGION_MAPPING(9); 757 REGION_MAPPING(10); 758 REGION_MAPPING(11); 759 REGION_MAPPING(12); 760 REGION_MAPPING(13); 761 REGION_MAPPING(14); 762 REGION_MAPPING(15); 763 REGION_MAPPING(16); 764 REGION_MAPPING(17); 765 REGION_MAPPING(18); 766 REGION_MAPPING(19); 767 REGION_MAPPING(20); 768 REGION_MAPPING(21); 769 REGION_MAPPING(22); 770 REGION_MAPPING(23); 771 REGION_MAPPING(24); 772 REGION_MAPPING(25); 773 REGION_MAPPING(26); 774 REGION_MAPPING(27); 775 REGION_MAPPING(28); 776 REGION_MAPPING(29); 777 REGION_MAPPING(30); 778 REGION_MAPPING(31); 779 780 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 781 { 782 struct device *dev = container_of(kobj, struct device, kobj); 783 struct nd_region *nd_region = to_nd_region(dev); 784 785 if (n < nd_region->ndr_mappings) 786 return a->mode; 787 return 0; 788 } 789 790 static struct attribute *mapping_attributes[] = { 791 &dev_attr_mapping0.attr, 792 &dev_attr_mapping1.attr, 793 &dev_attr_mapping2.attr, 794 &dev_attr_mapping3.attr, 795 &dev_attr_mapping4.attr, 796 &dev_attr_mapping5.attr, 797 &dev_attr_mapping6.attr, 798 &dev_attr_mapping7.attr, 799 &dev_attr_mapping8.attr, 800 &dev_attr_mapping9.attr, 801 &dev_attr_mapping10.attr, 802 &dev_attr_mapping11.attr, 803 &dev_attr_mapping12.attr, 804 &dev_attr_mapping13.attr, 805 &dev_attr_mapping14.attr, 806 &dev_attr_mapping15.attr, 807 &dev_attr_mapping16.attr, 808 &dev_attr_mapping17.attr, 809 &dev_attr_mapping18.attr, 810 &dev_attr_mapping19.attr, 811 &dev_attr_mapping20.attr, 812 &dev_attr_mapping21.attr, 813 &dev_attr_mapping22.attr, 814 &dev_attr_mapping23.attr, 815 &dev_attr_mapping24.attr, 816 &dev_attr_mapping25.attr, 817 &dev_attr_mapping26.attr, 818 &dev_attr_mapping27.attr, 819 &dev_attr_mapping28.attr, 820 &dev_attr_mapping29.attr, 821 &dev_attr_mapping30.attr, 822 &dev_attr_mapping31.attr, 823 NULL, 824 }; 825 826 struct attribute_group nd_mapping_attribute_group = { 827 .is_visible = mapping_visible, 828 .attrs = mapping_attributes, 829 }; 830 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 831 832 int nd_blk_region_init(struct nd_region *nd_region) 833 { 834 struct device *dev = &nd_region->dev; 835 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 836 837 if (!is_nd_blk(dev)) 838 return 0; 839 840 if (nd_region->ndr_mappings < 1) { 841 dev_dbg(dev, "invalid BLK region\n"); 842 return -ENXIO; 843 } 844 845 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 846 } 847 848 /** 849 * nd_region_acquire_lane - allocate and lock a lane 850 * @nd_region: region id and number of lanes possible 851 * 852 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 853 * We optimize for the common case where there are 256 lanes, one 854 * per-cpu. For larger systems we need to lock to share lanes. For now 855 * this implementation assumes the cost of maintaining an allocator for 856 * free lanes is on the order of the lock hold time, so it implements a 857 * static lane = cpu % num_lanes mapping. 858 * 859 * In the case of a BTT instance on top of a BLK namespace a lane may be 860 * acquired recursively. We lock on the first instance. 861 * 862 * In the case of a BTT instance on top of PMEM, we only acquire a lane 863 * for the BTT metadata updates. 864 */ 865 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 866 { 867 unsigned int cpu, lane; 868 869 cpu = get_cpu(); 870 if (nd_region->num_lanes < nr_cpu_ids) { 871 struct nd_percpu_lane *ndl_lock, *ndl_count; 872 873 lane = cpu % nd_region->num_lanes; 874 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 875 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 876 if (ndl_count->count++ == 0) 877 spin_lock(&ndl_lock->lock); 878 } else 879 lane = cpu; 880 881 return lane; 882 } 883 EXPORT_SYMBOL(nd_region_acquire_lane); 884 885 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 886 { 887 if (nd_region->num_lanes < nr_cpu_ids) { 888 unsigned int cpu = get_cpu(); 889 struct nd_percpu_lane *ndl_lock, *ndl_count; 890 891 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 892 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 893 if (--ndl_count->count == 0) 894 spin_unlock(&ndl_lock->lock); 895 put_cpu(); 896 } 897 put_cpu(); 898 } 899 EXPORT_SYMBOL(nd_region_release_lane); 900 901 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 902 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 903 const char *caller) 904 { 905 struct nd_region *nd_region; 906 struct device *dev; 907 void *region_buf; 908 unsigned int i; 909 int ro = 0; 910 911 for (i = 0; i < ndr_desc->num_mappings; i++) { 912 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 913 struct nvdimm *nvdimm = mapping->nvdimm; 914 915 if ((mapping->start | mapping->size) % SZ_4K) { 916 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 917 caller, dev_name(&nvdimm->dev), i); 918 919 return NULL; 920 } 921 922 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 923 ro = 1; 924 } 925 926 if (dev_type == &nd_blk_device_type) { 927 struct nd_blk_region_desc *ndbr_desc; 928 struct nd_blk_region *ndbr; 929 930 ndbr_desc = to_blk_region_desc(ndr_desc); 931 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 932 * ndr_desc->num_mappings, 933 GFP_KERNEL); 934 if (ndbr) { 935 nd_region = &ndbr->nd_region; 936 ndbr->enable = ndbr_desc->enable; 937 ndbr->do_io = ndbr_desc->do_io; 938 } 939 region_buf = ndbr; 940 } else { 941 nd_region = kzalloc(sizeof(struct nd_region) 942 + sizeof(struct nd_mapping) 943 * ndr_desc->num_mappings, 944 GFP_KERNEL); 945 region_buf = nd_region; 946 } 947 948 if (!region_buf) 949 return NULL; 950 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 951 if (nd_region->id < 0) 952 goto err_id; 953 954 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 955 if (!nd_region->lane) 956 goto err_percpu; 957 958 for (i = 0; i < nr_cpu_ids; i++) { 959 struct nd_percpu_lane *ndl; 960 961 ndl = per_cpu_ptr(nd_region->lane, i); 962 spin_lock_init(&ndl->lock); 963 ndl->count = 0; 964 } 965 966 for (i = 0; i < ndr_desc->num_mappings; i++) { 967 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 968 struct nvdimm *nvdimm = mapping->nvdimm; 969 970 nd_region->mapping[i].nvdimm = nvdimm; 971 nd_region->mapping[i].start = mapping->start; 972 nd_region->mapping[i].size = mapping->size; 973 nd_region->mapping[i].position = mapping->position; 974 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 975 mutex_init(&nd_region->mapping[i].lock); 976 977 get_device(&nvdimm->dev); 978 } 979 nd_region->ndr_mappings = ndr_desc->num_mappings; 980 nd_region->provider_data = ndr_desc->provider_data; 981 nd_region->nd_set = ndr_desc->nd_set; 982 nd_region->num_lanes = ndr_desc->num_lanes; 983 nd_region->flags = ndr_desc->flags; 984 nd_region->ro = ro; 985 nd_region->numa_node = ndr_desc->numa_node; 986 ida_init(&nd_region->ns_ida); 987 ida_init(&nd_region->btt_ida); 988 ida_init(&nd_region->pfn_ida); 989 ida_init(&nd_region->dax_ida); 990 dev = &nd_region->dev; 991 dev_set_name(dev, "region%d", nd_region->id); 992 dev->parent = &nvdimm_bus->dev; 993 dev->type = dev_type; 994 dev->groups = ndr_desc->attr_groups; 995 nd_region->ndr_size = resource_size(ndr_desc->res); 996 nd_region->ndr_start = ndr_desc->res->start; 997 nd_device_register(dev); 998 999 return nd_region; 1000 1001 err_percpu: 1002 ida_simple_remove(®ion_ida, nd_region->id); 1003 err_id: 1004 kfree(region_buf); 1005 return NULL; 1006 } 1007 1008 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1009 struct nd_region_desc *ndr_desc) 1010 { 1011 ndr_desc->num_lanes = ND_MAX_LANES; 1012 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1013 __func__); 1014 } 1015 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1016 1017 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 1018 struct nd_region_desc *ndr_desc) 1019 { 1020 if (ndr_desc->num_mappings > 1) 1021 return NULL; 1022 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 1023 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 1024 __func__); 1025 } 1026 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 1027 1028 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1029 struct nd_region_desc *ndr_desc) 1030 { 1031 ndr_desc->num_lanes = ND_MAX_LANES; 1032 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1033 __func__); 1034 } 1035 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1036 1037 /** 1038 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1039 * @nd_region: blk or interleaved pmem region 1040 */ 1041 void nvdimm_flush(struct nd_region *nd_region) 1042 { 1043 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1044 int i, idx; 1045 1046 /* 1047 * Try to encourage some diversity in flush hint addresses 1048 * across cpus assuming a limited number of flush hints. 1049 */ 1050 idx = this_cpu_read(flush_idx); 1051 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1052 1053 /* 1054 * The first wmb() is needed to 'sfence' all previous writes 1055 * such that they are architecturally visible for the platform 1056 * buffer flush. Note that we've already arranged for pmem 1057 * writes to avoid the cache via memcpy_flushcache(). The final 1058 * wmb() ensures ordering for the NVDIMM flush write. 1059 */ 1060 wmb(); 1061 for (i = 0; i < nd_region->ndr_mappings; i++) 1062 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1063 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1064 wmb(); 1065 } 1066 EXPORT_SYMBOL_GPL(nvdimm_flush); 1067 1068 /** 1069 * nvdimm_has_flush - determine write flushing requirements 1070 * @nd_region: blk or interleaved pmem region 1071 * 1072 * Returns 1 if writes require flushing 1073 * Returns 0 if writes do not require flushing 1074 * Returns -ENXIO if flushing capability can not be determined 1075 */ 1076 int nvdimm_has_flush(struct nd_region *nd_region) 1077 { 1078 int i; 1079 1080 /* no nvdimm or pmem api == flushing capability unknown */ 1081 if (nd_region->ndr_mappings == 0 1082 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1083 return -ENXIO; 1084 1085 for (i = 0; i < nd_region->ndr_mappings; i++) { 1086 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1087 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1088 1089 /* flush hints present / available */ 1090 if (nvdimm->num_flush) 1091 return 1; 1092 } 1093 1094 /* 1095 * The platform defines dimm devices without hints, assume 1096 * platform persistence mechanism like ADR 1097 */ 1098 return 0; 1099 } 1100 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1101 1102 int nvdimm_has_cache(struct nd_region *nd_region) 1103 { 1104 return is_nd_pmem(&nd_region->dev); 1105 } 1106 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1107 1108 void __exit nd_region_devs_exit(void) 1109 { 1110 ida_destroy(®ion_ida); 1111 } 1112