xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision 020c5260)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24 
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33 
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 		struct nd_region_data *ndrd)
36 {
37 	int i, j;
38 
39 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 		struct resource *res = &nvdimm->flush_wpq[i];
43 		unsigned long pfn = PHYS_PFN(res->start);
44 		void __iomem *flush_page;
45 
46 		/* check if flush hints share a page */
47 		for (j = 0; j < i; j++) {
48 			struct resource *res_j = &nvdimm->flush_wpq[j];
49 			unsigned long pfn_j = PHYS_PFN(res_j->start);
50 
51 			if (pfn == pfn_j)
52 				break;
53 		}
54 
55 		if (j < i)
56 			flush_page = (void __iomem *) ((unsigned long)
57 					ndrd_get_flush_wpq(ndrd, dimm, j)
58 					& PAGE_MASK);
59 		else
60 			flush_page = devm_nvdimm_ioremap(dev,
61 					PFN_PHYS(pfn), PAGE_SIZE);
62 		if (!flush_page)
63 			return -ENXIO;
64 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 				+ (res->start & ~PAGE_MASK));
66 	}
67 
68 	return 0;
69 }
70 
71 int nd_region_activate(struct nd_region *nd_region)
72 {
73 	int i, j, num_flush = 0;
74 	struct nd_region_data *ndrd;
75 	struct device *dev = &nd_region->dev;
76 	size_t flush_data_size = sizeof(void *);
77 
78 	nvdimm_bus_lock(&nd_region->dev);
79 	for (i = 0; i < nd_region->ndr_mappings; i++) {
80 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
82 
83 		/* at least one null hint slot per-dimm for the "no-hint" case */
84 		flush_data_size += sizeof(void *);
85 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 		if (!nvdimm->num_flush)
87 			continue;
88 		flush_data_size += nvdimm->num_flush * sizeof(void *);
89 	}
90 	nvdimm_bus_unlock(&nd_region->dev);
91 
92 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93 	if (!ndrd)
94 		return -ENOMEM;
95 	dev_set_drvdata(dev, ndrd);
96 
97 	if (!num_flush)
98 		return 0;
99 
100 	ndrd->hints_shift = ilog2(num_flush);
101 	for (i = 0; i < nd_region->ndr_mappings; i++) {
102 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105 
106 		if (rc)
107 			return rc;
108 	}
109 
110 	/*
111 	 * Clear out entries that are duplicates. This should prevent the
112 	 * extra flushings.
113 	 */
114 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115 		/* ignore if NULL already */
116 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
117 			continue;
118 
119 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
120 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121 			    ndrd_get_flush_wpq(ndrd, j, 0))
122 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123 	}
124 
125 	return 0;
126 }
127 
128 static void nd_region_release(struct device *dev)
129 {
130 	struct nd_region *nd_region = to_nd_region(dev);
131 	u16 i;
132 
133 	for (i = 0; i < nd_region->ndr_mappings; i++) {
134 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
136 
137 		put_device(&nvdimm->dev);
138 	}
139 	free_percpu(nd_region->lane);
140 	ida_simple_remove(&region_ida, nd_region->id);
141 	if (is_nd_blk(dev))
142 		kfree(to_nd_blk_region(dev));
143 	else
144 		kfree(nd_region);
145 }
146 
147 static struct device_type nd_blk_device_type = {
148 	.name = "nd_blk",
149 	.release = nd_region_release,
150 };
151 
152 static struct device_type nd_pmem_device_type = {
153 	.name = "nd_pmem",
154 	.release = nd_region_release,
155 };
156 
157 static struct device_type nd_volatile_device_type = {
158 	.name = "nd_volatile",
159 	.release = nd_region_release,
160 };
161 
162 bool is_nd_pmem(struct device *dev)
163 {
164 	return dev ? dev->type == &nd_pmem_device_type : false;
165 }
166 
167 bool is_nd_blk(struct device *dev)
168 {
169 	return dev ? dev->type == &nd_blk_device_type : false;
170 }
171 
172 struct nd_region *to_nd_region(struct device *dev)
173 {
174 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175 
176 	WARN_ON(dev->type->release != nd_region_release);
177 	return nd_region;
178 }
179 EXPORT_SYMBOL_GPL(to_nd_region);
180 
181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
182 {
183 	struct nd_region *nd_region = to_nd_region(dev);
184 
185 	WARN_ON(!is_nd_blk(dev));
186 	return container_of(nd_region, struct nd_blk_region, nd_region);
187 }
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
189 
190 void *nd_region_provider_data(struct nd_region *nd_region)
191 {
192 	return nd_region->provider_data;
193 }
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
195 
196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197 {
198 	return ndbr->blk_provider_data;
199 }
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201 
202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203 {
204 	ndbr->blk_provider_data = data;
205 }
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207 
208 /**
209  * nd_region_to_nstype() - region to an integer namespace type
210  * @nd_region: region-device to interrogate
211  *
212  * This is the 'nstype' attribute of a region as well, an input to the
213  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214  * namespace devices with namespace drivers.
215  */
216 int nd_region_to_nstype(struct nd_region *nd_region)
217 {
218 	if (is_nd_pmem(&nd_region->dev)) {
219 		u16 i, alias;
220 
221 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
224 
225 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
226 				alias++;
227 		}
228 		if (alias)
229 			return ND_DEVICE_NAMESPACE_PMEM;
230 		else
231 			return ND_DEVICE_NAMESPACE_IO;
232 	} else if (is_nd_blk(&nd_region->dev)) {
233 		return ND_DEVICE_NAMESPACE_BLK;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239 
240 static ssize_t size_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct nd_region *nd_region = to_nd_region(dev);
244 	unsigned long long size = 0;
245 
246 	if (is_nd_pmem(dev)) {
247 		size = nd_region->ndr_size;
248 	} else if (nd_region->ndr_mappings == 1) {
249 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250 
251 		size = nd_mapping->size;
252 	}
253 
254 	return sprintf(buf, "%llu\n", size);
255 }
256 static DEVICE_ATTR_RO(size);
257 
258 static ssize_t deep_flush_show(struct device *dev,
259 		struct device_attribute *attr, char *buf)
260 {
261 	struct nd_region *nd_region = to_nd_region(dev);
262 
263 	/*
264 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
265 	 * not visible.
266 	 */
267 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
268 }
269 
270 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
271 		const char *buf, size_t len)
272 {
273 	bool flush;
274 	int rc = strtobool(buf, &flush);
275 	struct nd_region *nd_region = to_nd_region(dev);
276 
277 	if (rc)
278 		return rc;
279 	if (!flush)
280 		return -EINVAL;
281 	nvdimm_flush(nd_region);
282 
283 	return len;
284 }
285 static DEVICE_ATTR_RW(deep_flush);
286 
287 static ssize_t mappings_show(struct device *dev,
288 		struct device_attribute *attr, char *buf)
289 {
290 	struct nd_region *nd_region = to_nd_region(dev);
291 
292 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
293 }
294 static DEVICE_ATTR_RO(mappings);
295 
296 static ssize_t nstype_show(struct device *dev,
297 		struct device_attribute *attr, char *buf)
298 {
299 	struct nd_region *nd_region = to_nd_region(dev);
300 
301 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
302 }
303 static DEVICE_ATTR_RO(nstype);
304 
305 static ssize_t set_cookie_show(struct device *dev,
306 		struct device_attribute *attr, char *buf)
307 {
308 	struct nd_region *nd_region = to_nd_region(dev);
309 	struct nd_interleave_set *nd_set = nd_region->nd_set;
310 
311 	if (is_nd_pmem(dev) && nd_set)
312 		/* pass, should be precluded by region_visible */;
313 	else
314 		return -ENXIO;
315 
316 	return sprintf(buf, "%#llx\n", nd_set->cookie);
317 }
318 static DEVICE_ATTR_RO(set_cookie);
319 
320 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
321 {
322 	resource_size_t blk_max_overlap = 0, available, overlap;
323 	int i;
324 
325 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
326 
327  retry:
328 	available = 0;
329 	overlap = blk_max_overlap;
330 	for (i = 0; i < nd_region->ndr_mappings; i++) {
331 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
332 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
333 
334 		/* if a dimm is disabled the available capacity is zero */
335 		if (!ndd)
336 			return 0;
337 
338 		if (is_nd_pmem(&nd_region->dev)) {
339 			available += nd_pmem_available_dpa(nd_region,
340 					nd_mapping, &overlap);
341 			if (overlap > blk_max_overlap) {
342 				blk_max_overlap = overlap;
343 				goto retry;
344 			}
345 		} else if (is_nd_blk(&nd_region->dev))
346 			available += nd_blk_available_dpa(nd_region);
347 	}
348 
349 	return available;
350 }
351 
352 static ssize_t available_size_show(struct device *dev,
353 		struct device_attribute *attr, char *buf)
354 {
355 	struct nd_region *nd_region = to_nd_region(dev);
356 	unsigned long long available = 0;
357 
358 	/*
359 	 * Flush in-flight updates and grab a snapshot of the available
360 	 * size.  Of course, this value is potentially invalidated the
361 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
362 	 * problem to not race itself.
363 	 */
364 	nvdimm_bus_lock(dev);
365 	wait_nvdimm_bus_probe_idle(dev);
366 	available = nd_region_available_dpa(nd_region);
367 	nvdimm_bus_unlock(dev);
368 
369 	return sprintf(buf, "%llu\n", available);
370 }
371 static DEVICE_ATTR_RO(available_size);
372 
373 static ssize_t init_namespaces_show(struct device *dev,
374 		struct device_attribute *attr, char *buf)
375 {
376 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
377 	ssize_t rc;
378 
379 	nvdimm_bus_lock(dev);
380 	if (ndrd)
381 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
382 	else
383 		rc = -ENXIO;
384 	nvdimm_bus_unlock(dev);
385 
386 	return rc;
387 }
388 static DEVICE_ATTR_RO(init_namespaces);
389 
390 static ssize_t namespace_seed_show(struct device *dev,
391 		struct device_attribute *attr, char *buf)
392 {
393 	struct nd_region *nd_region = to_nd_region(dev);
394 	ssize_t rc;
395 
396 	nvdimm_bus_lock(dev);
397 	if (nd_region->ns_seed)
398 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
399 	else
400 		rc = sprintf(buf, "\n");
401 	nvdimm_bus_unlock(dev);
402 	return rc;
403 }
404 static DEVICE_ATTR_RO(namespace_seed);
405 
406 static ssize_t btt_seed_show(struct device *dev,
407 		struct device_attribute *attr, char *buf)
408 {
409 	struct nd_region *nd_region = to_nd_region(dev);
410 	ssize_t rc;
411 
412 	nvdimm_bus_lock(dev);
413 	if (nd_region->btt_seed)
414 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
415 	else
416 		rc = sprintf(buf, "\n");
417 	nvdimm_bus_unlock(dev);
418 
419 	return rc;
420 }
421 static DEVICE_ATTR_RO(btt_seed);
422 
423 static ssize_t pfn_seed_show(struct device *dev,
424 		struct device_attribute *attr, char *buf)
425 {
426 	struct nd_region *nd_region = to_nd_region(dev);
427 	ssize_t rc;
428 
429 	nvdimm_bus_lock(dev);
430 	if (nd_region->pfn_seed)
431 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
432 	else
433 		rc = sprintf(buf, "\n");
434 	nvdimm_bus_unlock(dev);
435 
436 	return rc;
437 }
438 static DEVICE_ATTR_RO(pfn_seed);
439 
440 static ssize_t dax_seed_show(struct device *dev,
441 		struct device_attribute *attr, char *buf)
442 {
443 	struct nd_region *nd_region = to_nd_region(dev);
444 	ssize_t rc;
445 
446 	nvdimm_bus_lock(dev);
447 	if (nd_region->dax_seed)
448 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
449 	else
450 		rc = sprintf(buf, "\n");
451 	nvdimm_bus_unlock(dev);
452 
453 	return rc;
454 }
455 static DEVICE_ATTR_RO(dax_seed);
456 
457 static ssize_t read_only_show(struct device *dev,
458 		struct device_attribute *attr, char *buf)
459 {
460 	struct nd_region *nd_region = to_nd_region(dev);
461 
462 	return sprintf(buf, "%d\n", nd_region->ro);
463 }
464 
465 static ssize_t read_only_store(struct device *dev,
466 		struct device_attribute *attr, const char *buf, size_t len)
467 {
468 	bool ro;
469 	int rc = strtobool(buf, &ro);
470 	struct nd_region *nd_region = to_nd_region(dev);
471 
472 	if (rc)
473 		return rc;
474 
475 	nd_region->ro = ro;
476 	return len;
477 }
478 static DEVICE_ATTR_RW(read_only);
479 
480 static ssize_t region_badblocks_show(struct device *dev,
481 		struct device_attribute *attr, char *buf)
482 {
483 	struct nd_region *nd_region = to_nd_region(dev);
484 
485 	return badblocks_show(&nd_region->bb, buf, 0);
486 }
487 
488 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
489 
490 static ssize_t resource_show(struct device *dev,
491 		struct device_attribute *attr, char *buf)
492 {
493 	struct nd_region *nd_region = to_nd_region(dev);
494 
495 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
496 }
497 static DEVICE_ATTR_RO(resource);
498 
499 static struct attribute *nd_region_attributes[] = {
500 	&dev_attr_size.attr,
501 	&dev_attr_nstype.attr,
502 	&dev_attr_mappings.attr,
503 	&dev_attr_btt_seed.attr,
504 	&dev_attr_pfn_seed.attr,
505 	&dev_attr_dax_seed.attr,
506 	&dev_attr_deep_flush.attr,
507 	&dev_attr_read_only.attr,
508 	&dev_attr_set_cookie.attr,
509 	&dev_attr_available_size.attr,
510 	&dev_attr_namespace_seed.attr,
511 	&dev_attr_init_namespaces.attr,
512 	&dev_attr_badblocks.attr,
513 	&dev_attr_resource.attr,
514 	NULL,
515 };
516 
517 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
518 {
519 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
520 	struct nd_region *nd_region = to_nd_region(dev);
521 	struct nd_interleave_set *nd_set = nd_region->nd_set;
522 	int type = nd_region_to_nstype(nd_region);
523 
524 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
525 		return 0;
526 
527 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
528 		return 0;
529 
530 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
531 		return 0;
532 
533 	if (!is_nd_pmem(dev) && a == &dev_attr_resource.attr)
534 		return 0;
535 
536 	if (a == &dev_attr_deep_flush.attr) {
537 		int has_flush = nvdimm_has_flush(nd_region);
538 
539 		if (has_flush == 1)
540 			return a->mode;
541 		else if (has_flush == 0)
542 			return 0444;
543 		else
544 			return 0;
545 	}
546 
547 	if (a != &dev_attr_set_cookie.attr
548 			&& a != &dev_attr_available_size.attr)
549 		return a->mode;
550 
551 	if ((type == ND_DEVICE_NAMESPACE_PMEM
552 				|| type == ND_DEVICE_NAMESPACE_BLK)
553 			&& a == &dev_attr_available_size.attr)
554 		return a->mode;
555 	else if (is_nd_pmem(dev) && nd_set)
556 		return a->mode;
557 
558 	return 0;
559 }
560 
561 struct attribute_group nd_region_attribute_group = {
562 	.attrs = nd_region_attributes,
563 	.is_visible = region_visible,
564 };
565 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
566 
567 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
568 {
569 	struct nd_interleave_set *nd_set = nd_region->nd_set;
570 
571 	if (nd_set)
572 		return nd_set->cookie;
573 	return 0;
574 }
575 
576 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
577 {
578 	struct nd_interleave_set *nd_set = nd_region->nd_set;
579 
580 	if (nd_set)
581 		return nd_set->altcookie;
582 	return 0;
583 }
584 
585 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
586 {
587 	struct nd_label_ent *label_ent, *e;
588 
589 	lockdep_assert_held(&nd_mapping->lock);
590 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
591 		list_del(&label_ent->list);
592 		kfree(label_ent);
593 	}
594 }
595 
596 /*
597  * Upon successful probe/remove, take/release a reference on the
598  * associated interleave set (if present), and plant new btt + namespace
599  * seeds.  Also, on the removal of a BLK region, notify the provider to
600  * disable the region.
601  */
602 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
603 		struct device *dev, bool probe)
604 {
605 	struct nd_region *nd_region;
606 
607 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
608 		int i;
609 
610 		nd_region = to_nd_region(dev);
611 		for (i = 0; i < nd_region->ndr_mappings; i++) {
612 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
613 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
614 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
615 
616 			mutex_lock(&nd_mapping->lock);
617 			nd_mapping_free_labels(nd_mapping);
618 			mutex_unlock(&nd_mapping->lock);
619 
620 			put_ndd(ndd);
621 			nd_mapping->ndd = NULL;
622 			if (ndd)
623 				atomic_dec(&nvdimm->busy);
624 		}
625 
626 		if (is_nd_pmem(dev))
627 			return;
628 	}
629 	if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
630 			&& probe) {
631 		nd_region = to_nd_region(dev->parent);
632 		nvdimm_bus_lock(dev);
633 		if (nd_region->ns_seed == dev)
634 			nd_region_create_ns_seed(nd_region);
635 		nvdimm_bus_unlock(dev);
636 	}
637 	if (is_nd_btt(dev) && probe) {
638 		struct nd_btt *nd_btt = to_nd_btt(dev);
639 
640 		nd_region = to_nd_region(dev->parent);
641 		nvdimm_bus_lock(dev);
642 		if (nd_region->btt_seed == dev)
643 			nd_region_create_btt_seed(nd_region);
644 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
645 			nd_region_create_ns_seed(nd_region);
646 		nvdimm_bus_unlock(dev);
647 	}
648 	if (is_nd_pfn(dev) && probe) {
649 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
650 
651 		nd_region = to_nd_region(dev->parent);
652 		nvdimm_bus_lock(dev);
653 		if (nd_region->pfn_seed == dev)
654 			nd_region_create_pfn_seed(nd_region);
655 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
656 			nd_region_create_ns_seed(nd_region);
657 		nvdimm_bus_unlock(dev);
658 	}
659 	if (is_nd_dax(dev) && probe) {
660 		struct nd_dax *nd_dax = to_nd_dax(dev);
661 
662 		nd_region = to_nd_region(dev->parent);
663 		nvdimm_bus_lock(dev);
664 		if (nd_region->dax_seed == dev)
665 			nd_region_create_dax_seed(nd_region);
666 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
667 			nd_region_create_ns_seed(nd_region);
668 		nvdimm_bus_unlock(dev);
669 	}
670 }
671 
672 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
673 {
674 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
675 }
676 
677 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
678 {
679 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
680 }
681 
682 static ssize_t mappingN(struct device *dev, char *buf, int n)
683 {
684 	struct nd_region *nd_region = to_nd_region(dev);
685 	struct nd_mapping *nd_mapping;
686 	struct nvdimm *nvdimm;
687 
688 	if (n >= nd_region->ndr_mappings)
689 		return -ENXIO;
690 	nd_mapping = &nd_region->mapping[n];
691 	nvdimm = nd_mapping->nvdimm;
692 
693 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
694 			nd_mapping->start, nd_mapping->size);
695 }
696 
697 #define REGION_MAPPING(idx) \
698 static ssize_t mapping##idx##_show(struct device *dev,		\
699 		struct device_attribute *attr, char *buf)	\
700 {								\
701 	return mappingN(dev, buf, idx);				\
702 }								\
703 static DEVICE_ATTR_RO(mapping##idx)
704 
705 /*
706  * 32 should be enough for a while, even in the presence of socket
707  * interleave a 32-way interleave set is a degenerate case.
708  */
709 REGION_MAPPING(0);
710 REGION_MAPPING(1);
711 REGION_MAPPING(2);
712 REGION_MAPPING(3);
713 REGION_MAPPING(4);
714 REGION_MAPPING(5);
715 REGION_MAPPING(6);
716 REGION_MAPPING(7);
717 REGION_MAPPING(8);
718 REGION_MAPPING(9);
719 REGION_MAPPING(10);
720 REGION_MAPPING(11);
721 REGION_MAPPING(12);
722 REGION_MAPPING(13);
723 REGION_MAPPING(14);
724 REGION_MAPPING(15);
725 REGION_MAPPING(16);
726 REGION_MAPPING(17);
727 REGION_MAPPING(18);
728 REGION_MAPPING(19);
729 REGION_MAPPING(20);
730 REGION_MAPPING(21);
731 REGION_MAPPING(22);
732 REGION_MAPPING(23);
733 REGION_MAPPING(24);
734 REGION_MAPPING(25);
735 REGION_MAPPING(26);
736 REGION_MAPPING(27);
737 REGION_MAPPING(28);
738 REGION_MAPPING(29);
739 REGION_MAPPING(30);
740 REGION_MAPPING(31);
741 
742 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
743 {
744 	struct device *dev = container_of(kobj, struct device, kobj);
745 	struct nd_region *nd_region = to_nd_region(dev);
746 
747 	if (n < nd_region->ndr_mappings)
748 		return a->mode;
749 	return 0;
750 }
751 
752 static struct attribute *mapping_attributes[] = {
753 	&dev_attr_mapping0.attr,
754 	&dev_attr_mapping1.attr,
755 	&dev_attr_mapping2.attr,
756 	&dev_attr_mapping3.attr,
757 	&dev_attr_mapping4.attr,
758 	&dev_attr_mapping5.attr,
759 	&dev_attr_mapping6.attr,
760 	&dev_attr_mapping7.attr,
761 	&dev_attr_mapping8.attr,
762 	&dev_attr_mapping9.attr,
763 	&dev_attr_mapping10.attr,
764 	&dev_attr_mapping11.attr,
765 	&dev_attr_mapping12.attr,
766 	&dev_attr_mapping13.attr,
767 	&dev_attr_mapping14.attr,
768 	&dev_attr_mapping15.attr,
769 	&dev_attr_mapping16.attr,
770 	&dev_attr_mapping17.attr,
771 	&dev_attr_mapping18.attr,
772 	&dev_attr_mapping19.attr,
773 	&dev_attr_mapping20.attr,
774 	&dev_attr_mapping21.attr,
775 	&dev_attr_mapping22.attr,
776 	&dev_attr_mapping23.attr,
777 	&dev_attr_mapping24.attr,
778 	&dev_attr_mapping25.attr,
779 	&dev_attr_mapping26.attr,
780 	&dev_attr_mapping27.attr,
781 	&dev_attr_mapping28.attr,
782 	&dev_attr_mapping29.attr,
783 	&dev_attr_mapping30.attr,
784 	&dev_attr_mapping31.attr,
785 	NULL,
786 };
787 
788 struct attribute_group nd_mapping_attribute_group = {
789 	.is_visible = mapping_visible,
790 	.attrs = mapping_attributes,
791 };
792 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
793 
794 int nd_blk_region_init(struct nd_region *nd_region)
795 {
796 	struct device *dev = &nd_region->dev;
797 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
798 
799 	if (!is_nd_blk(dev))
800 		return 0;
801 
802 	if (nd_region->ndr_mappings < 1) {
803 		dev_err(dev, "invalid BLK region\n");
804 		return -ENXIO;
805 	}
806 
807 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
808 }
809 
810 /**
811  * nd_region_acquire_lane - allocate and lock a lane
812  * @nd_region: region id and number of lanes possible
813  *
814  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
815  * We optimize for the common case where there are 256 lanes, one
816  * per-cpu.  For larger systems we need to lock to share lanes.  For now
817  * this implementation assumes the cost of maintaining an allocator for
818  * free lanes is on the order of the lock hold time, so it implements a
819  * static lane = cpu % num_lanes mapping.
820  *
821  * In the case of a BTT instance on top of a BLK namespace a lane may be
822  * acquired recursively.  We lock on the first instance.
823  *
824  * In the case of a BTT instance on top of PMEM, we only acquire a lane
825  * for the BTT metadata updates.
826  */
827 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
828 {
829 	unsigned int cpu, lane;
830 
831 	cpu = get_cpu();
832 	if (nd_region->num_lanes < nr_cpu_ids) {
833 		struct nd_percpu_lane *ndl_lock, *ndl_count;
834 
835 		lane = cpu % nd_region->num_lanes;
836 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
837 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
838 		if (ndl_count->count++ == 0)
839 			spin_lock(&ndl_lock->lock);
840 	} else
841 		lane = cpu;
842 
843 	return lane;
844 }
845 EXPORT_SYMBOL(nd_region_acquire_lane);
846 
847 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
848 {
849 	if (nd_region->num_lanes < nr_cpu_ids) {
850 		unsigned int cpu = get_cpu();
851 		struct nd_percpu_lane *ndl_lock, *ndl_count;
852 
853 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
854 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
855 		if (--ndl_count->count == 0)
856 			spin_unlock(&ndl_lock->lock);
857 		put_cpu();
858 	}
859 	put_cpu();
860 }
861 EXPORT_SYMBOL(nd_region_release_lane);
862 
863 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
864 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
865 		const char *caller)
866 {
867 	struct nd_region *nd_region;
868 	struct device *dev;
869 	void *region_buf;
870 	unsigned int i;
871 	int ro = 0;
872 
873 	for (i = 0; i < ndr_desc->num_mappings; i++) {
874 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
875 		struct nvdimm *nvdimm = mapping->nvdimm;
876 
877 		if ((mapping->start | mapping->size) % SZ_4K) {
878 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
879 					caller, dev_name(&nvdimm->dev), i);
880 
881 			return NULL;
882 		}
883 
884 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
885 			ro = 1;
886 	}
887 
888 	if (dev_type == &nd_blk_device_type) {
889 		struct nd_blk_region_desc *ndbr_desc;
890 		struct nd_blk_region *ndbr;
891 
892 		ndbr_desc = to_blk_region_desc(ndr_desc);
893 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
894 				* ndr_desc->num_mappings,
895 				GFP_KERNEL);
896 		if (ndbr) {
897 			nd_region = &ndbr->nd_region;
898 			ndbr->enable = ndbr_desc->enable;
899 			ndbr->do_io = ndbr_desc->do_io;
900 		}
901 		region_buf = ndbr;
902 	} else {
903 		nd_region = kzalloc(sizeof(struct nd_region)
904 				+ sizeof(struct nd_mapping)
905 				* ndr_desc->num_mappings,
906 				GFP_KERNEL);
907 		region_buf = nd_region;
908 	}
909 
910 	if (!region_buf)
911 		return NULL;
912 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
913 	if (nd_region->id < 0)
914 		goto err_id;
915 
916 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
917 	if (!nd_region->lane)
918 		goto err_percpu;
919 
920         for (i = 0; i < nr_cpu_ids; i++) {
921 		struct nd_percpu_lane *ndl;
922 
923 		ndl = per_cpu_ptr(nd_region->lane, i);
924 		spin_lock_init(&ndl->lock);
925 		ndl->count = 0;
926 	}
927 
928 	for (i = 0; i < ndr_desc->num_mappings; i++) {
929 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
930 		struct nvdimm *nvdimm = mapping->nvdimm;
931 
932 		nd_region->mapping[i].nvdimm = nvdimm;
933 		nd_region->mapping[i].start = mapping->start;
934 		nd_region->mapping[i].size = mapping->size;
935 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
936 		mutex_init(&nd_region->mapping[i].lock);
937 
938 		get_device(&nvdimm->dev);
939 	}
940 	nd_region->ndr_mappings = ndr_desc->num_mappings;
941 	nd_region->provider_data = ndr_desc->provider_data;
942 	nd_region->nd_set = ndr_desc->nd_set;
943 	nd_region->num_lanes = ndr_desc->num_lanes;
944 	nd_region->flags = ndr_desc->flags;
945 	nd_region->ro = ro;
946 	nd_region->numa_node = ndr_desc->numa_node;
947 	ida_init(&nd_region->ns_ida);
948 	ida_init(&nd_region->btt_ida);
949 	ida_init(&nd_region->pfn_ida);
950 	ida_init(&nd_region->dax_ida);
951 	dev = &nd_region->dev;
952 	dev_set_name(dev, "region%d", nd_region->id);
953 	dev->parent = &nvdimm_bus->dev;
954 	dev->type = dev_type;
955 	dev->groups = ndr_desc->attr_groups;
956 	nd_region->ndr_size = resource_size(ndr_desc->res);
957 	nd_region->ndr_start = ndr_desc->res->start;
958 	nd_device_register(dev);
959 
960 	return nd_region;
961 
962  err_percpu:
963 	ida_simple_remove(&region_ida, nd_region->id);
964  err_id:
965 	kfree(region_buf);
966 	return NULL;
967 }
968 
969 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
970 		struct nd_region_desc *ndr_desc)
971 {
972 	ndr_desc->num_lanes = ND_MAX_LANES;
973 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
974 			__func__);
975 }
976 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
977 
978 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
979 		struct nd_region_desc *ndr_desc)
980 {
981 	if (ndr_desc->num_mappings > 1)
982 		return NULL;
983 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
984 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
985 			__func__);
986 }
987 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
988 
989 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
990 		struct nd_region_desc *ndr_desc)
991 {
992 	ndr_desc->num_lanes = ND_MAX_LANES;
993 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
994 			__func__);
995 }
996 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
997 
998 /**
999  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1000  * @nd_region: blk or interleaved pmem region
1001  */
1002 void nvdimm_flush(struct nd_region *nd_region)
1003 {
1004 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1005 	int i, idx;
1006 
1007 	/*
1008 	 * Try to encourage some diversity in flush hint addresses
1009 	 * across cpus assuming a limited number of flush hints.
1010 	 */
1011 	idx = this_cpu_read(flush_idx);
1012 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1013 
1014 	/*
1015 	 * The first wmb() is needed to 'sfence' all previous writes
1016 	 * such that they are architecturally visible for the platform
1017 	 * buffer flush.  Note that we've already arranged for pmem
1018 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
1019 	 * final wmb() ensures ordering for the NVDIMM flush write.
1020 	 */
1021 	wmb();
1022 	for (i = 0; i < nd_region->ndr_mappings; i++)
1023 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1024 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1025 	wmb();
1026 }
1027 EXPORT_SYMBOL_GPL(nvdimm_flush);
1028 
1029 /**
1030  * nvdimm_has_flush - determine write flushing requirements
1031  * @nd_region: blk or interleaved pmem region
1032  *
1033  * Returns 1 if writes require flushing
1034  * Returns 0 if writes do not require flushing
1035  * Returns -ENXIO if flushing capability can not be determined
1036  */
1037 int nvdimm_has_flush(struct nd_region *nd_region)
1038 {
1039 	int i;
1040 
1041 	/* no nvdimm == flushing capability unknown */
1042 	if (nd_region->ndr_mappings == 0)
1043 		return -ENXIO;
1044 
1045 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1046 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1047 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1048 
1049 		/* flush hints present / available */
1050 		if (nvdimm->num_flush)
1051 			return 1;
1052 	}
1053 
1054 	/*
1055 	 * The platform defines dimm devices without hints, assume
1056 	 * platform persistence mechanism like ADR
1057 	 */
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1061 
1062 void __exit nd_region_devs_exit(void)
1063 {
1064 	ida_destroy(&region_ida);
1065 }
1066