xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <asm/cacheflush.h>
11 #include <linux/blkdev.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/backing-dev.h>
28 #include "pmem.h"
29 #include "pfn.h"
30 #include "nd.h"
31 
32 static struct device *to_dev(struct pmem_device *pmem)
33 {
34 	/*
35 	 * nvdimm bus services need a 'dev' parameter, and we record the device
36 	 * at init in bb.dev.
37 	 */
38 	return pmem->bb.dev;
39 }
40 
41 static struct nd_region *to_region(struct pmem_device *pmem)
42 {
43 	return to_nd_region(to_dev(pmem)->parent);
44 }
45 
46 static void hwpoison_clear(struct pmem_device *pmem,
47 		phys_addr_t phys, unsigned int len)
48 {
49 	unsigned long pfn_start, pfn_end, pfn;
50 
51 	/* only pmem in the linear map supports HWPoison */
52 	if (is_vmalloc_addr(pmem->virt_addr))
53 		return;
54 
55 	pfn_start = PHYS_PFN(phys);
56 	pfn_end = pfn_start + PHYS_PFN(len);
57 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
58 		struct page *page = pfn_to_page(pfn);
59 
60 		/*
61 		 * Note, no need to hold a get_dev_pagemap() reference
62 		 * here since we're in the driver I/O path and
63 		 * outstanding I/O requests pin the dev_pagemap.
64 		 */
65 		if (test_and_clear_pmem_poison(page))
66 			clear_mce_nospec(pfn);
67 	}
68 }
69 
70 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
71 		phys_addr_t offset, unsigned int len)
72 {
73 	struct device *dev = to_dev(pmem);
74 	sector_t sector;
75 	long cleared;
76 	blk_status_t rc = BLK_STS_OK;
77 
78 	sector = (offset - pmem->data_offset) / 512;
79 
80 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
81 	if (cleared < len)
82 		rc = BLK_STS_IOERR;
83 	if (cleared > 0 && cleared / 512) {
84 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
85 		cleared /= 512;
86 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
87 				(unsigned long long) sector, cleared,
88 				cleared > 1 ? "s" : "");
89 		badblocks_clear(&pmem->bb, sector, cleared);
90 		if (pmem->bb_state)
91 			sysfs_notify_dirent(pmem->bb_state);
92 	}
93 
94 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
95 
96 	return rc;
97 }
98 
99 static void write_pmem(void *pmem_addr, struct page *page,
100 		unsigned int off, unsigned int len)
101 {
102 	unsigned int chunk;
103 	void *mem;
104 
105 	while (len) {
106 		mem = kmap_atomic(page);
107 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
108 		memcpy_flushcache(pmem_addr, mem + off, chunk);
109 		kunmap_atomic(mem);
110 		len -= chunk;
111 		off = 0;
112 		page++;
113 		pmem_addr += chunk;
114 	}
115 }
116 
117 static blk_status_t read_pmem(struct page *page, unsigned int off,
118 		void *pmem_addr, unsigned int len)
119 {
120 	unsigned int chunk;
121 	unsigned long rem;
122 	void *mem;
123 
124 	while (len) {
125 		mem = kmap_atomic(page);
126 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
127 		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
128 		kunmap_atomic(mem);
129 		if (rem)
130 			return BLK_STS_IOERR;
131 		len -= chunk;
132 		off = 0;
133 		page++;
134 		pmem_addr += chunk;
135 	}
136 	return BLK_STS_OK;
137 }
138 
139 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
140 			unsigned int len, unsigned int off, unsigned int op,
141 			sector_t sector)
142 {
143 	blk_status_t rc = BLK_STS_OK;
144 	bool bad_pmem = false;
145 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 	void *pmem_addr = pmem->virt_addr + pmem_off;
147 
148 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 		bad_pmem = true;
150 
151 	if (!op_is_write(op)) {
152 		if (unlikely(bad_pmem))
153 			rc = BLK_STS_IOERR;
154 		else {
155 			rc = read_pmem(page, off, pmem_addr, len);
156 			flush_dcache_page(page);
157 		}
158 	} else {
159 		/*
160 		 * Note that we write the data both before and after
161 		 * clearing poison.  The write before clear poison
162 		 * handles situations where the latest written data is
163 		 * preserved and the clear poison operation simply marks
164 		 * the address range as valid without changing the data.
165 		 * In this case application software can assume that an
166 		 * interrupted write will either return the new good
167 		 * data or an error.
168 		 *
169 		 * However, if pmem_clear_poison() leaves the data in an
170 		 * indeterminate state we need to perform the write
171 		 * after clear poison.
172 		 */
173 		flush_dcache_page(page);
174 		write_pmem(pmem_addr, page, off, len);
175 		if (unlikely(bad_pmem)) {
176 			rc = pmem_clear_poison(pmem, pmem_off, len);
177 			write_pmem(pmem_addr, page, off, len);
178 		}
179 	}
180 
181 	return rc;
182 }
183 
184 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
185 {
186 	int ret = 0;
187 	blk_status_t rc = 0;
188 	bool do_acct;
189 	unsigned long start;
190 	struct bio_vec bvec;
191 	struct bvec_iter iter;
192 	struct pmem_device *pmem = q->queuedata;
193 	struct nd_region *nd_region = to_region(pmem);
194 
195 	if (bio->bi_opf & REQ_PREFLUSH)
196 		ret = nvdimm_flush(nd_region, bio);
197 
198 	do_acct = nd_iostat_start(bio, &start);
199 	bio_for_each_segment(bvec, bio, iter) {
200 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
201 				bvec.bv_offset, bio_op(bio), iter.bi_sector);
202 		if (rc) {
203 			bio->bi_status = rc;
204 			break;
205 		}
206 	}
207 	if (do_acct)
208 		nd_iostat_end(bio, start);
209 
210 	if (bio->bi_opf & REQ_FUA)
211 		ret = nvdimm_flush(nd_region, bio);
212 
213 	if (ret)
214 		bio->bi_status = errno_to_blk_status(ret);
215 
216 	bio_endio(bio);
217 	return BLK_QC_T_NONE;
218 }
219 
220 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
221 		       struct page *page, unsigned int op)
222 {
223 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
224 	blk_status_t rc;
225 
226 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
227 			  0, op, sector);
228 
229 	/*
230 	 * The ->rw_page interface is subtle and tricky.  The core
231 	 * retries on any error, so we can only invoke page_endio() in
232 	 * the successful completion case.  Otherwise, we'll see crashes
233 	 * caused by double completion.
234 	 */
235 	if (rc == 0)
236 		page_endio(page, op_is_write(op), 0);
237 
238 	return blk_status_to_errno(rc);
239 }
240 
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 		long nr_pages, void **kaddr, pfn_t *pfn)
244 {
245 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
246 
247 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
248 					PFN_PHYS(nr_pages))))
249 		return -EIO;
250 
251 	if (kaddr)
252 		*kaddr = pmem->virt_addr + offset;
253 	if (pfn)
254 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
255 
256 	/*
257 	 * If badblocks are present, limit known good range to the
258 	 * requested range.
259 	 */
260 	if (unlikely(pmem->bb.count))
261 		return nr_pages;
262 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
263 }
264 
265 static const struct block_device_operations pmem_fops = {
266 	.owner =		THIS_MODULE,
267 	.rw_page =		pmem_rw_page,
268 	.revalidate_disk =	nvdimm_revalidate_disk,
269 };
270 
271 static long pmem_dax_direct_access(struct dax_device *dax_dev,
272 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
273 {
274 	struct pmem_device *pmem = dax_get_private(dax_dev);
275 
276 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
277 }
278 
279 /*
280  * Use the 'no check' versions of copy_from_iter_flushcache() and
281  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
282  * checking, both file offset and device offset, is handled by
283  * dax_iomap_actor()
284  */
285 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
286 		void *addr, size_t bytes, struct iov_iter *i)
287 {
288 	return _copy_from_iter_flushcache(addr, bytes, i);
289 }
290 
291 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
292 		void *addr, size_t bytes, struct iov_iter *i)
293 {
294 	return _copy_to_iter_mcsafe(addr, bytes, i);
295 }
296 
297 static const struct dax_operations pmem_dax_ops = {
298 	.direct_access = pmem_dax_direct_access,
299 	.dax_supported = generic_fsdax_supported,
300 	.copy_from_iter = pmem_copy_from_iter,
301 	.copy_to_iter = pmem_copy_to_iter,
302 };
303 
304 static const struct attribute_group *pmem_attribute_groups[] = {
305 	&dax_attribute_group,
306 	NULL,
307 };
308 
309 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
310 {
311 	struct request_queue *q =
312 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
313 
314 	blk_cleanup_queue(q);
315 }
316 
317 static void pmem_release_queue(void *pgmap)
318 {
319 	pmem_pagemap_cleanup(pgmap);
320 }
321 
322 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
323 {
324 	struct request_queue *q =
325 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
326 
327 	blk_freeze_queue_start(q);
328 }
329 
330 static void pmem_release_disk(void *__pmem)
331 {
332 	struct pmem_device *pmem = __pmem;
333 
334 	kill_dax(pmem->dax_dev);
335 	put_dax(pmem->dax_dev);
336 	del_gendisk(pmem->disk);
337 	put_disk(pmem->disk);
338 }
339 
340 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
341 	.kill			= pmem_pagemap_kill,
342 	.cleanup		= pmem_pagemap_cleanup,
343 };
344 
345 static int pmem_attach_disk(struct device *dev,
346 		struct nd_namespace_common *ndns)
347 {
348 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
349 	struct nd_region *nd_region = to_nd_region(dev->parent);
350 	int nid = dev_to_node(dev), fua;
351 	struct resource *res = &nsio->res;
352 	struct resource bb_res;
353 	struct nd_pfn *nd_pfn = NULL;
354 	struct dax_device *dax_dev;
355 	struct nd_pfn_sb *pfn_sb;
356 	struct pmem_device *pmem;
357 	struct request_queue *q;
358 	struct device *gendev;
359 	struct gendisk *disk;
360 	void *addr;
361 	int rc;
362 	unsigned long flags = 0UL;
363 
364 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
365 	if (!pmem)
366 		return -ENOMEM;
367 
368 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
369 	if (rc)
370 		return rc;
371 
372 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
373 	if (is_nd_pfn(dev)) {
374 		nd_pfn = to_nd_pfn(dev);
375 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
376 		if (rc)
377 			return rc;
378 	}
379 
380 	/* we're attaching a block device, disable raw namespace access */
381 	devm_namespace_disable(dev, ndns);
382 
383 	dev_set_drvdata(dev, pmem);
384 	pmem->phys_addr = res->start;
385 	pmem->size = resource_size(res);
386 	fua = nvdimm_has_flush(nd_region);
387 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
388 		dev_warn(dev, "unable to guarantee persistence of writes\n");
389 		fua = 0;
390 	}
391 
392 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
393 				dev_name(&ndns->dev))) {
394 		dev_warn(dev, "could not reserve region %pR\n", res);
395 		return -EBUSY;
396 	}
397 
398 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
399 	if (!q)
400 		return -ENOMEM;
401 
402 	pmem->pfn_flags = PFN_DEV;
403 	pmem->pgmap.ref = &q->q_usage_counter;
404 	if (is_nd_pfn(dev)) {
405 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
406 		pmem->pgmap.ops = &fsdax_pagemap_ops;
407 		addr = devm_memremap_pages(dev, &pmem->pgmap);
408 		pfn_sb = nd_pfn->pfn_sb;
409 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
410 		pmem->pfn_pad = resource_size(res) -
411 			resource_size(&pmem->pgmap.res);
412 		pmem->pfn_flags |= PFN_MAP;
413 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
414 		bb_res.start += pmem->data_offset;
415 	} else if (pmem_should_map_pages(dev)) {
416 		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
417 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
418 		pmem->pgmap.ops = &fsdax_pagemap_ops;
419 		addr = devm_memremap_pages(dev, &pmem->pgmap);
420 		pmem->pfn_flags |= PFN_MAP;
421 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
422 	} else {
423 		if (devm_add_action_or_reset(dev, pmem_release_queue,
424 					&pmem->pgmap))
425 			return -ENOMEM;
426 		addr = devm_memremap(dev, pmem->phys_addr,
427 				pmem->size, ARCH_MEMREMAP_PMEM);
428 		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
429 	}
430 
431 	if (IS_ERR(addr))
432 		return PTR_ERR(addr);
433 	pmem->virt_addr = addr;
434 
435 	blk_queue_write_cache(q, true, fua);
436 	blk_queue_make_request(q, pmem_make_request);
437 	blk_queue_physical_block_size(q, PAGE_SIZE);
438 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
439 	blk_queue_max_hw_sectors(q, UINT_MAX);
440 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
441 	if (pmem->pfn_flags & PFN_MAP)
442 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
443 	q->queuedata = pmem;
444 
445 	disk = alloc_disk_node(0, nid);
446 	if (!disk)
447 		return -ENOMEM;
448 	pmem->disk = disk;
449 
450 	disk->fops		= &pmem_fops;
451 	disk->queue		= q;
452 	disk->flags		= GENHD_FL_EXT_DEVT;
453 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
454 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
455 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
456 			/ 512);
457 	if (devm_init_badblocks(dev, &pmem->bb))
458 		return -ENOMEM;
459 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
460 	disk->bb = &pmem->bb;
461 
462 	if (is_nvdimm_sync(nd_region))
463 		flags = DAXDEV_F_SYNC;
464 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
465 	if (!dax_dev) {
466 		put_disk(disk);
467 		return -ENOMEM;
468 	}
469 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
470 	pmem->dax_dev = dax_dev;
471 	gendev = disk_to_dev(disk);
472 	gendev->groups = pmem_attribute_groups;
473 
474 	device_add_disk(dev, disk, NULL);
475 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
476 		return -ENOMEM;
477 
478 	revalidate_disk(disk);
479 
480 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
481 					  "badblocks");
482 	if (!pmem->bb_state)
483 		dev_warn(dev, "'badblocks' notification disabled\n");
484 
485 	return 0;
486 }
487 
488 static int nd_pmem_probe(struct device *dev)
489 {
490 	int ret;
491 	struct nd_namespace_common *ndns;
492 
493 	ndns = nvdimm_namespace_common_probe(dev);
494 	if (IS_ERR(ndns))
495 		return PTR_ERR(ndns);
496 
497 	if (is_nd_btt(dev))
498 		return nvdimm_namespace_attach_btt(ndns);
499 
500 	if (is_nd_pfn(dev))
501 		return pmem_attach_disk(dev, ndns);
502 
503 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
504 	if (ret)
505 		return ret;
506 
507 	ret = nd_btt_probe(dev, ndns);
508 	if (ret == 0)
509 		return -ENXIO;
510 
511 	/*
512 	 * We have two failure conditions here, there is no
513 	 * info reserver block or we found a valid info reserve block
514 	 * but failed to initialize the pfn superblock.
515 	 *
516 	 * For the first case consider namespace as a raw pmem namespace
517 	 * and attach a disk.
518 	 *
519 	 * For the latter, consider this a success and advance the namespace
520 	 * seed.
521 	 */
522 	ret = nd_pfn_probe(dev, ndns);
523 	if (ret == 0)
524 		return -ENXIO;
525 	else if (ret == -EOPNOTSUPP)
526 		return ret;
527 
528 	ret = nd_dax_probe(dev, ndns);
529 	if (ret == 0)
530 		return -ENXIO;
531 	else if (ret == -EOPNOTSUPP)
532 		return ret;
533 
534 	/* probe complete, attach handles namespace enabling */
535 	devm_namespace_disable(dev, ndns);
536 
537 	return pmem_attach_disk(dev, ndns);
538 }
539 
540 static int nd_pmem_remove(struct device *dev)
541 {
542 	struct pmem_device *pmem = dev_get_drvdata(dev);
543 
544 	if (is_nd_btt(dev))
545 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
546 	else {
547 		/*
548 		 * Note, this assumes nd_device_lock() context to not
549 		 * race nd_pmem_notify()
550 		 */
551 		sysfs_put(pmem->bb_state);
552 		pmem->bb_state = NULL;
553 	}
554 	nvdimm_flush(to_nd_region(dev->parent), NULL);
555 
556 	return 0;
557 }
558 
559 static void nd_pmem_shutdown(struct device *dev)
560 {
561 	nvdimm_flush(to_nd_region(dev->parent), NULL);
562 }
563 
564 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
565 {
566 	struct nd_region *nd_region;
567 	resource_size_t offset = 0, end_trunc = 0;
568 	struct nd_namespace_common *ndns;
569 	struct nd_namespace_io *nsio;
570 	struct resource res;
571 	struct badblocks *bb;
572 	struct kernfs_node *bb_state;
573 
574 	if (event != NVDIMM_REVALIDATE_POISON)
575 		return;
576 
577 	if (is_nd_btt(dev)) {
578 		struct nd_btt *nd_btt = to_nd_btt(dev);
579 
580 		ndns = nd_btt->ndns;
581 		nd_region = to_nd_region(ndns->dev.parent);
582 		nsio = to_nd_namespace_io(&ndns->dev);
583 		bb = &nsio->bb;
584 		bb_state = NULL;
585 	} else {
586 		struct pmem_device *pmem = dev_get_drvdata(dev);
587 
588 		nd_region = to_region(pmem);
589 		bb = &pmem->bb;
590 		bb_state = pmem->bb_state;
591 
592 		if (is_nd_pfn(dev)) {
593 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
594 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
595 
596 			ndns = nd_pfn->ndns;
597 			offset = pmem->data_offset +
598 					__le32_to_cpu(pfn_sb->start_pad);
599 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
600 		} else {
601 			ndns = to_ndns(dev);
602 		}
603 
604 		nsio = to_nd_namespace_io(&ndns->dev);
605 	}
606 
607 	res.start = nsio->res.start + offset;
608 	res.end = nsio->res.end - end_trunc;
609 	nvdimm_badblocks_populate(nd_region, bb, &res);
610 	if (bb_state)
611 		sysfs_notify_dirent(bb_state);
612 }
613 
614 MODULE_ALIAS("pmem");
615 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
616 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
617 static struct nd_device_driver nd_pmem_driver = {
618 	.probe = nd_pmem_probe,
619 	.remove = nd_pmem_remove,
620 	.notify = nd_pmem_notify,
621 	.shutdown = nd_pmem_shutdown,
622 	.drv = {
623 		.name = "nd_pmem",
624 	},
625 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
626 };
627 
628 module_nd_driver(nd_pmem_driver);
629 
630 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
631 MODULE_LICENSE("GPL v2");
632