xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/hdreg.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/set_memory.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/badblocks.h>
18 #include <linux/memremap.h>
19 #include <linux/vmalloc.h>
20 #include <linux/blk-mq.h>
21 #include <linux/pfn_t.h>
22 #include <linux/slab.h>
23 #include <linux/uio.h>
24 #include <linux/dax.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "pfn.h"
31 #include "nd.h"
32 
33 static struct device *to_dev(struct pmem_device *pmem)
34 {
35 	/*
36 	 * nvdimm bus services need a 'dev' parameter, and we record the device
37 	 * at init in bb.dev.
38 	 */
39 	return pmem->bb.dev;
40 }
41 
42 static struct nd_region *to_region(struct pmem_device *pmem)
43 {
44 	return to_nd_region(to_dev(pmem)->parent);
45 }
46 
47 static void hwpoison_clear(struct pmem_device *pmem,
48 		phys_addr_t phys, unsigned int len)
49 {
50 	unsigned long pfn_start, pfn_end, pfn;
51 
52 	/* only pmem in the linear map supports HWPoison */
53 	if (is_vmalloc_addr(pmem->virt_addr))
54 		return;
55 
56 	pfn_start = PHYS_PFN(phys);
57 	pfn_end = pfn_start + PHYS_PFN(len);
58 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59 		struct page *page = pfn_to_page(pfn);
60 
61 		/*
62 		 * Note, no need to hold a get_dev_pagemap() reference
63 		 * here since we're in the driver I/O path and
64 		 * outstanding I/O requests pin the dev_pagemap.
65 		 */
66 		if (test_and_clear_pmem_poison(page))
67 			clear_mce_nospec(pfn);
68 	}
69 }
70 
71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72 		phys_addr_t offset, unsigned int len)
73 {
74 	struct device *dev = to_dev(pmem);
75 	sector_t sector;
76 	long cleared;
77 	blk_status_t rc = BLK_STS_OK;
78 
79 	sector = (offset - pmem->data_offset) / 512;
80 
81 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82 	if (cleared < len)
83 		rc = BLK_STS_IOERR;
84 	if (cleared > 0 && cleared / 512) {
85 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86 		cleared /= 512;
87 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
88 				(unsigned long long) sector, cleared,
89 				cleared > 1 ? "s" : "");
90 		badblocks_clear(&pmem->bb, sector, cleared);
91 		if (pmem->bb_state)
92 			sysfs_notify_dirent(pmem->bb_state);
93 	}
94 
95 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
96 
97 	return rc;
98 }
99 
100 static void write_pmem(void *pmem_addr, struct page *page,
101 		unsigned int off, unsigned int len)
102 {
103 	unsigned int chunk;
104 	void *mem;
105 
106 	while (len) {
107 		mem = kmap_atomic(page);
108 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109 		memcpy_flushcache(pmem_addr, mem + off, chunk);
110 		kunmap_atomic(mem);
111 		len -= chunk;
112 		off = 0;
113 		page++;
114 		pmem_addr += chunk;
115 	}
116 }
117 
118 static blk_status_t read_pmem(struct page *page, unsigned int off,
119 		void *pmem_addr, unsigned int len)
120 {
121 	unsigned int chunk;
122 	unsigned long rem;
123 	void *mem;
124 
125 	while (len) {
126 		mem = kmap_atomic(page);
127 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128 		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
129 		kunmap_atomic(mem);
130 		if (rem)
131 			return BLK_STS_IOERR;
132 		len -= chunk;
133 		off = 0;
134 		page++;
135 		pmem_addr += chunk;
136 	}
137 	return BLK_STS_OK;
138 }
139 
140 static blk_status_t pmem_do_read(struct pmem_device *pmem,
141 			struct page *page, unsigned int page_off,
142 			sector_t sector, unsigned int len)
143 {
144 	blk_status_t rc;
145 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 	void *pmem_addr = pmem->virt_addr + pmem_off;
147 
148 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 		return BLK_STS_IOERR;
150 
151 	rc = read_pmem(page, page_off, pmem_addr, len);
152 	flush_dcache_page(page);
153 	return rc;
154 }
155 
156 static blk_status_t pmem_do_write(struct pmem_device *pmem,
157 			struct page *page, unsigned int page_off,
158 			sector_t sector, unsigned int len)
159 {
160 	blk_status_t rc = BLK_STS_OK;
161 	bool bad_pmem = false;
162 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163 	void *pmem_addr = pmem->virt_addr + pmem_off;
164 
165 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166 		bad_pmem = true;
167 
168 	/*
169 	 * Note that we write the data both before and after
170 	 * clearing poison.  The write before clear poison
171 	 * handles situations where the latest written data is
172 	 * preserved and the clear poison operation simply marks
173 	 * the address range as valid without changing the data.
174 	 * In this case application software can assume that an
175 	 * interrupted write will either return the new good
176 	 * data or an error.
177 	 *
178 	 * However, if pmem_clear_poison() leaves the data in an
179 	 * indeterminate state we need to perform the write
180 	 * after clear poison.
181 	 */
182 	flush_dcache_page(page);
183 	write_pmem(pmem_addr, page, page_off, len);
184 	if (unlikely(bad_pmem)) {
185 		rc = pmem_clear_poison(pmem, pmem_off, len);
186 		write_pmem(pmem_addr, page, page_off, len);
187 	}
188 
189 	return rc;
190 }
191 
192 static blk_qc_t pmem_submit_bio(struct bio *bio)
193 {
194 	int ret = 0;
195 	blk_status_t rc = 0;
196 	bool do_acct;
197 	unsigned long start;
198 	struct bio_vec bvec;
199 	struct bvec_iter iter;
200 	struct pmem_device *pmem = bio->bi_disk->private_data;
201 	struct nd_region *nd_region = to_region(pmem);
202 
203 	if (bio->bi_opf & REQ_PREFLUSH)
204 		ret = nvdimm_flush(nd_region, bio);
205 
206 	do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207 	if (do_acct)
208 		start = bio_start_io_acct(bio);
209 	bio_for_each_segment(bvec, bio, iter) {
210 		if (op_is_write(bio_op(bio)))
211 			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212 				iter.bi_sector, bvec.bv_len);
213 		else
214 			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215 				iter.bi_sector, bvec.bv_len);
216 		if (rc) {
217 			bio->bi_status = rc;
218 			break;
219 		}
220 	}
221 	if (do_acct)
222 		bio_end_io_acct(bio, start);
223 
224 	if (bio->bi_opf & REQ_FUA)
225 		ret = nvdimm_flush(nd_region, bio);
226 
227 	if (ret)
228 		bio->bi_status = errno_to_blk_status(ret);
229 
230 	bio_endio(bio);
231 	return BLK_QC_T_NONE;
232 }
233 
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235 		       struct page *page, unsigned int op)
236 {
237 	struct pmem_device *pmem = bdev->bd_disk->private_data;
238 	blk_status_t rc;
239 
240 	if (op_is_write(op))
241 		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242 	else
243 		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244 	/*
245 	 * The ->rw_page interface is subtle and tricky.  The core
246 	 * retries on any error, so we can only invoke page_endio() in
247 	 * the successful completion case.  Otherwise, we'll see crashes
248 	 * caused by double completion.
249 	 */
250 	if (rc == 0)
251 		page_endio(page, op_is_write(op), 0);
252 
253 	return blk_status_to_errno(rc);
254 }
255 
256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258 		long nr_pages, void **kaddr, pfn_t *pfn)
259 {
260 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261 
262 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263 					PFN_PHYS(nr_pages))))
264 		return -EIO;
265 
266 	if (kaddr)
267 		*kaddr = pmem->virt_addr + offset;
268 	if (pfn)
269 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270 
271 	/*
272 	 * If badblocks are present, limit known good range to the
273 	 * requested range.
274 	 */
275 	if (unlikely(pmem->bb.count))
276 		return nr_pages;
277 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278 }
279 
280 static const struct block_device_operations pmem_fops = {
281 	.owner =		THIS_MODULE,
282 	.submit_bio =		pmem_submit_bio,
283 	.rw_page =		pmem_rw_page,
284 };
285 
286 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
287 				    size_t nr_pages)
288 {
289 	struct pmem_device *pmem = dax_get_private(dax_dev);
290 
291 	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
292 				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
293 				   PAGE_SIZE));
294 }
295 
296 static long pmem_dax_direct_access(struct dax_device *dax_dev,
297 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
298 {
299 	struct pmem_device *pmem = dax_get_private(dax_dev);
300 
301 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
302 }
303 
304 /*
305  * Use the 'no check' versions of copy_from_iter_flushcache() and
306  * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
307  * checking, both file offset and device offset, is handled by
308  * dax_iomap_actor()
309  */
310 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
311 		void *addr, size_t bytes, struct iov_iter *i)
312 {
313 	return _copy_from_iter_flushcache(addr, bytes, i);
314 }
315 
316 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
317 		void *addr, size_t bytes, struct iov_iter *i)
318 {
319 	return _copy_mc_to_iter(addr, bytes, i);
320 }
321 
322 static const struct dax_operations pmem_dax_ops = {
323 	.direct_access = pmem_dax_direct_access,
324 	.dax_supported = generic_fsdax_supported,
325 	.copy_from_iter = pmem_copy_from_iter,
326 	.copy_to_iter = pmem_copy_to_iter,
327 	.zero_page_range = pmem_dax_zero_page_range,
328 };
329 
330 static const struct attribute_group *pmem_attribute_groups[] = {
331 	&dax_attribute_group,
332 	NULL,
333 };
334 
335 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
336 {
337 	struct request_queue *q =
338 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
339 
340 	blk_cleanup_queue(q);
341 }
342 
343 static void pmem_release_queue(void *pgmap)
344 {
345 	pmem_pagemap_cleanup(pgmap);
346 }
347 
348 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
349 {
350 	struct request_queue *q =
351 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
352 
353 	blk_freeze_queue_start(q);
354 }
355 
356 static void pmem_release_disk(void *__pmem)
357 {
358 	struct pmem_device *pmem = __pmem;
359 
360 	kill_dax(pmem->dax_dev);
361 	put_dax(pmem->dax_dev);
362 	del_gendisk(pmem->disk);
363 	put_disk(pmem->disk);
364 }
365 
366 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
367 	.kill			= pmem_pagemap_kill,
368 	.cleanup		= pmem_pagemap_cleanup,
369 };
370 
371 static int pmem_attach_disk(struct device *dev,
372 		struct nd_namespace_common *ndns)
373 {
374 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
375 	struct nd_region *nd_region = to_nd_region(dev->parent);
376 	int nid = dev_to_node(dev), fua;
377 	struct resource *res = &nsio->res;
378 	struct range bb_range;
379 	struct nd_pfn *nd_pfn = NULL;
380 	struct dax_device *dax_dev;
381 	struct nd_pfn_sb *pfn_sb;
382 	struct pmem_device *pmem;
383 	struct request_queue *q;
384 	struct device *gendev;
385 	struct gendisk *disk;
386 	void *addr;
387 	int rc;
388 	unsigned long flags = 0UL;
389 
390 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
391 	if (!pmem)
392 		return -ENOMEM;
393 
394 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
395 	if (rc)
396 		return rc;
397 
398 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
399 	if (is_nd_pfn(dev)) {
400 		nd_pfn = to_nd_pfn(dev);
401 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
402 		if (rc)
403 			return rc;
404 	}
405 
406 	/* we're attaching a block device, disable raw namespace access */
407 	devm_namespace_disable(dev, ndns);
408 
409 	dev_set_drvdata(dev, pmem);
410 	pmem->phys_addr = res->start;
411 	pmem->size = resource_size(res);
412 	fua = nvdimm_has_flush(nd_region);
413 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
414 		dev_warn(dev, "unable to guarantee persistence of writes\n");
415 		fua = 0;
416 	}
417 
418 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
419 				dev_name(&ndns->dev))) {
420 		dev_warn(dev, "could not reserve region %pR\n", res);
421 		return -EBUSY;
422 	}
423 
424 	q = blk_alloc_queue(dev_to_node(dev));
425 	if (!q)
426 		return -ENOMEM;
427 
428 	pmem->pfn_flags = PFN_DEV;
429 	pmem->pgmap.ref = &q->q_usage_counter;
430 	if (is_nd_pfn(dev)) {
431 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
432 		pmem->pgmap.ops = &fsdax_pagemap_ops;
433 		addr = devm_memremap_pages(dev, &pmem->pgmap);
434 		pfn_sb = nd_pfn->pfn_sb;
435 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
436 		pmem->pfn_pad = resource_size(res) -
437 			range_len(&pmem->pgmap.range);
438 		pmem->pfn_flags |= PFN_MAP;
439 		bb_range = pmem->pgmap.range;
440 		bb_range.start += pmem->data_offset;
441 	} else if (pmem_should_map_pages(dev)) {
442 		pmem->pgmap.range.start = res->start;
443 		pmem->pgmap.range.end = res->end;
444 		pmem->pgmap.nr_range = 1;
445 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
446 		pmem->pgmap.ops = &fsdax_pagemap_ops;
447 		addr = devm_memremap_pages(dev, &pmem->pgmap);
448 		pmem->pfn_flags |= PFN_MAP;
449 		bb_range = pmem->pgmap.range;
450 	} else {
451 		if (devm_add_action_or_reset(dev, pmem_release_queue,
452 					&pmem->pgmap))
453 			return -ENOMEM;
454 		addr = devm_memremap(dev, pmem->phys_addr,
455 				pmem->size, ARCH_MEMREMAP_PMEM);
456 		bb_range.start =  res->start;
457 		bb_range.end = res->end;
458 	}
459 
460 	if (IS_ERR(addr))
461 		return PTR_ERR(addr);
462 	pmem->virt_addr = addr;
463 
464 	blk_queue_write_cache(q, true, fua);
465 	blk_queue_physical_block_size(q, PAGE_SIZE);
466 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
467 	blk_queue_max_hw_sectors(q, UINT_MAX);
468 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
469 	if (pmem->pfn_flags & PFN_MAP)
470 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
471 
472 	disk = alloc_disk_node(0, nid);
473 	if (!disk)
474 		return -ENOMEM;
475 	pmem->disk = disk;
476 
477 	disk->fops		= &pmem_fops;
478 	disk->queue		= q;
479 	disk->flags		= GENHD_FL_EXT_DEVT;
480 	disk->private_data	= pmem;
481 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
482 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
483 			/ 512);
484 	if (devm_init_badblocks(dev, &pmem->bb))
485 		return -ENOMEM;
486 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
487 	disk->bb = &pmem->bb;
488 
489 	if (is_nvdimm_sync(nd_region))
490 		flags = DAXDEV_F_SYNC;
491 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
492 	if (IS_ERR(dax_dev)) {
493 		put_disk(disk);
494 		return PTR_ERR(dax_dev);
495 	}
496 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
497 	pmem->dax_dev = dax_dev;
498 	gendev = disk_to_dev(disk);
499 	gendev->groups = pmem_attribute_groups;
500 
501 	device_add_disk(dev, disk, NULL);
502 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
503 		return -ENOMEM;
504 
505 	nvdimm_check_and_set_ro(disk);
506 
507 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
508 					  "badblocks");
509 	if (!pmem->bb_state)
510 		dev_warn(dev, "'badblocks' notification disabled\n");
511 
512 	return 0;
513 }
514 
515 static int nd_pmem_probe(struct device *dev)
516 {
517 	int ret;
518 	struct nd_namespace_common *ndns;
519 
520 	ndns = nvdimm_namespace_common_probe(dev);
521 	if (IS_ERR(ndns))
522 		return PTR_ERR(ndns);
523 
524 	if (is_nd_btt(dev))
525 		return nvdimm_namespace_attach_btt(ndns);
526 
527 	if (is_nd_pfn(dev))
528 		return pmem_attach_disk(dev, ndns);
529 
530 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
531 	if (ret)
532 		return ret;
533 
534 	ret = nd_btt_probe(dev, ndns);
535 	if (ret == 0)
536 		return -ENXIO;
537 
538 	/*
539 	 * We have two failure conditions here, there is no
540 	 * info reserver block or we found a valid info reserve block
541 	 * but failed to initialize the pfn superblock.
542 	 *
543 	 * For the first case consider namespace as a raw pmem namespace
544 	 * and attach a disk.
545 	 *
546 	 * For the latter, consider this a success and advance the namespace
547 	 * seed.
548 	 */
549 	ret = nd_pfn_probe(dev, ndns);
550 	if (ret == 0)
551 		return -ENXIO;
552 	else if (ret == -EOPNOTSUPP)
553 		return ret;
554 
555 	ret = nd_dax_probe(dev, ndns);
556 	if (ret == 0)
557 		return -ENXIO;
558 	else if (ret == -EOPNOTSUPP)
559 		return ret;
560 
561 	/* probe complete, attach handles namespace enabling */
562 	devm_namespace_disable(dev, ndns);
563 
564 	return pmem_attach_disk(dev, ndns);
565 }
566 
567 static int nd_pmem_remove(struct device *dev)
568 {
569 	struct pmem_device *pmem = dev_get_drvdata(dev);
570 
571 	if (is_nd_btt(dev))
572 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
573 	else {
574 		/*
575 		 * Note, this assumes nd_device_lock() context to not
576 		 * race nd_pmem_notify()
577 		 */
578 		sysfs_put(pmem->bb_state);
579 		pmem->bb_state = NULL;
580 	}
581 	nvdimm_flush(to_nd_region(dev->parent), NULL);
582 
583 	return 0;
584 }
585 
586 static void nd_pmem_shutdown(struct device *dev)
587 {
588 	nvdimm_flush(to_nd_region(dev->parent), NULL);
589 }
590 
591 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
592 {
593 	struct nd_region *nd_region;
594 	resource_size_t offset = 0, end_trunc = 0;
595 	struct nd_namespace_common *ndns;
596 	struct nd_namespace_io *nsio;
597 	struct badblocks *bb;
598 	struct range range;
599 	struct kernfs_node *bb_state;
600 
601 	if (event != NVDIMM_REVALIDATE_POISON)
602 		return;
603 
604 	if (is_nd_btt(dev)) {
605 		struct nd_btt *nd_btt = to_nd_btt(dev);
606 
607 		ndns = nd_btt->ndns;
608 		nd_region = to_nd_region(ndns->dev.parent);
609 		nsio = to_nd_namespace_io(&ndns->dev);
610 		bb = &nsio->bb;
611 		bb_state = NULL;
612 	} else {
613 		struct pmem_device *pmem = dev_get_drvdata(dev);
614 
615 		nd_region = to_region(pmem);
616 		bb = &pmem->bb;
617 		bb_state = pmem->bb_state;
618 
619 		if (is_nd_pfn(dev)) {
620 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622 
623 			ndns = nd_pfn->ndns;
624 			offset = pmem->data_offset +
625 					__le32_to_cpu(pfn_sb->start_pad);
626 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627 		} else {
628 			ndns = to_ndns(dev);
629 		}
630 
631 		nsio = to_nd_namespace_io(&ndns->dev);
632 	}
633 
634 	range.start = nsio->res.start + offset;
635 	range.end = nsio->res.end - end_trunc;
636 	nvdimm_badblocks_populate(nd_region, bb, &range);
637 	if (bb_state)
638 		sysfs_notify_dirent(bb_state);
639 }
640 
641 MODULE_ALIAS("pmem");
642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
643 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
644 static struct nd_device_driver nd_pmem_driver = {
645 	.probe = nd_pmem_probe,
646 	.remove = nd_pmem_remove,
647 	.notify = nd_pmem_notify,
648 	.shutdown = nd_pmem_shutdown,
649 	.drv = {
650 		.name = "nd_pmem",
651 	},
652 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
653 };
654 
655 module_nd_driver(nd_pmem_driver);
656 
657 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
658 MODULE_LICENSE("GPL v2");
659