1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Persistent Memory Driver 4 * 5 * Copyright (c) 2014-2015, Intel Corporation. 6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/hdreg.h> 12 #include <linux/init.h> 13 #include <linux/platform_device.h> 14 #include <linux/set_memory.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/badblocks.h> 18 #include <linux/memremap.h> 19 #include <linux/vmalloc.h> 20 #include <linux/blk-mq.h> 21 #include <linux/pfn_t.h> 22 #include <linux/slab.h> 23 #include <linux/uio.h> 24 #include <linux/dax.h> 25 #include <linux/nd.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mm.h> 28 #include <asm/cacheflush.h> 29 #include "pmem.h" 30 #include "pfn.h" 31 #include "nd.h" 32 33 static struct device *to_dev(struct pmem_device *pmem) 34 { 35 /* 36 * nvdimm bus services need a 'dev' parameter, and we record the device 37 * at init in bb.dev. 38 */ 39 return pmem->bb.dev; 40 } 41 42 static struct nd_region *to_region(struct pmem_device *pmem) 43 { 44 return to_nd_region(to_dev(pmem)->parent); 45 } 46 47 static void hwpoison_clear(struct pmem_device *pmem, 48 phys_addr_t phys, unsigned int len) 49 { 50 unsigned long pfn_start, pfn_end, pfn; 51 52 /* only pmem in the linear map supports HWPoison */ 53 if (is_vmalloc_addr(pmem->virt_addr)) 54 return; 55 56 pfn_start = PHYS_PFN(phys); 57 pfn_end = pfn_start + PHYS_PFN(len); 58 for (pfn = pfn_start; pfn < pfn_end; pfn++) { 59 struct page *page = pfn_to_page(pfn); 60 61 /* 62 * Note, no need to hold a get_dev_pagemap() reference 63 * here since we're in the driver I/O path and 64 * outstanding I/O requests pin the dev_pagemap. 65 */ 66 if (test_and_clear_pmem_poison(page)) 67 clear_mce_nospec(pfn); 68 } 69 } 70 71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 72 phys_addr_t offset, unsigned int len) 73 { 74 struct device *dev = to_dev(pmem); 75 sector_t sector; 76 long cleared; 77 blk_status_t rc = BLK_STS_OK; 78 79 sector = (offset - pmem->data_offset) / 512; 80 81 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); 82 if (cleared < len) 83 rc = BLK_STS_IOERR; 84 if (cleared > 0 && cleared / 512) { 85 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); 86 cleared /= 512; 87 dev_dbg(dev, "%#llx clear %ld sector%s\n", 88 (unsigned long long) sector, cleared, 89 cleared > 1 ? "s" : ""); 90 badblocks_clear(&pmem->bb, sector, cleared); 91 if (pmem->bb_state) 92 sysfs_notify_dirent(pmem->bb_state); 93 } 94 95 arch_invalidate_pmem(pmem->virt_addr + offset, len); 96 97 return rc; 98 } 99 100 static void write_pmem(void *pmem_addr, struct page *page, 101 unsigned int off, unsigned int len) 102 { 103 unsigned int chunk; 104 void *mem; 105 106 while (len) { 107 mem = kmap_atomic(page); 108 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 109 memcpy_flushcache(pmem_addr, mem + off, chunk); 110 kunmap_atomic(mem); 111 len -= chunk; 112 off = 0; 113 page++; 114 pmem_addr += chunk; 115 } 116 } 117 118 static blk_status_t read_pmem(struct page *page, unsigned int off, 119 void *pmem_addr, unsigned int len) 120 { 121 unsigned int chunk; 122 unsigned long rem; 123 void *mem; 124 125 while (len) { 126 mem = kmap_atomic(page); 127 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 128 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk); 129 kunmap_atomic(mem); 130 if (rem) 131 return BLK_STS_IOERR; 132 len -= chunk; 133 off = 0; 134 page++; 135 pmem_addr += chunk; 136 } 137 return BLK_STS_OK; 138 } 139 140 static blk_status_t pmem_do_read(struct pmem_device *pmem, 141 struct page *page, unsigned int page_off, 142 sector_t sector, unsigned int len) 143 { 144 blk_status_t rc; 145 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 146 void *pmem_addr = pmem->virt_addr + pmem_off; 147 148 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 149 return BLK_STS_IOERR; 150 151 rc = read_pmem(page, page_off, pmem_addr, len); 152 flush_dcache_page(page); 153 return rc; 154 } 155 156 static blk_status_t pmem_do_write(struct pmem_device *pmem, 157 struct page *page, unsigned int page_off, 158 sector_t sector, unsigned int len) 159 { 160 blk_status_t rc = BLK_STS_OK; 161 bool bad_pmem = false; 162 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 163 void *pmem_addr = pmem->virt_addr + pmem_off; 164 165 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 166 bad_pmem = true; 167 168 /* 169 * Note that we write the data both before and after 170 * clearing poison. The write before clear poison 171 * handles situations where the latest written data is 172 * preserved and the clear poison operation simply marks 173 * the address range as valid without changing the data. 174 * In this case application software can assume that an 175 * interrupted write will either return the new good 176 * data or an error. 177 * 178 * However, if pmem_clear_poison() leaves the data in an 179 * indeterminate state we need to perform the write 180 * after clear poison. 181 */ 182 flush_dcache_page(page); 183 write_pmem(pmem_addr, page, page_off, len); 184 if (unlikely(bad_pmem)) { 185 rc = pmem_clear_poison(pmem, pmem_off, len); 186 write_pmem(pmem_addr, page, page_off, len); 187 } 188 189 return rc; 190 } 191 192 static blk_qc_t pmem_submit_bio(struct bio *bio) 193 { 194 int ret = 0; 195 blk_status_t rc = 0; 196 bool do_acct; 197 unsigned long start; 198 struct bio_vec bvec; 199 struct bvec_iter iter; 200 struct pmem_device *pmem = bio->bi_disk->private_data; 201 struct nd_region *nd_region = to_region(pmem); 202 203 if (bio->bi_opf & REQ_PREFLUSH) 204 ret = nvdimm_flush(nd_region, bio); 205 206 do_acct = blk_queue_io_stat(bio->bi_disk->queue); 207 if (do_acct) 208 start = bio_start_io_acct(bio); 209 bio_for_each_segment(bvec, bio, iter) { 210 if (op_is_write(bio_op(bio))) 211 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset, 212 iter.bi_sector, bvec.bv_len); 213 else 214 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset, 215 iter.bi_sector, bvec.bv_len); 216 if (rc) { 217 bio->bi_status = rc; 218 break; 219 } 220 } 221 if (do_acct) 222 bio_end_io_acct(bio, start); 223 224 if (bio->bi_opf & REQ_FUA) 225 ret = nvdimm_flush(nd_region, bio); 226 227 if (ret) 228 bio->bi_status = errno_to_blk_status(ret); 229 230 bio_endio(bio); 231 return BLK_QC_T_NONE; 232 } 233 234 static int pmem_rw_page(struct block_device *bdev, sector_t sector, 235 struct page *page, unsigned int op) 236 { 237 struct pmem_device *pmem = bdev->bd_disk->private_data; 238 blk_status_t rc; 239 240 if (op_is_write(op)) 241 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page)); 242 else 243 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page)); 244 /* 245 * The ->rw_page interface is subtle and tricky. The core 246 * retries on any error, so we can only invoke page_endio() in 247 * the successful completion case. Otherwise, we'll see crashes 248 * caused by double completion. 249 */ 250 if (rc == 0) 251 page_endio(page, op_is_write(op), 0); 252 253 return blk_status_to_errno(rc); 254 } 255 256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 258 long nr_pages, void **kaddr, pfn_t *pfn) 259 { 260 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 261 262 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, 263 PFN_PHYS(nr_pages)))) 264 return -EIO; 265 266 if (kaddr) 267 *kaddr = pmem->virt_addr + offset; 268 if (pfn) 269 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 270 271 /* 272 * If badblocks are present, limit known good range to the 273 * requested range. 274 */ 275 if (unlikely(pmem->bb.count)) 276 return nr_pages; 277 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 278 } 279 280 static const struct block_device_operations pmem_fops = { 281 .owner = THIS_MODULE, 282 .submit_bio = pmem_submit_bio, 283 .rw_page = pmem_rw_page, 284 .revalidate_disk = nvdimm_revalidate_disk, 285 }; 286 287 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 288 size_t nr_pages) 289 { 290 struct pmem_device *pmem = dax_get_private(dax_dev); 291 292 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0, 293 PFN_PHYS(pgoff) >> SECTOR_SHIFT, 294 PAGE_SIZE)); 295 } 296 297 static long pmem_dax_direct_access(struct dax_device *dax_dev, 298 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 299 { 300 struct pmem_device *pmem = dax_get_private(dax_dev); 301 302 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); 303 } 304 305 /* 306 * Use the 'no check' versions of copy_from_iter_flushcache() and 307 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds 308 * checking, both file offset and device offset, is handled by 309 * dax_iomap_actor() 310 */ 311 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 312 void *addr, size_t bytes, struct iov_iter *i) 313 { 314 return _copy_from_iter_flushcache(addr, bytes, i); 315 } 316 317 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 318 void *addr, size_t bytes, struct iov_iter *i) 319 { 320 return _copy_to_iter_mcsafe(addr, bytes, i); 321 } 322 323 static const struct dax_operations pmem_dax_ops = { 324 .direct_access = pmem_dax_direct_access, 325 .dax_supported = generic_fsdax_supported, 326 .copy_from_iter = pmem_copy_from_iter, 327 .copy_to_iter = pmem_copy_to_iter, 328 .zero_page_range = pmem_dax_zero_page_range, 329 }; 330 331 static const struct attribute_group *pmem_attribute_groups[] = { 332 &dax_attribute_group, 333 NULL, 334 }; 335 336 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap) 337 { 338 struct request_queue *q = 339 container_of(pgmap->ref, struct request_queue, q_usage_counter); 340 341 blk_cleanup_queue(q); 342 } 343 344 static void pmem_release_queue(void *pgmap) 345 { 346 pmem_pagemap_cleanup(pgmap); 347 } 348 349 static void pmem_pagemap_kill(struct dev_pagemap *pgmap) 350 { 351 struct request_queue *q = 352 container_of(pgmap->ref, struct request_queue, q_usage_counter); 353 354 blk_freeze_queue_start(q); 355 } 356 357 static void pmem_release_disk(void *__pmem) 358 { 359 struct pmem_device *pmem = __pmem; 360 361 kill_dax(pmem->dax_dev); 362 put_dax(pmem->dax_dev); 363 del_gendisk(pmem->disk); 364 put_disk(pmem->disk); 365 } 366 367 static const struct dev_pagemap_ops fsdax_pagemap_ops = { 368 .kill = pmem_pagemap_kill, 369 .cleanup = pmem_pagemap_cleanup, 370 }; 371 372 static int pmem_attach_disk(struct device *dev, 373 struct nd_namespace_common *ndns) 374 { 375 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 376 struct nd_region *nd_region = to_nd_region(dev->parent); 377 int nid = dev_to_node(dev), fua; 378 struct resource *res = &nsio->res; 379 struct resource bb_res; 380 struct nd_pfn *nd_pfn = NULL; 381 struct dax_device *dax_dev; 382 struct nd_pfn_sb *pfn_sb; 383 struct pmem_device *pmem; 384 struct request_queue *q; 385 struct device *gendev; 386 struct gendisk *disk; 387 void *addr; 388 int rc; 389 unsigned long flags = 0UL; 390 391 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 392 if (!pmem) 393 return -ENOMEM; 394 395 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 396 if (rc) 397 return rc; 398 399 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 400 if (is_nd_pfn(dev)) { 401 nd_pfn = to_nd_pfn(dev); 402 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); 403 if (rc) 404 return rc; 405 } 406 407 /* we're attaching a block device, disable raw namespace access */ 408 devm_namespace_disable(dev, ndns); 409 410 dev_set_drvdata(dev, pmem); 411 pmem->phys_addr = res->start; 412 pmem->size = resource_size(res); 413 fua = nvdimm_has_flush(nd_region); 414 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 415 dev_warn(dev, "unable to guarantee persistence of writes\n"); 416 fua = 0; 417 } 418 419 if (!devm_request_mem_region(dev, res->start, resource_size(res), 420 dev_name(&ndns->dev))) { 421 dev_warn(dev, "could not reserve region %pR\n", res); 422 return -EBUSY; 423 } 424 425 q = blk_alloc_queue(dev_to_node(dev)); 426 if (!q) 427 return -ENOMEM; 428 429 pmem->pfn_flags = PFN_DEV; 430 pmem->pgmap.ref = &q->q_usage_counter; 431 if (is_nd_pfn(dev)) { 432 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 433 pmem->pgmap.ops = &fsdax_pagemap_ops; 434 addr = devm_memremap_pages(dev, &pmem->pgmap); 435 pfn_sb = nd_pfn->pfn_sb; 436 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 437 pmem->pfn_pad = resource_size(res) - 438 resource_size(&pmem->pgmap.res); 439 pmem->pfn_flags |= PFN_MAP; 440 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 441 bb_res.start += pmem->data_offset; 442 } else if (pmem_should_map_pages(dev)) { 443 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res)); 444 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 445 pmem->pgmap.ops = &fsdax_pagemap_ops; 446 addr = devm_memremap_pages(dev, &pmem->pgmap); 447 pmem->pfn_flags |= PFN_MAP; 448 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 449 } else { 450 if (devm_add_action_or_reset(dev, pmem_release_queue, 451 &pmem->pgmap)) 452 return -ENOMEM; 453 addr = devm_memremap(dev, pmem->phys_addr, 454 pmem->size, ARCH_MEMREMAP_PMEM); 455 memcpy(&bb_res, &nsio->res, sizeof(bb_res)); 456 } 457 458 if (IS_ERR(addr)) 459 return PTR_ERR(addr); 460 pmem->virt_addr = addr; 461 462 blk_queue_write_cache(q, true, fua); 463 blk_queue_physical_block_size(q, PAGE_SIZE); 464 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 465 blk_queue_max_hw_sectors(q, UINT_MAX); 466 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 467 if (pmem->pfn_flags & PFN_MAP) 468 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 469 470 disk = alloc_disk_node(0, nid); 471 if (!disk) 472 return -ENOMEM; 473 pmem->disk = disk; 474 475 disk->fops = &pmem_fops; 476 disk->queue = q; 477 disk->flags = GENHD_FL_EXT_DEVT; 478 disk->private_data = pmem; 479 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 480 nvdimm_namespace_disk_name(ndns, disk->disk_name); 481 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 482 / 512); 483 if (devm_init_badblocks(dev, &pmem->bb)) 484 return -ENOMEM; 485 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res); 486 disk->bb = &pmem->bb; 487 488 if (is_nvdimm_sync(nd_region)) 489 flags = DAXDEV_F_SYNC; 490 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags); 491 if (IS_ERR(dax_dev)) { 492 put_disk(disk); 493 return PTR_ERR(dax_dev); 494 } 495 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); 496 pmem->dax_dev = dax_dev; 497 gendev = disk_to_dev(disk); 498 gendev->groups = pmem_attribute_groups; 499 500 device_add_disk(dev, disk, NULL); 501 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 502 return -ENOMEM; 503 504 revalidate_disk(disk); 505 506 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 507 "badblocks"); 508 if (!pmem->bb_state) 509 dev_warn(dev, "'badblocks' notification disabled\n"); 510 511 return 0; 512 } 513 514 static int nd_pmem_probe(struct device *dev) 515 { 516 int ret; 517 struct nd_namespace_common *ndns; 518 519 ndns = nvdimm_namespace_common_probe(dev); 520 if (IS_ERR(ndns)) 521 return PTR_ERR(ndns); 522 523 if (is_nd_btt(dev)) 524 return nvdimm_namespace_attach_btt(ndns); 525 526 if (is_nd_pfn(dev)) 527 return pmem_attach_disk(dev, ndns); 528 529 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 530 if (ret) 531 return ret; 532 533 ret = nd_btt_probe(dev, ndns); 534 if (ret == 0) 535 return -ENXIO; 536 537 /* 538 * We have two failure conditions here, there is no 539 * info reserver block or we found a valid info reserve block 540 * but failed to initialize the pfn superblock. 541 * 542 * For the first case consider namespace as a raw pmem namespace 543 * and attach a disk. 544 * 545 * For the latter, consider this a success and advance the namespace 546 * seed. 547 */ 548 ret = nd_pfn_probe(dev, ndns); 549 if (ret == 0) 550 return -ENXIO; 551 else if (ret == -EOPNOTSUPP) 552 return ret; 553 554 ret = nd_dax_probe(dev, ndns); 555 if (ret == 0) 556 return -ENXIO; 557 else if (ret == -EOPNOTSUPP) 558 return ret; 559 560 /* probe complete, attach handles namespace enabling */ 561 devm_namespace_disable(dev, ndns); 562 563 return pmem_attach_disk(dev, ndns); 564 } 565 566 static int nd_pmem_remove(struct device *dev) 567 { 568 struct pmem_device *pmem = dev_get_drvdata(dev); 569 570 if (is_nd_btt(dev)) 571 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 572 else { 573 /* 574 * Note, this assumes nd_device_lock() context to not 575 * race nd_pmem_notify() 576 */ 577 sysfs_put(pmem->bb_state); 578 pmem->bb_state = NULL; 579 } 580 nvdimm_flush(to_nd_region(dev->parent), NULL); 581 582 return 0; 583 } 584 585 static void nd_pmem_shutdown(struct device *dev) 586 { 587 nvdimm_flush(to_nd_region(dev->parent), NULL); 588 } 589 590 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 591 { 592 struct nd_region *nd_region; 593 resource_size_t offset = 0, end_trunc = 0; 594 struct nd_namespace_common *ndns; 595 struct nd_namespace_io *nsio; 596 struct resource res; 597 struct badblocks *bb; 598 struct kernfs_node *bb_state; 599 600 if (event != NVDIMM_REVALIDATE_POISON) 601 return; 602 603 if (is_nd_btt(dev)) { 604 struct nd_btt *nd_btt = to_nd_btt(dev); 605 606 ndns = nd_btt->ndns; 607 nd_region = to_nd_region(ndns->dev.parent); 608 nsio = to_nd_namespace_io(&ndns->dev); 609 bb = &nsio->bb; 610 bb_state = NULL; 611 } else { 612 struct pmem_device *pmem = dev_get_drvdata(dev); 613 614 nd_region = to_region(pmem); 615 bb = &pmem->bb; 616 bb_state = pmem->bb_state; 617 618 if (is_nd_pfn(dev)) { 619 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 620 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 621 622 ndns = nd_pfn->ndns; 623 offset = pmem->data_offset + 624 __le32_to_cpu(pfn_sb->start_pad); 625 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 626 } else { 627 ndns = to_ndns(dev); 628 } 629 630 nsio = to_nd_namespace_io(&ndns->dev); 631 } 632 633 res.start = nsio->res.start + offset; 634 res.end = nsio->res.end - end_trunc; 635 nvdimm_badblocks_populate(nd_region, bb, &res); 636 if (bb_state) 637 sysfs_notify_dirent(bb_state); 638 } 639 640 MODULE_ALIAS("pmem"); 641 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 643 static struct nd_device_driver nd_pmem_driver = { 644 .probe = nd_pmem_probe, 645 .remove = nd_pmem_remove, 646 .notify = nd_pmem_notify, 647 .shutdown = nd_pmem_shutdown, 648 .drv = { 649 .name = "nd_pmem", 650 }, 651 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 652 }; 653 654 module_nd_driver(nd_pmem_driver); 655 656 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 657 MODULE_LICENSE("GPL v2"); 658