xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <asm/cacheflush.h>
11 #include <linux/blkdev.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/backing-dev.h>
28 #include "pmem.h"
29 #include "pfn.h"
30 #include "nd.h"
31 
32 static struct device *to_dev(struct pmem_device *pmem)
33 {
34 	/*
35 	 * nvdimm bus services need a 'dev' parameter, and we record the device
36 	 * at init in bb.dev.
37 	 */
38 	return pmem->bb.dev;
39 }
40 
41 static struct nd_region *to_region(struct pmem_device *pmem)
42 {
43 	return to_nd_region(to_dev(pmem)->parent);
44 }
45 
46 static void hwpoison_clear(struct pmem_device *pmem,
47 		phys_addr_t phys, unsigned int len)
48 {
49 	unsigned long pfn_start, pfn_end, pfn;
50 
51 	/* only pmem in the linear map supports HWPoison */
52 	if (is_vmalloc_addr(pmem->virt_addr))
53 		return;
54 
55 	pfn_start = PHYS_PFN(phys);
56 	pfn_end = pfn_start + PHYS_PFN(len);
57 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
58 		struct page *page = pfn_to_page(pfn);
59 
60 		/*
61 		 * Note, no need to hold a get_dev_pagemap() reference
62 		 * here since we're in the driver I/O path and
63 		 * outstanding I/O requests pin the dev_pagemap.
64 		 */
65 		if (test_and_clear_pmem_poison(page))
66 			clear_mce_nospec(pfn);
67 	}
68 }
69 
70 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
71 		phys_addr_t offset, unsigned int len)
72 {
73 	struct device *dev = to_dev(pmem);
74 	sector_t sector;
75 	long cleared;
76 	blk_status_t rc = BLK_STS_OK;
77 
78 	sector = (offset - pmem->data_offset) / 512;
79 
80 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
81 	if (cleared < len)
82 		rc = BLK_STS_IOERR;
83 	if (cleared > 0 && cleared / 512) {
84 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
85 		cleared /= 512;
86 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
87 				(unsigned long long) sector, cleared,
88 				cleared > 1 ? "s" : "");
89 		badblocks_clear(&pmem->bb, sector, cleared);
90 		if (pmem->bb_state)
91 			sysfs_notify_dirent(pmem->bb_state);
92 	}
93 
94 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
95 
96 	return rc;
97 }
98 
99 static void write_pmem(void *pmem_addr, struct page *page,
100 		unsigned int off, unsigned int len)
101 {
102 	unsigned int chunk;
103 	void *mem;
104 
105 	while (len) {
106 		mem = kmap_atomic(page);
107 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
108 		memcpy_flushcache(pmem_addr, mem + off, chunk);
109 		kunmap_atomic(mem);
110 		len -= chunk;
111 		off = 0;
112 		page++;
113 		pmem_addr += chunk;
114 	}
115 }
116 
117 static blk_status_t read_pmem(struct page *page, unsigned int off,
118 		void *pmem_addr, unsigned int len)
119 {
120 	unsigned int chunk;
121 	unsigned long rem;
122 	void *mem;
123 
124 	while (len) {
125 		mem = kmap_atomic(page);
126 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
127 		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
128 		kunmap_atomic(mem);
129 		if (rem)
130 			return BLK_STS_IOERR;
131 		len -= chunk;
132 		off = 0;
133 		page++;
134 		pmem_addr += chunk;
135 	}
136 	return BLK_STS_OK;
137 }
138 
139 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
140 			unsigned int len, unsigned int off, unsigned int op,
141 			sector_t sector)
142 {
143 	blk_status_t rc = BLK_STS_OK;
144 	bool bad_pmem = false;
145 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 	void *pmem_addr = pmem->virt_addr + pmem_off;
147 
148 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 		bad_pmem = true;
150 
151 	if (!op_is_write(op)) {
152 		if (unlikely(bad_pmem))
153 			rc = BLK_STS_IOERR;
154 		else {
155 			rc = read_pmem(page, off, pmem_addr, len);
156 			flush_dcache_page(page);
157 		}
158 	} else {
159 		/*
160 		 * Note that we write the data both before and after
161 		 * clearing poison.  The write before clear poison
162 		 * handles situations where the latest written data is
163 		 * preserved and the clear poison operation simply marks
164 		 * the address range as valid without changing the data.
165 		 * In this case application software can assume that an
166 		 * interrupted write will either return the new good
167 		 * data or an error.
168 		 *
169 		 * However, if pmem_clear_poison() leaves the data in an
170 		 * indeterminate state we need to perform the write
171 		 * after clear poison.
172 		 */
173 		flush_dcache_page(page);
174 		write_pmem(pmem_addr, page, off, len);
175 		if (unlikely(bad_pmem)) {
176 			rc = pmem_clear_poison(pmem, pmem_off, len);
177 			write_pmem(pmem_addr, page, off, len);
178 		}
179 	}
180 
181 	return rc;
182 }
183 
184 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
185 {
186 	int ret = 0;
187 	blk_status_t rc = 0;
188 	bool do_acct;
189 	unsigned long start;
190 	struct bio_vec bvec;
191 	struct bvec_iter iter;
192 	struct pmem_device *pmem = q->queuedata;
193 	struct nd_region *nd_region = to_region(pmem);
194 
195 	if (bio->bi_opf & REQ_PREFLUSH)
196 		ret = nvdimm_flush(nd_region, bio);
197 
198 	do_acct = nd_iostat_start(bio, &start);
199 	bio_for_each_segment(bvec, bio, iter) {
200 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
201 				bvec.bv_offset, bio_op(bio), iter.bi_sector);
202 		if (rc) {
203 			bio->bi_status = rc;
204 			break;
205 		}
206 	}
207 	if (do_acct)
208 		nd_iostat_end(bio, start);
209 
210 	if (bio->bi_opf & REQ_FUA)
211 		ret = nvdimm_flush(nd_region, bio);
212 
213 	if (ret)
214 		bio->bi_status = errno_to_blk_status(ret);
215 
216 	bio_endio(bio);
217 	return BLK_QC_T_NONE;
218 }
219 
220 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
221 		       struct page *page, unsigned int op)
222 {
223 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
224 	blk_status_t rc;
225 
226 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
227 			  0, op, sector);
228 
229 	/*
230 	 * The ->rw_page interface is subtle and tricky.  The core
231 	 * retries on any error, so we can only invoke page_endio() in
232 	 * the successful completion case.  Otherwise, we'll see crashes
233 	 * caused by double completion.
234 	 */
235 	if (rc == 0)
236 		page_endio(page, op_is_write(op), 0);
237 
238 	return blk_status_to_errno(rc);
239 }
240 
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 		long nr_pages, void **kaddr, pfn_t *pfn)
244 {
245 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
246 
247 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
248 					PFN_PHYS(nr_pages))))
249 		return -EIO;
250 
251 	if (kaddr)
252 		*kaddr = pmem->virt_addr + offset;
253 	if (pfn)
254 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
255 
256 	/*
257 	 * If badblocks are present, limit known good range to the
258 	 * requested range.
259 	 */
260 	if (unlikely(pmem->bb.count))
261 		return nr_pages;
262 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
263 }
264 
265 static const struct block_device_operations pmem_fops = {
266 	.owner =		THIS_MODULE,
267 	.rw_page =		pmem_rw_page,
268 	.revalidate_disk =	nvdimm_revalidate_disk,
269 };
270 
271 static long pmem_dax_direct_access(struct dax_device *dax_dev,
272 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
273 {
274 	struct pmem_device *pmem = dax_get_private(dax_dev);
275 
276 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
277 }
278 
279 /*
280  * Use the 'no check' versions of copy_from_iter_flushcache() and
281  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
282  * checking, both file offset and device offset, is handled by
283  * dax_iomap_actor()
284  */
285 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
286 		void *addr, size_t bytes, struct iov_iter *i)
287 {
288 	return _copy_from_iter_flushcache(addr, bytes, i);
289 }
290 
291 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
292 		void *addr, size_t bytes, struct iov_iter *i)
293 {
294 	return _copy_to_iter_mcsafe(addr, bytes, i);
295 }
296 
297 static const struct dax_operations pmem_dax_ops = {
298 	.direct_access = pmem_dax_direct_access,
299 	.dax_supported = generic_fsdax_supported,
300 	.copy_from_iter = pmem_copy_from_iter,
301 	.copy_to_iter = pmem_copy_to_iter,
302 };
303 
304 static const struct attribute_group *pmem_attribute_groups[] = {
305 	&dax_attribute_group,
306 	NULL,
307 };
308 
309 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
310 {
311 	struct request_queue *q =
312 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
313 
314 	blk_cleanup_queue(q);
315 }
316 
317 static void pmem_release_queue(void *pgmap)
318 {
319 	pmem_pagemap_cleanup(pgmap);
320 }
321 
322 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
323 {
324 	struct request_queue *q =
325 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
326 
327 	blk_freeze_queue_start(q);
328 }
329 
330 static void pmem_release_disk(void *__pmem)
331 {
332 	struct pmem_device *pmem = __pmem;
333 
334 	kill_dax(pmem->dax_dev);
335 	put_dax(pmem->dax_dev);
336 	del_gendisk(pmem->disk);
337 	put_disk(pmem->disk);
338 }
339 
340 static void pmem_pagemap_page_free(struct page *page)
341 {
342 	wake_up_var(&page->_refcount);
343 }
344 
345 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
346 	.page_free		= pmem_pagemap_page_free,
347 	.kill			= pmem_pagemap_kill,
348 	.cleanup		= pmem_pagemap_cleanup,
349 };
350 
351 static int pmem_attach_disk(struct device *dev,
352 		struct nd_namespace_common *ndns)
353 {
354 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
355 	struct nd_region *nd_region = to_nd_region(dev->parent);
356 	int nid = dev_to_node(dev), fua;
357 	struct resource *res = &nsio->res;
358 	struct resource bb_res;
359 	struct nd_pfn *nd_pfn = NULL;
360 	struct dax_device *dax_dev;
361 	struct nd_pfn_sb *pfn_sb;
362 	struct pmem_device *pmem;
363 	struct request_queue *q;
364 	struct device *gendev;
365 	struct gendisk *disk;
366 	void *addr;
367 	int rc;
368 	unsigned long flags = 0UL;
369 
370 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
371 	if (!pmem)
372 		return -ENOMEM;
373 
374 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
375 	if (rc)
376 		return rc;
377 
378 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
379 	if (is_nd_pfn(dev)) {
380 		nd_pfn = to_nd_pfn(dev);
381 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
382 		if (rc)
383 			return rc;
384 	}
385 
386 	/* we're attaching a block device, disable raw namespace access */
387 	devm_namespace_disable(dev, ndns);
388 
389 	dev_set_drvdata(dev, pmem);
390 	pmem->phys_addr = res->start;
391 	pmem->size = resource_size(res);
392 	fua = nvdimm_has_flush(nd_region);
393 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
394 		dev_warn(dev, "unable to guarantee persistence of writes\n");
395 		fua = 0;
396 	}
397 
398 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
399 				dev_name(&ndns->dev))) {
400 		dev_warn(dev, "could not reserve region %pR\n", res);
401 		return -EBUSY;
402 	}
403 
404 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
405 	if (!q)
406 		return -ENOMEM;
407 
408 	pmem->pfn_flags = PFN_DEV;
409 	pmem->pgmap.ref = &q->q_usage_counter;
410 	if (is_nd_pfn(dev)) {
411 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
412 		pmem->pgmap.ops = &fsdax_pagemap_ops;
413 		addr = devm_memremap_pages(dev, &pmem->pgmap);
414 		pfn_sb = nd_pfn->pfn_sb;
415 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
416 		pmem->pfn_pad = resource_size(res) -
417 			resource_size(&pmem->pgmap.res);
418 		pmem->pfn_flags |= PFN_MAP;
419 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
420 		bb_res.start += pmem->data_offset;
421 	} else if (pmem_should_map_pages(dev)) {
422 		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
423 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
424 		pmem->pgmap.ops = &fsdax_pagemap_ops;
425 		addr = devm_memremap_pages(dev, &pmem->pgmap);
426 		pmem->pfn_flags |= PFN_MAP;
427 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
428 	} else {
429 		if (devm_add_action_or_reset(dev, pmem_release_queue,
430 					&pmem->pgmap))
431 			return -ENOMEM;
432 		addr = devm_memremap(dev, pmem->phys_addr,
433 				pmem->size, ARCH_MEMREMAP_PMEM);
434 		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
435 	}
436 
437 	if (IS_ERR(addr))
438 		return PTR_ERR(addr);
439 	pmem->virt_addr = addr;
440 
441 	blk_queue_write_cache(q, true, fua);
442 	blk_queue_make_request(q, pmem_make_request);
443 	blk_queue_physical_block_size(q, PAGE_SIZE);
444 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
445 	blk_queue_max_hw_sectors(q, UINT_MAX);
446 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
447 	if (pmem->pfn_flags & PFN_MAP)
448 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
449 	q->queuedata = pmem;
450 
451 	disk = alloc_disk_node(0, nid);
452 	if (!disk)
453 		return -ENOMEM;
454 	pmem->disk = disk;
455 
456 	disk->fops		= &pmem_fops;
457 	disk->queue		= q;
458 	disk->flags		= GENHD_FL_EXT_DEVT;
459 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
460 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
461 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
462 			/ 512);
463 	if (devm_init_badblocks(dev, &pmem->bb))
464 		return -ENOMEM;
465 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
466 	disk->bb = &pmem->bb;
467 
468 	if (is_nvdimm_sync(nd_region))
469 		flags = DAXDEV_F_SYNC;
470 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
471 	if (!dax_dev) {
472 		put_disk(disk);
473 		return -ENOMEM;
474 	}
475 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
476 	pmem->dax_dev = dax_dev;
477 	gendev = disk_to_dev(disk);
478 	gendev->groups = pmem_attribute_groups;
479 
480 	device_add_disk(dev, disk, NULL);
481 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
482 		return -ENOMEM;
483 
484 	revalidate_disk(disk);
485 
486 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
487 					  "badblocks");
488 	if (!pmem->bb_state)
489 		dev_warn(dev, "'badblocks' notification disabled\n");
490 
491 	return 0;
492 }
493 
494 static int nd_pmem_probe(struct device *dev)
495 {
496 	int ret;
497 	struct nd_namespace_common *ndns;
498 
499 	ndns = nvdimm_namespace_common_probe(dev);
500 	if (IS_ERR(ndns))
501 		return PTR_ERR(ndns);
502 
503 	if (is_nd_btt(dev))
504 		return nvdimm_namespace_attach_btt(ndns);
505 
506 	if (is_nd_pfn(dev))
507 		return pmem_attach_disk(dev, ndns);
508 
509 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
510 	if (ret)
511 		return ret;
512 
513 	ret = nd_btt_probe(dev, ndns);
514 	if (ret == 0)
515 		return -ENXIO;
516 
517 	/*
518 	 * We have two failure conditions here, there is no
519 	 * info reserver block or we found a valid info reserve block
520 	 * but failed to initialize the pfn superblock.
521 	 *
522 	 * For the first case consider namespace as a raw pmem namespace
523 	 * and attach a disk.
524 	 *
525 	 * For the latter, consider this a success and advance the namespace
526 	 * seed.
527 	 */
528 	ret = nd_pfn_probe(dev, ndns);
529 	if (ret == 0)
530 		return -ENXIO;
531 	else if (ret == -EOPNOTSUPP)
532 		return ret;
533 
534 	ret = nd_dax_probe(dev, ndns);
535 	if (ret == 0)
536 		return -ENXIO;
537 	else if (ret == -EOPNOTSUPP)
538 		return ret;
539 
540 	/* probe complete, attach handles namespace enabling */
541 	devm_namespace_disable(dev, ndns);
542 
543 	return pmem_attach_disk(dev, ndns);
544 }
545 
546 static int nd_pmem_remove(struct device *dev)
547 {
548 	struct pmem_device *pmem = dev_get_drvdata(dev);
549 
550 	if (is_nd_btt(dev))
551 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
552 	else {
553 		/*
554 		 * Note, this assumes nd_device_lock() context to not
555 		 * race nd_pmem_notify()
556 		 */
557 		sysfs_put(pmem->bb_state);
558 		pmem->bb_state = NULL;
559 	}
560 	nvdimm_flush(to_nd_region(dev->parent), NULL);
561 
562 	return 0;
563 }
564 
565 static void nd_pmem_shutdown(struct device *dev)
566 {
567 	nvdimm_flush(to_nd_region(dev->parent), NULL);
568 }
569 
570 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
571 {
572 	struct nd_region *nd_region;
573 	resource_size_t offset = 0, end_trunc = 0;
574 	struct nd_namespace_common *ndns;
575 	struct nd_namespace_io *nsio;
576 	struct resource res;
577 	struct badblocks *bb;
578 	struct kernfs_node *bb_state;
579 
580 	if (event != NVDIMM_REVALIDATE_POISON)
581 		return;
582 
583 	if (is_nd_btt(dev)) {
584 		struct nd_btt *nd_btt = to_nd_btt(dev);
585 
586 		ndns = nd_btt->ndns;
587 		nd_region = to_nd_region(ndns->dev.parent);
588 		nsio = to_nd_namespace_io(&ndns->dev);
589 		bb = &nsio->bb;
590 		bb_state = NULL;
591 	} else {
592 		struct pmem_device *pmem = dev_get_drvdata(dev);
593 
594 		nd_region = to_region(pmem);
595 		bb = &pmem->bb;
596 		bb_state = pmem->bb_state;
597 
598 		if (is_nd_pfn(dev)) {
599 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
600 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
601 
602 			ndns = nd_pfn->ndns;
603 			offset = pmem->data_offset +
604 					__le32_to_cpu(pfn_sb->start_pad);
605 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
606 		} else {
607 			ndns = to_ndns(dev);
608 		}
609 
610 		nsio = to_nd_namespace_io(&ndns->dev);
611 	}
612 
613 	res.start = nsio->res.start + offset;
614 	res.end = nsio->res.end - end_trunc;
615 	nvdimm_badblocks_populate(nd_region, bb, &res);
616 	if (bb_state)
617 		sysfs_notify_dirent(bb_state);
618 }
619 
620 MODULE_ALIAS("pmem");
621 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
622 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
623 static struct nd_device_driver nd_pmem_driver = {
624 	.probe = nd_pmem_probe,
625 	.remove = nd_pmem_remove,
626 	.notify = nd_pmem_notify,
627 	.shutdown = nd_pmem_shutdown,
628 	.drv = {
629 		.name = "nd_pmem",
630 	},
631 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
632 };
633 
634 module_nd_driver(nd_pmem_driver);
635 
636 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
637 MODULE_LICENSE("GPL v2");
638