xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 9cf0666f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33 
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36 	/*
37 	 * nvdimm bus services need a 'dev' parameter, and we record the device
38 	 * at init in bb.dev.
39 	 */
40 	return pmem->bb.dev;
41 }
42 
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45 	return to_nd_region(to_dev(pmem)->parent);
46 }
47 
48 static void hwpoison_clear(struct pmem_device *pmem,
49 		phys_addr_t phys, unsigned int len)
50 {
51 	unsigned long pfn_start, pfn_end, pfn;
52 
53 	/* only pmem in the linear map supports HWPoison */
54 	if (is_vmalloc_addr(pmem->virt_addr))
55 		return;
56 
57 	pfn_start = PHYS_PFN(phys);
58 	pfn_end = pfn_start + PHYS_PFN(len);
59 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
60 		struct page *page = pfn_to_page(pfn);
61 
62 		/*
63 		 * Note, no need to hold a get_dev_pagemap() reference
64 		 * here since we're in the driver I/O path and
65 		 * outstanding I/O requests pin the dev_pagemap.
66 		 */
67 		if (test_and_clear_pmem_poison(page))
68 			clear_mce_nospec(pfn);
69 	}
70 }
71 
72 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
73 		phys_addr_t offset, unsigned int len)
74 {
75 	struct device *dev = to_dev(pmem);
76 	sector_t sector;
77 	long cleared;
78 	blk_status_t rc = BLK_STS_OK;
79 
80 	sector = (offset - pmem->data_offset) / 512;
81 
82 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
83 	if (cleared < len)
84 		rc = BLK_STS_IOERR;
85 	if (cleared > 0 && cleared / 512) {
86 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
87 		cleared /= 512;
88 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
89 				(unsigned long long) sector, cleared,
90 				cleared > 1 ? "s" : "");
91 		badblocks_clear(&pmem->bb, sector, cleared);
92 		if (pmem->bb_state)
93 			sysfs_notify_dirent(pmem->bb_state);
94 	}
95 
96 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
97 
98 	return rc;
99 }
100 
101 static void write_pmem(void *pmem_addr, struct page *page,
102 		unsigned int off, unsigned int len)
103 {
104 	unsigned int chunk;
105 	void *mem;
106 
107 	while (len) {
108 		mem = kmap_atomic(page);
109 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
110 		memcpy_flushcache(pmem_addr, mem + off, chunk);
111 		kunmap_atomic(mem);
112 		len -= chunk;
113 		off = 0;
114 		page++;
115 		pmem_addr += chunk;
116 	}
117 }
118 
119 static blk_status_t read_pmem(struct page *page, unsigned int off,
120 		void *pmem_addr, unsigned int len)
121 {
122 	unsigned int chunk;
123 	unsigned long rem;
124 	void *mem;
125 
126 	while (len) {
127 		mem = kmap_atomic(page);
128 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
129 		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
130 		kunmap_atomic(mem);
131 		if (rem)
132 			return BLK_STS_IOERR;
133 		len -= chunk;
134 		off = 0;
135 		page++;
136 		pmem_addr += chunk;
137 	}
138 	return BLK_STS_OK;
139 }
140 
141 static blk_status_t pmem_do_read(struct pmem_device *pmem,
142 			struct page *page, unsigned int page_off,
143 			sector_t sector, unsigned int len)
144 {
145 	blk_status_t rc;
146 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
147 	void *pmem_addr = pmem->virt_addr + pmem_off;
148 
149 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
150 		return BLK_STS_IOERR;
151 
152 	rc = read_pmem(page, page_off, pmem_addr, len);
153 	flush_dcache_page(page);
154 	return rc;
155 }
156 
157 static blk_status_t pmem_do_write(struct pmem_device *pmem,
158 			struct page *page, unsigned int page_off,
159 			sector_t sector, unsigned int len)
160 {
161 	blk_status_t rc = BLK_STS_OK;
162 	bool bad_pmem = false;
163 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
164 	void *pmem_addr = pmem->virt_addr + pmem_off;
165 
166 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
167 		bad_pmem = true;
168 
169 	/*
170 	 * Note that we write the data both before and after
171 	 * clearing poison.  The write before clear poison
172 	 * handles situations where the latest written data is
173 	 * preserved and the clear poison operation simply marks
174 	 * the address range as valid without changing the data.
175 	 * In this case application software can assume that an
176 	 * interrupted write will either return the new good
177 	 * data or an error.
178 	 *
179 	 * However, if pmem_clear_poison() leaves the data in an
180 	 * indeterminate state we need to perform the write
181 	 * after clear poison.
182 	 */
183 	flush_dcache_page(page);
184 	write_pmem(pmem_addr, page, page_off, len);
185 	if (unlikely(bad_pmem)) {
186 		rc = pmem_clear_poison(pmem, pmem_off, len);
187 		write_pmem(pmem_addr, page, page_off, len);
188 	}
189 
190 	return rc;
191 }
192 
193 static void pmem_submit_bio(struct bio *bio)
194 {
195 	int ret = 0;
196 	blk_status_t rc = 0;
197 	bool do_acct;
198 	unsigned long start;
199 	struct bio_vec bvec;
200 	struct bvec_iter iter;
201 	struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
202 	struct nd_region *nd_region = to_region(pmem);
203 
204 	if (bio->bi_opf & REQ_PREFLUSH)
205 		ret = nvdimm_flush(nd_region, bio);
206 
207 	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
208 	if (do_acct)
209 		start = bio_start_io_acct(bio);
210 	bio_for_each_segment(bvec, bio, iter) {
211 		if (op_is_write(bio_op(bio)))
212 			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
213 				iter.bi_sector, bvec.bv_len);
214 		else
215 			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
216 				iter.bi_sector, bvec.bv_len);
217 		if (rc) {
218 			bio->bi_status = rc;
219 			break;
220 		}
221 	}
222 	if (do_acct)
223 		bio_end_io_acct(bio, start);
224 
225 	if (bio->bi_opf & REQ_FUA)
226 		ret = nvdimm_flush(nd_region, bio);
227 
228 	if (ret)
229 		bio->bi_status = errno_to_blk_status(ret);
230 
231 	bio_endio(bio);
232 }
233 
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235 		       struct page *page, unsigned int op)
236 {
237 	struct pmem_device *pmem = bdev->bd_disk->private_data;
238 	blk_status_t rc;
239 
240 	if (op_is_write(op))
241 		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242 	else
243 		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244 	/*
245 	 * The ->rw_page interface is subtle and tricky.  The core
246 	 * retries on any error, so we can only invoke page_endio() in
247 	 * the successful completion case.  Otherwise, we'll see crashes
248 	 * caused by double completion.
249 	 */
250 	if (rc == 0)
251 		page_endio(page, op_is_write(op), 0);
252 
253 	return blk_status_to_errno(rc);
254 }
255 
256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258 		long nr_pages, void **kaddr, pfn_t *pfn)
259 {
260 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261 
262 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263 					PFN_PHYS(nr_pages))))
264 		return -EIO;
265 
266 	if (kaddr)
267 		*kaddr = pmem->virt_addr + offset;
268 	if (pfn)
269 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270 
271 	/*
272 	 * If badblocks are present, limit known good range to the
273 	 * requested range.
274 	 */
275 	if (unlikely(pmem->bb.count))
276 		return nr_pages;
277 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278 }
279 
280 static const struct block_device_operations pmem_fops = {
281 	.owner =		THIS_MODULE,
282 	.submit_bio =		pmem_submit_bio,
283 	.rw_page =		pmem_rw_page,
284 };
285 
286 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
287 				    size_t nr_pages)
288 {
289 	struct pmem_device *pmem = dax_get_private(dax_dev);
290 
291 	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
292 				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
293 				   PAGE_SIZE));
294 }
295 
296 static long pmem_dax_direct_access(struct dax_device *dax_dev,
297 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
298 {
299 	struct pmem_device *pmem = dax_get_private(dax_dev);
300 
301 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
302 }
303 
304 /*
305  * Use the 'no check' versions of copy_from_iter_flushcache() and
306  * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
307  * checking, both file offset and device offset, is handled by
308  * dax_iomap_actor()
309  */
310 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
311 		void *addr, size_t bytes, struct iov_iter *i)
312 {
313 	return _copy_from_iter_flushcache(addr, bytes, i);
314 }
315 
316 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
317 		void *addr, size_t bytes, struct iov_iter *i)
318 {
319 	return _copy_mc_to_iter(addr, bytes, i);
320 }
321 
322 static const struct dax_operations pmem_dax_ops = {
323 	.direct_access = pmem_dax_direct_access,
324 	.dax_supported = generic_fsdax_supported,
325 	.copy_from_iter = pmem_copy_from_iter,
326 	.copy_to_iter = pmem_copy_to_iter,
327 	.zero_page_range = pmem_dax_zero_page_range,
328 };
329 
330 static ssize_t write_cache_show(struct device *dev,
331 		struct device_attribute *attr, char *buf)
332 {
333 	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
334 
335 	return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
336 }
337 
338 static ssize_t write_cache_store(struct device *dev,
339 		struct device_attribute *attr, const char *buf, size_t len)
340 {
341 	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
342 	bool write_cache;
343 	int rc;
344 
345 	rc = strtobool(buf, &write_cache);
346 	if (rc)
347 		return rc;
348 	dax_write_cache(pmem->dax_dev, write_cache);
349 	return len;
350 }
351 static DEVICE_ATTR_RW(write_cache);
352 
353 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
354 {
355 #ifndef CONFIG_ARCH_HAS_PMEM_API
356 	if (a == &dev_attr_write_cache.attr)
357 		return 0;
358 #endif
359 	return a->mode;
360 }
361 
362 static struct attribute *dax_attributes[] = {
363 	&dev_attr_write_cache.attr,
364 	NULL,
365 };
366 
367 static const struct attribute_group dax_attribute_group = {
368 	.name		= "dax",
369 	.attrs		= dax_attributes,
370 	.is_visible	= dax_visible,
371 };
372 
373 static const struct attribute_group *pmem_attribute_groups[] = {
374 	&dax_attribute_group,
375 	NULL,
376 };
377 
378 static void pmem_release_disk(void *__pmem)
379 {
380 	struct pmem_device *pmem = __pmem;
381 
382 	kill_dax(pmem->dax_dev);
383 	put_dax(pmem->dax_dev);
384 	del_gendisk(pmem->disk);
385 
386 	blk_cleanup_disk(pmem->disk);
387 }
388 
389 static int pmem_attach_disk(struct device *dev,
390 		struct nd_namespace_common *ndns)
391 {
392 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
393 	struct nd_region *nd_region = to_nd_region(dev->parent);
394 	int nid = dev_to_node(dev), fua;
395 	struct resource *res = &nsio->res;
396 	struct range bb_range;
397 	struct nd_pfn *nd_pfn = NULL;
398 	struct dax_device *dax_dev;
399 	struct nd_pfn_sb *pfn_sb;
400 	struct pmem_device *pmem;
401 	struct request_queue *q;
402 	struct gendisk *disk;
403 	void *addr;
404 	int rc;
405 	unsigned long flags = 0UL;
406 
407 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
408 	if (!pmem)
409 		return -ENOMEM;
410 
411 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
412 	if (rc)
413 		return rc;
414 
415 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
416 	if (is_nd_pfn(dev)) {
417 		nd_pfn = to_nd_pfn(dev);
418 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
419 		if (rc)
420 			return rc;
421 	}
422 
423 	/* we're attaching a block device, disable raw namespace access */
424 	devm_namespace_disable(dev, ndns);
425 
426 	dev_set_drvdata(dev, pmem);
427 	pmem->phys_addr = res->start;
428 	pmem->size = resource_size(res);
429 	fua = nvdimm_has_flush(nd_region);
430 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
431 		dev_warn(dev, "unable to guarantee persistence of writes\n");
432 		fua = 0;
433 	}
434 
435 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
436 				dev_name(&ndns->dev))) {
437 		dev_warn(dev, "could not reserve region %pR\n", res);
438 		return -EBUSY;
439 	}
440 
441 	disk = blk_alloc_disk(nid);
442 	if (!disk)
443 		return -ENOMEM;
444 	q = disk->queue;
445 
446 	pmem->disk = disk;
447 	pmem->pgmap.owner = pmem;
448 	pmem->pfn_flags = PFN_DEV;
449 	if (is_nd_pfn(dev)) {
450 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
451 		addr = devm_memremap_pages(dev, &pmem->pgmap);
452 		pfn_sb = nd_pfn->pfn_sb;
453 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
454 		pmem->pfn_pad = resource_size(res) -
455 			range_len(&pmem->pgmap.range);
456 		pmem->pfn_flags |= PFN_MAP;
457 		bb_range = pmem->pgmap.range;
458 		bb_range.start += pmem->data_offset;
459 	} else if (pmem_should_map_pages(dev)) {
460 		pmem->pgmap.range.start = res->start;
461 		pmem->pgmap.range.end = res->end;
462 		pmem->pgmap.nr_range = 1;
463 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
464 		addr = devm_memremap_pages(dev, &pmem->pgmap);
465 		pmem->pfn_flags |= PFN_MAP;
466 		bb_range = pmem->pgmap.range;
467 	} else {
468 		addr = devm_memremap(dev, pmem->phys_addr,
469 				pmem->size, ARCH_MEMREMAP_PMEM);
470 		bb_range.start =  res->start;
471 		bb_range.end = res->end;
472 	}
473 
474 	if (IS_ERR(addr)) {
475 		rc = PTR_ERR(addr);
476 		goto out;
477 	}
478 	pmem->virt_addr = addr;
479 
480 	blk_queue_write_cache(q, true, fua);
481 	blk_queue_physical_block_size(q, PAGE_SIZE);
482 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
483 	blk_queue_max_hw_sectors(q, UINT_MAX);
484 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
485 	if (pmem->pfn_flags & PFN_MAP)
486 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
487 
488 	disk->fops		= &pmem_fops;
489 	disk->private_data	= pmem;
490 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
491 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
492 			/ 512);
493 	if (devm_init_badblocks(dev, &pmem->bb))
494 		return -ENOMEM;
495 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
496 	disk->bb = &pmem->bb;
497 
498 	if (is_nvdimm_sync(nd_region))
499 		flags = DAXDEV_F_SYNC;
500 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
501 	if (IS_ERR(dax_dev)) {
502 		rc = PTR_ERR(dax_dev);
503 		goto out;
504 	}
505 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
506 	pmem->dax_dev = dax_dev;
507 
508 	rc = device_add_disk(dev, disk, pmem_attribute_groups);
509 	if (rc)
510 		goto out_cleanup_dax;
511 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
512 		return -ENOMEM;
513 
514 	nvdimm_check_and_set_ro(disk);
515 
516 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
517 					  "badblocks");
518 	if (!pmem->bb_state)
519 		dev_warn(dev, "'badblocks' notification disabled\n");
520 	return 0;
521 
522 out_cleanup_dax:
523 	kill_dax(pmem->dax_dev);
524 	put_dax(pmem->dax_dev);
525 out:
526 	blk_cleanup_disk(pmem->disk);
527 	return rc;
528 }
529 
530 static int nd_pmem_probe(struct device *dev)
531 {
532 	int ret;
533 	struct nd_namespace_common *ndns;
534 
535 	ndns = nvdimm_namespace_common_probe(dev);
536 	if (IS_ERR(ndns))
537 		return PTR_ERR(ndns);
538 
539 	if (is_nd_btt(dev))
540 		return nvdimm_namespace_attach_btt(ndns);
541 
542 	if (is_nd_pfn(dev))
543 		return pmem_attach_disk(dev, ndns);
544 
545 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
546 	if (ret)
547 		return ret;
548 
549 	ret = nd_btt_probe(dev, ndns);
550 	if (ret == 0)
551 		return -ENXIO;
552 
553 	/*
554 	 * We have two failure conditions here, there is no
555 	 * info reserver block or we found a valid info reserve block
556 	 * but failed to initialize the pfn superblock.
557 	 *
558 	 * For the first case consider namespace as a raw pmem namespace
559 	 * and attach a disk.
560 	 *
561 	 * For the latter, consider this a success and advance the namespace
562 	 * seed.
563 	 */
564 	ret = nd_pfn_probe(dev, ndns);
565 	if (ret == 0)
566 		return -ENXIO;
567 	else if (ret == -EOPNOTSUPP)
568 		return ret;
569 
570 	ret = nd_dax_probe(dev, ndns);
571 	if (ret == 0)
572 		return -ENXIO;
573 	else if (ret == -EOPNOTSUPP)
574 		return ret;
575 
576 	/* probe complete, attach handles namespace enabling */
577 	devm_namespace_disable(dev, ndns);
578 
579 	return pmem_attach_disk(dev, ndns);
580 }
581 
582 static void nd_pmem_remove(struct device *dev)
583 {
584 	struct pmem_device *pmem = dev_get_drvdata(dev);
585 
586 	if (is_nd_btt(dev))
587 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
588 	else {
589 		/*
590 		 * Note, this assumes nd_device_lock() context to not
591 		 * race nd_pmem_notify()
592 		 */
593 		sysfs_put(pmem->bb_state);
594 		pmem->bb_state = NULL;
595 	}
596 	nvdimm_flush(to_nd_region(dev->parent), NULL);
597 }
598 
599 static void nd_pmem_shutdown(struct device *dev)
600 {
601 	nvdimm_flush(to_nd_region(dev->parent), NULL);
602 }
603 
604 static void pmem_revalidate_poison(struct device *dev)
605 {
606 	struct nd_region *nd_region;
607 	resource_size_t offset = 0, end_trunc = 0;
608 	struct nd_namespace_common *ndns;
609 	struct nd_namespace_io *nsio;
610 	struct badblocks *bb;
611 	struct range range;
612 	struct kernfs_node *bb_state;
613 
614 	if (is_nd_btt(dev)) {
615 		struct nd_btt *nd_btt = to_nd_btt(dev);
616 
617 		ndns = nd_btt->ndns;
618 		nd_region = to_nd_region(ndns->dev.parent);
619 		nsio = to_nd_namespace_io(&ndns->dev);
620 		bb = &nsio->bb;
621 		bb_state = NULL;
622 	} else {
623 		struct pmem_device *pmem = dev_get_drvdata(dev);
624 
625 		nd_region = to_region(pmem);
626 		bb = &pmem->bb;
627 		bb_state = pmem->bb_state;
628 
629 		if (is_nd_pfn(dev)) {
630 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
631 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
632 
633 			ndns = nd_pfn->ndns;
634 			offset = pmem->data_offset +
635 					__le32_to_cpu(pfn_sb->start_pad);
636 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
637 		} else {
638 			ndns = to_ndns(dev);
639 		}
640 
641 		nsio = to_nd_namespace_io(&ndns->dev);
642 	}
643 
644 	range.start = nsio->res.start + offset;
645 	range.end = nsio->res.end - end_trunc;
646 	nvdimm_badblocks_populate(nd_region, bb, &range);
647 	if (bb_state)
648 		sysfs_notify_dirent(bb_state);
649 }
650 
651 static void pmem_revalidate_region(struct device *dev)
652 {
653 	struct pmem_device *pmem;
654 
655 	if (is_nd_btt(dev)) {
656 		struct nd_btt *nd_btt = to_nd_btt(dev);
657 		struct btt *btt = nd_btt->btt;
658 
659 		nvdimm_check_and_set_ro(btt->btt_disk);
660 		return;
661 	}
662 
663 	pmem = dev_get_drvdata(dev);
664 	nvdimm_check_and_set_ro(pmem->disk);
665 }
666 
667 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
668 {
669 	switch (event) {
670 	case NVDIMM_REVALIDATE_POISON:
671 		pmem_revalidate_poison(dev);
672 		break;
673 	case NVDIMM_REVALIDATE_REGION:
674 		pmem_revalidate_region(dev);
675 		break;
676 	default:
677 		dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
678 		break;
679 	}
680 }
681 
682 MODULE_ALIAS("pmem");
683 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
684 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
685 static struct nd_device_driver nd_pmem_driver = {
686 	.probe = nd_pmem_probe,
687 	.remove = nd_pmem_remove,
688 	.notify = nd_pmem_notify,
689 	.shutdown = nd_pmem_shutdown,
690 	.drv = {
691 		.name = "nd_pmem",
692 	},
693 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
694 };
695 
696 module_nd_driver(nd_pmem_driver);
697 
698 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
699 MODULE_LICENSE("GPL v2");
700