xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 79a93295)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35 
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38 	/*
39 	 * nvdimm bus services need a 'dev' parameter, and we record the device
40 	 * at init in bb.dev.
41 	 */
42 	return pmem->bb.dev;
43 }
44 
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47 	return to_nd_region(to_dev(pmem)->parent);
48 }
49 
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 		unsigned int len)
52 {
53 	struct device *dev = to_dev(pmem);
54 	sector_t sector;
55 	long cleared;
56 	int rc = 0;
57 
58 	sector = (offset - pmem->data_offset) / 512;
59 
60 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
61 	if (cleared < len)
62 		rc = -EIO;
63 	if (cleared > 0 && cleared / 512) {
64 		cleared /= 512;
65 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
66 				(unsigned long long) sector, cleared,
67 				cleared > 1 ? "s" : "");
68 		badblocks_clear(&pmem->bb, sector, cleared);
69 	}
70 
71 	invalidate_pmem(pmem->virt_addr + offset, len);
72 
73 	return rc;
74 }
75 
76 static void write_pmem(void *pmem_addr, struct page *page,
77 		unsigned int off, unsigned int len)
78 {
79 	void *mem = kmap_atomic(page);
80 
81 	memcpy_to_pmem(pmem_addr, mem + off, len);
82 	kunmap_atomic(mem);
83 }
84 
85 static int read_pmem(struct page *page, unsigned int off,
86 		void *pmem_addr, unsigned int len)
87 {
88 	int rc;
89 	void *mem = kmap_atomic(page);
90 
91 	rc = memcpy_from_pmem(mem + off, pmem_addr, len);
92 	kunmap_atomic(mem);
93 	return rc;
94 }
95 
96 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
97 			unsigned int len, unsigned int off, bool is_write,
98 			sector_t sector)
99 {
100 	int rc = 0;
101 	bool bad_pmem = false;
102 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
103 	void *pmem_addr = pmem->virt_addr + pmem_off;
104 
105 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
106 		bad_pmem = true;
107 
108 	if (!is_write) {
109 		if (unlikely(bad_pmem))
110 			rc = -EIO;
111 		else {
112 			rc = read_pmem(page, off, pmem_addr, len);
113 			flush_dcache_page(page);
114 		}
115 	} else {
116 		/*
117 		 * Note that we write the data both before and after
118 		 * clearing poison.  The write before clear poison
119 		 * handles situations where the latest written data is
120 		 * preserved and the clear poison operation simply marks
121 		 * the address range as valid without changing the data.
122 		 * In this case application software can assume that an
123 		 * interrupted write will either return the new good
124 		 * data or an error.
125 		 *
126 		 * However, if pmem_clear_poison() leaves the data in an
127 		 * indeterminate state we need to perform the write
128 		 * after clear poison.
129 		 */
130 		flush_dcache_page(page);
131 		write_pmem(pmem_addr, page, off, len);
132 		if (unlikely(bad_pmem)) {
133 			rc = pmem_clear_poison(pmem, pmem_off, len);
134 			write_pmem(pmem_addr, page, off, len);
135 		}
136 	}
137 
138 	return rc;
139 }
140 
141 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
142 #ifndef REQ_FLUSH
143 #define REQ_FLUSH REQ_PREFLUSH
144 #endif
145 
146 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
147 {
148 	int rc = 0;
149 	bool do_acct;
150 	unsigned long start;
151 	struct bio_vec bvec;
152 	struct bvec_iter iter;
153 	struct pmem_device *pmem = q->queuedata;
154 	struct nd_region *nd_region = to_region(pmem);
155 
156 	if (bio->bi_opf & REQ_FLUSH)
157 		nvdimm_flush(nd_region);
158 
159 	do_acct = nd_iostat_start(bio, &start);
160 	bio_for_each_segment(bvec, bio, iter) {
161 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
162 				bvec.bv_offset, op_is_write(bio_op(bio)),
163 				iter.bi_sector);
164 		if (rc) {
165 			bio->bi_error = rc;
166 			break;
167 		}
168 	}
169 	if (do_acct)
170 		nd_iostat_end(bio, start);
171 
172 	if (bio->bi_opf & REQ_FUA)
173 		nvdimm_flush(nd_region);
174 
175 	bio_endio(bio);
176 	return BLK_QC_T_NONE;
177 }
178 
179 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
180 		       struct page *page, bool is_write)
181 {
182 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
183 	int rc;
184 
185 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
186 
187 	/*
188 	 * The ->rw_page interface is subtle and tricky.  The core
189 	 * retries on any error, so we can only invoke page_endio() in
190 	 * the successful completion case.  Otherwise, we'll see crashes
191 	 * caused by double completion.
192 	 */
193 	if (rc == 0)
194 		page_endio(page, is_write, 0);
195 
196 	return rc;
197 }
198 
199 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
200 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
201 		      void **kaddr, pfn_t *pfn, long size)
202 {
203 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
204 	resource_size_t offset = sector * 512 + pmem->data_offset;
205 
206 	if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
207 		return -EIO;
208 	*kaddr = pmem->virt_addr + offset;
209 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
210 
211 	/*
212 	 * If badblocks are present, limit known good range to the
213 	 * requested range.
214 	 */
215 	if (unlikely(pmem->bb.count))
216 		return size;
217 	return pmem->size - pmem->pfn_pad - offset;
218 }
219 
220 static const struct block_device_operations pmem_fops = {
221 	.owner =		THIS_MODULE,
222 	.rw_page =		pmem_rw_page,
223 	.direct_access =	pmem_direct_access,
224 	.revalidate_disk =	nvdimm_revalidate_disk,
225 };
226 
227 static void pmem_release_queue(void *q)
228 {
229 	blk_cleanup_queue(q);
230 }
231 
232 static void pmem_release_disk(void *disk)
233 {
234 	del_gendisk(disk);
235 	put_disk(disk);
236 }
237 
238 static int pmem_attach_disk(struct device *dev,
239 		struct nd_namespace_common *ndns)
240 {
241 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
242 	struct nd_region *nd_region = to_nd_region(dev->parent);
243 	struct vmem_altmap __altmap, *altmap = NULL;
244 	struct resource *res = &nsio->res;
245 	struct nd_pfn *nd_pfn = NULL;
246 	int nid = dev_to_node(dev);
247 	struct nd_pfn_sb *pfn_sb;
248 	struct pmem_device *pmem;
249 	struct resource pfn_res;
250 	struct request_queue *q;
251 	struct gendisk *disk;
252 	void *addr;
253 
254 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
255 	if (is_nd_pfn(dev)) {
256 		nd_pfn = to_nd_pfn(dev);
257 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
258 		if (IS_ERR(altmap))
259 			return PTR_ERR(altmap);
260 	}
261 
262 	/* we're attaching a block device, disable raw namespace access */
263 	devm_nsio_disable(dev, nsio);
264 
265 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
266 	if (!pmem)
267 		return -ENOMEM;
268 
269 	dev_set_drvdata(dev, pmem);
270 	pmem->phys_addr = res->start;
271 	pmem->size = resource_size(res);
272 	if (nvdimm_has_flush(nd_region) < 0)
273 		dev_warn(dev, "unable to guarantee persistence of writes\n");
274 
275 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
276 				dev_name(&ndns->dev))) {
277 		dev_warn(dev, "could not reserve region %pR\n", res);
278 		return -EBUSY;
279 	}
280 
281 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
282 	if (!q)
283 		return -ENOMEM;
284 
285 	pmem->pfn_flags = PFN_DEV;
286 	if (is_nd_pfn(dev)) {
287 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
288 				altmap);
289 		pfn_sb = nd_pfn->pfn_sb;
290 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
291 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
292 		pmem->pfn_flags |= PFN_MAP;
293 		res = &pfn_res; /* for badblocks populate */
294 		res->start += pmem->data_offset;
295 	} else if (pmem_should_map_pages(dev)) {
296 		addr = devm_memremap_pages(dev, &nsio->res,
297 				&q->q_usage_counter, NULL);
298 		pmem->pfn_flags |= PFN_MAP;
299 	} else
300 		addr = devm_memremap(dev, pmem->phys_addr,
301 				pmem->size, ARCH_MEMREMAP_PMEM);
302 
303 	/*
304 	 * At release time the queue must be dead before
305 	 * devm_memremap_pages is unwound
306 	 */
307 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
308 		return -ENOMEM;
309 
310 	if (IS_ERR(addr))
311 		return PTR_ERR(addr);
312 	pmem->virt_addr = addr;
313 
314 	blk_queue_write_cache(q, true, true);
315 	blk_queue_make_request(q, pmem_make_request);
316 	blk_queue_physical_block_size(q, PAGE_SIZE);
317 	blk_queue_max_hw_sectors(q, UINT_MAX);
318 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
319 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
320 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
321 	q->queuedata = pmem;
322 
323 	disk = alloc_disk_node(0, nid);
324 	if (!disk)
325 		return -ENOMEM;
326 
327 	disk->fops		= &pmem_fops;
328 	disk->queue		= q;
329 	disk->flags		= GENHD_FL_EXT_DEVT;
330 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
331 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
332 			/ 512);
333 	if (devm_init_badblocks(dev, &pmem->bb))
334 		return -ENOMEM;
335 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
336 	disk->bb = &pmem->bb;
337 	device_add_disk(dev, disk);
338 
339 	if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
340 		return -ENOMEM;
341 
342 	revalidate_disk(disk);
343 
344 	return 0;
345 }
346 
347 static int nd_pmem_probe(struct device *dev)
348 {
349 	struct nd_namespace_common *ndns;
350 
351 	ndns = nvdimm_namespace_common_probe(dev);
352 	if (IS_ERR(ndns))
353 		return PTR_ERR(ndns);
354 
355 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
356 		return -ENXIO;
357 
358 	if (is_nd_btt(dev))
359 		return nvdimm_namespace_attach_btt(ndns);
360 
361 	if (is_nd_pfn(dev))
362 		return pmem_attach_disk(dev, ndns);
363 
364 	/* if we find a valid info-block we'll come back as that personality */
365 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
366 			|| nd_dax_probe(dev, ndns) == 0)
367 		return -ENXIO;
368 
369 	/* ...otherwise we're just a raw pmem device */
370 	return pmem_attach_disk(dev, ndns);
371 }
372 
373 static int nd_pmem_remove(struct device *dev)
374 {
375 	if (is_nd_btt(dev))
376 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
377 	nvdimm_flush(to_nd_region(dev->parent));
378 
379 	return 0;
380 }
381 
382 static void nd_pmem_shutdown(struct device *dev)
383 {
384 	nvdimm_flush(to_nd_region(dev->parent));
385 }
386 
387 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
388 {
389 	struct pmem_device *pmem = dev_get_drvdata(dev);
390 	struct nd_region *nd_region = to_region(pmem);
391 	resource_size_t offset = 0, end_trunc = 0;
392 	struct nd_namespace_common *ndns;
393 	struct nd_namespace_io *nsio;
394 	struct resource res;
395 
396 	if (event != NVDIMM_REVALIDATE_POISON)
397 		return;
398 
399 	if (is_nd_btt(dev)) {
400 		struct nd_btt *nd_btt = to_nd_btt(dev);
401 
402 		ndns = nd_btt->ndns;
403 	} else if (is_nd_pfn(dev)) {
404 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
405 		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
406 
407 		ndns = nd_pfn->ndns;
408 		offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
409 		end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
410 	} else
411 		ndns = to_ndns(dev);
412 
413 	nsio = to_nd_namespace_io(&ndns->dev);
414 	res.start = nsio->res.start + offset;
415 	res.end = nsio->res.end - end_trunc;
416 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
417 }
418 
419 MODULE_ALIAS("pmem");
420 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
421 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
422 static struct nd_device_driver nd_pmem_driver = {
423 	.probe = nd_pmem_probe,
424 	.remove = nd_pmem_remove,
425 	.notify = nd_pmem_notify,
426 	.shutdown = nd_pmem_shutdown,
427 	.drv = {
428 		.name = "nd_pmem",
429 	},
430 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
431 };
432 
433 static int __init pmem_init(void)
434 {
435 	return nd_driver_register(&nd_pmem_driver);
436 }
437 module_init(pmem_init);
438 
439 static void pmem_exit(void)
440 {
441 	driver_unregister(&nd_pmem_driver.drv);
442 }
443 module_exit(pmem_exit);
444 
445 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
446 MODULE_LICENSE("GPL v2");
447