1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Persistent Memory Driver 4 * 5 * Copyright (c) 2014-2015, Intel Corporation. 6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/pagemap.h> 12 #include <linux/hdreg.h> 13 #include <linux/init.h> 14 #include <linux/platform_device.h> 15 #include <linux/set_memory.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/badblocks.h> 19 #include <linux/memremap.h> 20 #include <linux/kstrtox.h> 21 #include <linux/vmalloc.h> 22 #include <linux/blk-mq.h> 23 #include <linux/pfn_t.h> 24 #include <linux/slab.h> 25 #include <linux/uio.h> 26 #include <linux/dax.h> 27 #include <linux/nd.h> 28 #include <linux/mm.h> 29 #include <asm/cacheflush.h> 30 #include "pmem.h" 31 #include "btt.h" 32 #include "pfn.h" 33 #include "nd.h" 34 35 static struct device *to_dev(struct pmem_device *pmem) 36 { 37 /* 38 * nvdimm bus services need a 'dev' parameter, and we record the device 39 * at init in bb.dev. 40 */ 41 return pmem->bb.dev; 42 } 43 44 static struct nd_region *to_region(struct pmem_device *pmem) 45 { 46 return to_nd_region(to_dev(pmem)->parent); 47 } 48 49 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset) 50 { 51 return pmem->phys_addr + offset; 52 } 53 54 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset) 55 { 56 return (offset - pmem->data_offset) >> SECTOR_SHIFT; 57 } 58 59 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector) 60 { 61 return (sector << SECTOR_SHIFT) + pmem->data_offset; 62 } 63 64 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset, 65 unsigned int len) 66 { 67 phys_addr_t phys = pmem_to_phys(pmem, offset); 68 unsigned long pfn_start, pfn_end, pfn; 69 70 /* only pmem in the linear map supports HWPoison */ 71 if (is_vmalloc_addr(pmem->virt_addr)) 72 return; 73 74 pfn_start = PHYS_PFN(phys); 75 pfn_end = pfn_start + PHYS_PFN(len); 76 for (pfn = pfn_start; pfn < pfn_end; pfn++) { 77 struct page *page = pfn_to_page(pfn); 78 79 /* 80 * Note, no need to hold a get_dev_pagemap() reference 81 * here since we're in the driver I/O path and 82 * outstanding I/O requests pin the dev_pagemap. 83 */ 84 if (test_and_clear_pmem_poison(page)) 85 clear_mce_nospec(pfn); 86 } 87 } 88 89 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks) 90 { 91 if (blks == 0) 92 return; 93 badblocks_clear(&pmem->bb, sector, blks); 94 if (pmem->bb_state) 95 sysfs_notify_dirent(pmem->bb_state); 96 } 97 98 static long __pmem_clear_poison(struct pmem_device *pmem, 99 phys_addr_t offset, unsigned int len) 100 { 101 phys_addr_t phys = pmem_to_phys(pmem, offset); 102 long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len); 103 104 if (cleared > 0) { 105 pmem_mkpage_present(pmem, offset, cleared); 106 arch_invalidate_pmem(pmem->virt_addr + offset, len); 107 } 108 return cleared; 109 } 110 111 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 112 phys_addr_t offset, unsigned int len) 113 { 114 long cleared = __pmem_clear_poison(pmem, offset, len); 115 116 if (cleared < 0) 117 return BLK_STS_IOERR; 118 119 pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT); 120 if (cleared < len) 121 return BLK_STS_IOERR; 122 return BLK_STS_OK; 123 } 124 125 static void write_pmem(void *pmem_addr, struct page *page, 126 unsigned int off, unsigned int len) 127 { 128 unsigned int chunk; 129 void *mem; 130 131 while (len) { 132 mem = kmap_atomic(page); 133 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 134 memcpy_flushcache(pmem_addr, mem + off, chunk); 135 kunmap_atomic(mem); 136 len -= chunk; 137 off = 0; 138 page++; 139 pmem_addr += chunk; 140 } 141 } 142 143 static blk_status_t read_pmem(struct page *page, unsigned int off, 144 void *pmem_addr, unsigned int len) 145 { 146 unsigned int chunk; 147 unsigned long rem; 148 void *mem; 149 150 while (len) { 151 mem = kmap_atomic(page); 152 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 153 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk); 154 kunmap_atomic(mem); 155 if (rem) 156 return BLK_STS_IOERR; 157 len -= chunk; 158 off = 0; 159 page++; 160 pmem_addr += chunk; 161 } 162 return BLK_STS_OK; 163 } 164 165 static blk_status_t pmem_do_read(struct pmem_device *pmem, 166 struct page *page, unsigned int page_off, 167 sector_t sector, unsigned int len) 168 { 169 blk_status_t rc; 170 phys_addr_t pmem_off = to_offset(pmem, sector); 171 void *pmem_addr = pmem->virt_addr + pmem_off; 172 173 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 174 return BLK_STS_IOERR; 175 176 rc = read_pmem(page, page_off, pmem_addr, len); 177 flush_dcache_page(page); 178 return rc; 179 } 180 181 static blk_status_t pmem_do_write(struct pmem_device *pmem, 182 struct page *page, unsigned int page_off, 183 sector_t sector, unsigned int len) 184 { 185 phys_addr_t pmem_off = to_offset(pmem, sector); 186 void *pmem_addr = pmem->virt_addr + pmem_off; 187 188 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) { 189 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len); 190 191 if (rc != BLK_STS_OK) 192 return rc; 193 } 194 195 flush_dcache_page(page); 196 write_pmem(pmem_addr, page, page_off, len); 197 198 return BLK_STS_OK; 199 } 200 201 static void pmem_submit_bio(struct bio *bio) 202 { 203 int ret = 0; 204 blk_status_t rc = 0; 205 bool do_acct; 206 unsigned long start; 207 struct bio_vec bvec; 208 struct bvec_iter iter; 209 struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data; 210 struct nd_region *nd_region = to_region(pmem); 211 212 if (bio->bi_opf & REQ_PREFLUSH) 213 ret = nvdimm_flush(nd_region, bio); 214 215 do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue); 216 if (do_acct) 217 start = bio_start_io_acct(bio); 218 bio_for_each_segment(bvec, bio, iter) { 219 if (op_is_write(bio_op(bio))) 220 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset, 221 iter.bi_sector, bvec.bv_len); 222 else 223 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset, 224 iter.bi_sector, bvec.bv_len); 225 if (rc) { 226 bio->bi_status = rc; 227 break; 228 } 229 } 230 if (do_acct) 231 bio_end_io_acct(bio, start); 232 233 if (bio->bi_opf & REQ_FUA) 234 ret = nvdimm_flush(nd_region, bio); 235 236 if (ret) 237 bio->bi_status = errno_to_blk_status(ret); 238 239 bio_endio(bio); 240 } 241 242 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 243 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 244 long nr_pages, enum dax_access_mode mode, void **kaddr, 245 pfn_t *pfn) 246 { 247 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 248 sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT; 249 unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT; 250 struct badblocks *bb = &pmem->bb; 251 sector_t first_bad; 252 int num_bad; 253 254 if (kaddr) 255 *kaddr = pmem->virt_addr + offset; 256 if (pfn) 257 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 258 259 if (bb->count && 260 badblocks_check(bb, sector, num, &first_bad, &num_bad)) { 261 long actual_nr; 262 263 if (mode != DAX_RECOVERY_WRITE) 264 return -EHWPOISON; 265 266 /* 267 * Set the recovery stride is set to kernel page size because 268 * the underlying driver and firmware clear poison functions 269 * don't appear to handle large chunk(such as 2MiB) reliably. 270 */ 271 actual_nr = PHYS_PFN( 272 PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT)); 273 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n", 274 sector, nr_pages, first_bad, actual_nr); 275 if (actual_nr) 276 return actual_nr; 277 return 1; 278 } 279 280 /* 281 * If badblocks are present but not in the range, limit known good range 282 * to the requested range. 283 */ 284 if (bb->count) 285 return nr_pages; 286 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 287 } 288 289 static const struct block_device_operations pmem_fops = { 290 .owner = THIS_MODULE, 291 .submit_bio = pmem_submit_bio, 292 }; 293 294 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 295 size_t nr_pages) 296 { 297 struct pmem_device *pmem = dax_get_private(dax_dev); 298 299 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0, 300 PFN_PHYS(pgoff) >> SECTOR_SHIFT, 301 PAGE_SIZE)); 302 } 303 304 static long pmem_dax_direct_access(struct dax_device *dax_dev, 305 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode, 306 void **kaddr, pfn_t *pfn) 307 { 308 struct pmem_device *pmem = dax_get_private(dax_dev); 309 310 return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn); 311 } 312 313 /* 314 * The recovery write thread started out as a normal pwrite thread and 315 * when the filesystem was told about potential media error in the 316 * range, filesystem turns the normal pwrite to a dax_recovery_write. 317 * 318 * The recovery write consists of clearing media poison, clearing page 319 * HWPoison bit, reenable page-wide read-write permission, flush the 320 * caches and finally write. A competing pread thread will be held 321 * off during the recovery process since data read back might not be 322 * valid, and this is achieved by clearing the badblock records after 323 * the recovery write is complete. Competing recovery write threads 324 * are already serialized by writer lock held by dax_iomap_rw(). 325 */ 326 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 327 void *addr, size_t bytes, struct iov_iter *i) 328 { 329 struct pmem_device *pmem = dax_get_private(dax_dev); 330 size_t olen, len, off; 331 phys_addr_t pmem_off; 332 struct device *dev = pmem->bb.dev; 333 long cleared; 334 335 off = offset_in_page(addr); 336 len = PFN_PHYS(PFN_UP(off + bytes)); 337 if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len)) 338 return _copy_from_iter_flushcache(addr, bytes, i); 339 340 /* 341 * Not page-aligned range cannot be recovered. This should not 342 * happen unless something else went wrong. 343 */ 344 if (off || !PAGE_ALIGNED(bytes)) { 345 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n", 346 addr, bytes); 347 return 0; 348 } 349 350 pmem_off = PFN_PHYS(pgoff) + pmem->data_offset; 351 cleared = __pmem_clear_poison(pmem, pmem_off, len); 352 if (cleared > 0 && cleared < len) { 353 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n", 354 cleared, len); 355 return 0; 356 } 357 if (cleared < 0) { 358 dev_dbg(dev, "poison clear failed: %ld\n", cleared); 359 return 0; 360 } 361 362 olen = _copy_from_iter_flushcache(addr, bytes, i); 363 pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT); 364 365 return olen; 366 } 367 368 static const struct dax_operations pmem_dax_ops = { 369 .direct_access = pmem_dax_direct_access, 370 .zero_page_range = pmem_dax_zero_page_range, 371 .recovery_write = pmem_recovery_write, 372 }; 373 374 static ssize_t write_cache_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct pmem_device *pmem = dev_to_disk(dev)->private_data; 378 379 return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev)); 380 } 381 382 static ssize_t write_cache_store(struct device *dev, 383 struct device_attribute *attr, const char *buf, size_t len) 384 { 385 struct pmem_device *pmem = dev_to_disk(dev)->private_data; 386 bool write_cache; 387 int rc; 388 389 rc = kstrtobool(buf, &write_cache); 390 if (rc) 391 return rc; 392 dax_write_cache(pmem->dax_dev, write_cache); 393 return len; 394 } 395 static DEVICE_ATTR_RW(write_cache); 396 397 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n) 398 { 399 #ifndef CONFIG_ARCH_HAS_PMEM_API 400 if (a == &dev_attr_write_cache.attr) 401 return 0; 402 #endif 403 return a->mode; 404 } 405 406 static struct attribute *dax_attributes[] = { 407 &dev_attr_write_cache.attr, 408 NULL, 409 }; 410 411 static const struct attribute_group dax_attribute_group = { 412 .name = "dax", 413 .attrs = dax_attributes, 414 .is_visible = dax_visible, 415 }; 416 417 static const struct attribute_group *pmem_attribute_groups[] = { 418 &dax_attribute_group, 419 NULL, 420 }; 421 422 static void pmem_release_disk(void *__pmem) 423 { 424 struct pmem_device *pmem = __pmem; 425 426 dax_remove_host(pmem->disk); 427 kill_dax(pmem->dax_dev); 428 put_dax(pmem->dax_dev); 429 del_gendisk(pmem->disk); 430 431 put_disk(pmem->disk); 432 } 433 434 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap, 435 unsigned long pfn, unsigned long nr_pages, int mf_flags) 436 { 437 struct pmem_device *pmem = 438 container_of(pgmap, struct pmem_device, pgmap); 439 u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset; 440 u64 len = nr_pages << PAGE_SHIFT; 441 442 return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags); 443 } 444 445 static const struct dev_pagemap_ops fsdax_pagemap_ops = { 446 .memory_failure = pmem_pagemap_memory_failure, 447 }; 448 449 static int pmem_attach_disk(struct device *dev, 450 struct nd_namespace_common *ndns) 451 { 452 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 453 struct nd_region *nd_region = to_nd_region(dev->parent); 454 int nid = dev_to_node(dev), fua; 455 struct resource *res = &nsio->res; 456 struct range bb_range; 457 struct nd_pfn *nd_pfn = NULL; 458 struct dax_device *dax_dev; 459 struct nd_pfn_sb *pfn_sb; 460 struct pmem_device *pmem; 461 struct request_queue *q; 462 struct gendisk *disk; 463 void *addr; 464 int rc; 465 466 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 467 if (!pmem) 468 return -ENOMEM; 469 470 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 471 if (rc) 472 return rc; 473 474 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 475 if (is_nd_pfn(dev)) { 476 nd_pfn = to_nd_pfn(dev); 477 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); 478 if (rc) 479 return rc; 480 } 481 482 /* we're attaching a block device, disable raw namespace access */ 483 devm_namespace_disable(dev, ndns); 484 485 dev_set_drvdata(dev, pmem); 486 pmem->phys_addr = res->start; 487 pmem->size = resource_size(res); 488 fua = nvdimm_has_flush(nd_region); 489 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 490 dev_warn(dev, "unable to guarantee persistence of writes\n"); 491 fua = 0; 492 } 493 494 if (!devm_request_mem_region(dev, res->start, resource_size(res), 495 dev_name(&ndns->dev))) { 496 dev_warn(dev, "could not reserve region %pR\n", res); 497 return -EBUSY; 498 } 499 500 disk = blk_alloc_disk(nid); 501 if (!disk) 502 return -ENOMEM; 503 q = disk->queue; 504 505 pmem->disk = disk; 506 pmem->pgmap.owner = pmem; 507 pmem->pfn_flags = PFN_DEV; 508 if (is_nd_pfn(dev)) { 509 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 510 pmem->pgmap.ops = &fsdax_pagemap_ops; 511 addr = devm_memremap_pages(dev, &pmem->pgmap); 512 pfn_sb = nd_pfn->pfn_sb; 513 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 514 pmem->pfn_pad = resource_size(res) - 515 range_len(&pmem->pgmap.range); 516 pmem->pfn_flags |= PFN_MAP; 517 bb_range = pmem->pgmap.range; 518 bb_range.start += pmem->data_offset; 519 } else if (pmem_should_map_pages(dev)) { 520 pmem->pgmap.range.start = res->start; 521 pmem->pgmap.range.end = res->end; 522 pmem->pgmap.nr_range = 1; 523 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 524 pmem->pgmap.ops = &fsdax_pagemap_ops; 525 addr = devm_memremap_pages(dev, &pmem->pgmap); 526 pmem->pfn_flags |= PFN_MAP; 527 bb_range = pmem->pgmap.range; 528 } else { 529 addr = devm_memremap(dev, pmem->phys_addr, 530 pmem->size, ARCH_MEMREMAP_PMEM); 531 bb_range.start = res->start; 532 bb_range.end = res->end; 533 } 534 535 if (IS_ERR(addr)) { 536 rc = PTR_ERR(addr); 537 goto out; 538 } 539 pmem->virt_addr = addr; 540 541 blk_queue_write_cache(q, true, fua); 542 blk_queue_physical_block_size(q, PAGE_SIZE); 543 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 544 blk_queue_max_hw_sectors(q, UINT_MAX); 545 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 546 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q); 547 if (pmem->pfn_flags & PFN_MAP) 548 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 549 550 disk->fops = &pmem_fops; 551 disk->private_data = pmem; 552 nvdimm_namespace_disk_name(ndns, disk->disk_name); 553 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 554 / 512); 555 if (devm_init_badblocks(dev, &pmem->bb)) 556 return -ENOMEM; 557 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range); 558 disk->bb = &pmem->bb; 559 560 dax_dev = alloc_dax(pmem, &pmem_dax_ops); 561 if (IS_ERR(dax_dev)) { 562 rc = PTR_ERR(dax_dev); 563 goto out; 564 } 565 set_dax_nocache(dax_dev); 566 set_dax_nomc(dax_dev); 567 if (is_nvdimm_sync(nd_region)) 568 set_dax_synchronous(dax_dev); 569 rc = dax_add_host(dax_dev, disk); 570 if (rc) 571 goto out_cleanup_dax; 572 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); 573 pmem->dax_dev = dax_dev; 574 575 rc = device_add_disk(dev, disk, pmem_attribute_groups); 576 if (rc) 577 goto out_remove_host; 578 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 579 return -ENOMEM; 580 581 nvdimm_check_and_set_ro(disk); 582 583 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 584 "badblocks"); 585 if (!pmem->bb_state) 586 dev_warn(dev, "'badblocks' notification disabled\n"); 587 return 0; 588 589 out_remove_host: 590 dax_remove_host(pmem->disk); 591 out_cleanup_dax: 592 kill_dax(pmem->dax_dev); 593 put_dax(pmem->dax_dev); 594 out: 595 put_disk(pmem->disk); 596 return rc; 597 } 598 599 static int nd_pmem_probe(struct device *dev) 600 { 601 int ret; 602 struct nd_namespace_common *ndns; 603 604 ndns = nvdimm_namespace_common_probe(dev); 605 if (IS_ERR(ndns)) 606 return PTR_ERR(ndns); 607 608 if (is_nd_btt(dev)) 609 return nvdimm_namespace_attach_btt(ndns); 610 611 if (is_nd_pfn(dev)) 612 return pmem_attach_disk(dev, ndns); 613 614 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); 615 if (ret) 616 return ret; 617 618 ret = nd_btt_probe(dev, ndns); 619 if (ret == 0) 620 return -ENXIO; 621 622 /* 623 * We have two failure conditions here, there is no 624 * info reserver block or we found a valid info reserve block 625 * but failed to initialize the pfn superblock. 626 * 627 * For the first case consider namespace as a raw pmem namespace 628 * and attach a disk. 629 * 630 * For the latter, consider this a success and advance the namespace 631 * seed. 632 */ 633 ret = nd_pfn_probe(dev, ndns); 634 if (ret == 0) 635 return -ENXIO; 636 else if (ret == -EOPNOTSUPP) 637 return ret; 638 639 ret = nd_dax_probe(dev, ndns); 640 if (ret == 0) 641 return -ENXIO; 642 else if (ret == -EOPNOTSUPP) 643 return ret; 644 645 /* probe complete, attach handles namespace enabling */ 646 devm_namespace_disable(dev, ndns); 647 648 return pmem_attach_disk(dev, ndns); 649 } 650 651 static void nd_pmem_remove(struct device *dev) 652 { 653 struct pmem_device *pmem = dev_get_drvdata(dev); 654 655 if (is_nd_btt(dev)) 656 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 657 else { 658 /* 659 * Note, this assumes device_lock() context to not 660 * race nd_pmem_notify() 661 */ 662 sysfs_put(pmem->bb_state); 663 pmem->bb_state = NULL; 664 } 665 nvdimm_flush(to_nd_region(dev->parent), NULL); 666 } 667 668 static void nd_pmem_shutdown(struct device *dev) 669 { 670 nvdimm_flush(to_nd_region(dev->parent), NULL); 671 } 672 673 static void pmem_revalidate_poison(struct device *dev) 674 { 675 struct nd_region *nd_region; 676 resource_size_t offset = 0, end_trunc = 0; 677 struct nd_namespace_common *ndns; 678 struct nd_namespace_io *nsio; 679 struct badblocks *bb; 680 struct range range; 681 struct kernfs_node *bb_state; 682 683 if (is_nd_btt(dev)) { 684 struct nd_btt *nd_btt = to_nd_btt(dev); 685 686 ndns = nd_btt->ndns; 687 nd_region = to_nd_region(ndns->dev.parent); 688 nsio = to_nd_namespace_io(&ndns->dev); 689 bb = &nsio->bb; 690 bb_state = NULL; 691 } else { 692 struct pmem_device *pmem = dev_get_drvdata(dev); 693 694 nd_region = to_region(pmem); 695 bb = &pmem->bb; 696 bb_state = pmem->bb_state; 697 698 if (is_nd_pfn(dev)) { 699 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 700 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 701 702 ndns = nd_pfn->ndns; 703 offset = pmem->data_offset + 704 __le32_to_cpu(pfn_sb->start_pad); 705 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 706 } else { 707 ndns = to_ndns(dev); 708 } 709 710 nsio = to_nd_namespace_io(&ndns->dev); 711 } 712 713 range.start = nsio->res.start + offset; 714 range.end = nsio->res.end - end_trunc; 715 nvdimm_badblocks_populate(nd_region, bb, &range); 716 if (bb_state) 717 sysfs_notify_dirent(bb_state); 718 } 719 720 static void pmem_revalidate_region(struct device *dev) 721 { 722 struct pmem_device *pmem; 723 724 if (is_nd_btt(dev)) { 725 struct nd_btt *nd_btt = to_nd_btt(dev); 726 struct btt *btt = nd_btt->btt; 727 728 nvdimm_check_and_set_ro(btt->btt_disk); 729 return; 730 } 731 732 pmem = dev_get_drvdata(dev); 733 nvdimm_check_and_set_ro(pmem->disk); 734 } 735 736 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 737 { 738 switch (event) { 739 case NVDIMM_REVALIDATE_POISON: 740 pmem_revalidate_poison(dev); 741 break; 742 case NVDIMM_REVALIDATE_REGION: 743 pmem_revalidate_region(dev); 744 break; 745 default: 746 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event); 747 break; 748 } 749 } 750 751 MODULE_ALIAS("pmem"); 752 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 753 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 754 static struct nd_device_driver nd_pmem_driver = { 755 .probe = nd_pmem_probe, 756 .remove = nd_pmem_remove, 757 .notify = nd_pmem_notify, 758 .shutdown = nd_pmem_shutdown, 759 .drv = { 760 .name = "nd_pmem", 761 }, 762 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 763 }; 764 765 module_nd_driver(nd_pmem_driver); 766 767 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 768 MODULE_LICENSE("GPL v2"); 769