xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 6dfcd296)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35 
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38 	/*
39 	 * nvdimm bus services need a 'dev' parameter, and we record the device
40 	 * at init in bb.dev.
41 	 */
42 	return pmem->bb.dev;
43 }
44 
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47 	return to_nd_region(to_dev(pmem)->parent);
48 }
49 
50 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 		unsigned int len)
52 {
53 	struct device *dev = to_dev(pmem);
54 	sector_t sector;
55 	long cleared;
56 
57 	sector = (offset - pmem->data_offset) / 512;
58 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59 
60 	if (cleared > 0 && cleared / 512) {
61 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62 				__func__, (unsigned long long) sector,
63 				cleared / 512, cleared / 512 > 1 ? "s" : "");
64 		badblocks_clear(&pmem->bb, sector, cleared / 512);
65 	}
66 	invalidate_pmem(pmem->virt_addr + offset, len);
67 }
68 
69 static void write_pmem(void *pmem_addr, struct page *page,
70 		unsigned int off, unsigned int len)
71 {
72 	void *mem = kmap_atomic(page);
73 
74 	memcpy_to_pmem(pmem_addr, mem + off, len);
75 	kunmap_atomic(mem);
76 }
77 
78 static int read_pmem(struct page *page, unsigned int off,
79 		void *pmem_addr, unsigned int len)
80 {
81 	int rc;
82 	void *mem = kmap_atomic(page);
83 
84 	rc = memcpy_from_pmem(mem + off, pmem_addr, len);
85 	kunmap_atomic(mem);
86 	return rc;
87 }
88 
89 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
90 			unsigned int len, unsigned int off, bool is_write,
91 			sector_t sector)
92 {
93 	int rc = 0;
94 	bool bad_pmem = false;
95 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
96 	void *pmem_addr = pmem->virt_addr + pmem_off;
97 
98 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
99 		bad_pmem = true;
100 
101 	if (!is_write) {
102 		if (unlikely(bad_pmem))
103 			rc = -EIO;
104 		else {
105 			rc = read_pmem(page, off, pmem_addr, len);
106 			flush_dcache_page(page);
107 		}
108 	} else {
109 		/*
110 		 * Note that we write the data both before and after
111 		 * clearing poison.  The write before clear poison
112 		 * handles situations where the latest written data is
113 		 * preserved and the clear poison operation simply marks
114 		 * the address range as valid without changing the data.
115 		 * In this case application software can assume that an
116 		 * interrupted write will either return the new good
117 		 * data or an error.
118 		 *
119 		 * However, if pmem_clear_poison() leaves the data in an
120 		 * indeterminate state we need to perform the write
121 		 * after clear poison.
122 		 */
123 		flush_dcache_page(page);
124 		write_pmem(pmem_addr, page, off, len);
125 		if (unlikely(bad_pmem)) {
126 			pmem_clear_poison(pmem, pmem_off, len);
127 			write_pmem(pmem_addr, page, off, len);
128 		}
129 	}
130 
131 	return rc;
132 }
133 
134 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
135 #ifndef REQ_FLUSH
136 #define REQ_FLUSH REQ_PREFLUSH
137 #endif
138 
139 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
140 {
141 	int rc = 0;
142 	bool do_acct;
143 	unsigned long start;
144 	struct bio_vec bvec;
145 	struct bvec_iter iter;
146 	struct pmem_device *pmem = q->queuedata;
147 	struct nd_region *nd_region = to_region(pmem);
148 
149 	if (bio->bi_opf & REQ_FLUSH)
150 		nvdimm_flush(nd_region);
151 
152 	do_acct = nd_iostat_start(bio, &start);
153 	bio_for_each_segment(bvec, bio, iter) {
154 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
155 				bvec.bv_offset, op_is_write(bio_op(bio)),
156 				iter.bi_sector);
157 		if (rc) {
158 			bio->bi_error = rc;
159 			break;
160 		}
161 	}
162 	if (do_acct)
163 		nd_iostat_end(bio, start);
164 
165 	if (bio->bi_opf & REQ_FUA)
166 		nvdimm_flush(nd_region);
167 
168 	bio_endio(bio);
169 	return BLK_QC_T_NONE;
170 }
171 
172 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
173 		       struct page *page, bool is_write)
174 {
175 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
176 	int rc;
177 
178 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
179 
180 	/*
181 	 * The ->rw_page interface is subtle and tricky.  The core
182 	 * retries on any error, so we can only invoke page_endio() in
183 	 * the successful completion case.  Otherwise, we'll see crashes
184 	 * caused by double completion.
185 	 */
186 	if (rc == 0)
187 		page_endio(page, is_write, 0);
188 
189 	return rc;
190 }
191 
192 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
193 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
194 		      void **kaddr, pfn_t *pfn, long size)
195 {
196 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
197 	resource_size_t offset = sector * 512 + pmem->data_offset;
198 
199 	if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
200 		return -EIO;
201 	*kaddr = pmem->virt_addr + offset;
202 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
203 
204 	/*
205 	 * If badblocks are present, limit known good range to the
206 	 * requested range.
207 	 */
208 	if (unlikely(pmem->bb.count))
209 		return size;
210 	return pmem->size - pmem->pfn_pad - offset;
211 }
212 
213 static const struct block_device_operations pmem_fops = {
214 	.owner =		THIS_MODULE,
215 	.rw_page =		pmem_rw_page,
216 	.direct_access =	pmem_direct_access,
217 	.revalidate_disk =	nvdimm_revalidate_disk,
218 };
219 
220 static void pmem_release_queue(void *q)
221 {
222 	blk_cleanup_queue(q);
223 }
224 
225 static void pmem_release_disk(void *disk)
226 {
227 	del_gendisk(disk);
228 	put_disk(disk);
229 }
230 
231 static int pmem_attach_disk(struct device *dev,
232 		struct nd_namespace_common *ndns)
233 {
234 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
235 	struct nd_region *nd_region = to_nd_region(dev->parent);
236 	struct vmem_altmap __altmap, *altmap = NULL;
237 	struct resource *res = &nsio->res;
238 	struct nd_pfn *nd_pfn = NULL;
239 	int nid = dev_to_node(dev);
240 	struct nd_pfn_sb *pfn_sb;
241 	struct pmem_device *pmem;
242 	struct resource pfn_res;
243 	struct request_queue *q;
244 	struct gendisk *disk;
245 	void *addr;
246 
247 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
248 	if (is_nd_pfn(dev)) {
249 		nd_pfn = to_nd_pfn(dev);
250 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
251 		if (IS_ERR(altmap))
252 			return PTR_ERR(altmap);
253 	}
254 
255 	/* we're attaching a block device, disable raw namespace access */
256 	devm_nsio_disable(dev, nsio);
257 
258 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
259 	if (!pmem)
260 		return -ENOMEM;
261 
262 	dev_set_drvdata(dev, pmem);
263 	pmem->phys_addr = res->start;
264 	pmem->size = resource_size(res);
265 	if (nvdimm_has_flush(nd_region) < 0)
266 		dev_warn(dev, "unable to guarantee persistence of writes\n");
267 
268 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
269 				dev_name(dev))) {
270 		dev_warn(dev, "could not reserve region %pR\n", res);
271 		return -EBUSY;
272 	}
273 
274 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
275 	if (!q)
276 		return -ENOMEM;
277 
278 	pmem->pfn_flags = PFN_DEV;
279 	if (is_nd_pfn(dev)) {
280 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
281 				altmap);
282 		pfn_sb = nd_pfn->pfn_sb;
283 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
284 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
285 		pmem->pfn_flags |= PFN_MAP;
286 		res = &pfn_res; /* for badblocks populate */
287 		res->start += pmem->data_offset;
288 	} else if (pmem_should_map_pages(dev)) {
289 		addr = devm_memremap_pages(dev, &nsio->res,
290 				&q->q_usage_counter, NULL);
291 		pmem->pfn_flags |= PFN_MAP;
292 	} else
293 		addr = devm_memremap(dev, pmem->phys_addr,
294 				pmem->size, ARCH_MEMREMAP_PMEM);
295 
296 	/*
297 	 * At release time the queue must be dead before
298 	 * devm_memremap_pages is unwound
299 	 */
300 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
301 		return -ENOMEM;
302 
303 	if (IS_ERR(addr))
304 		return PTR_ERR(addr);
305 	pmem->virt_addr = addr;
306 
307 	blk_queue_write_cache(q, true, true);
308 	blk_queue_make_request(q, pmem_make_request);
309 	blk_queue_physical_block_size(q, PAGE_SIZE);
310 	blk_queue_max_hw_sectors(q, UINT_MAX);
311 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
312 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
313 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
314 	q->queuedata = pmem;
315 
316 	disk = alloc_disk_node(0, nid);
317 	if (!disk)
318 		return -ENOMEM;
319 
320 	disk->fops		= &pmem_fops;
321 	disk->queue		= q;
322 	disk->flags		= GENHD_FL_EXT_DEVT;
323 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
324 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
325 			/ 512);
326 	if (devm_init_badblocks(dev, &pmem->bb))
327 		return -ENOMEM;
328 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
329 	disk->bb = &pmem->bb;
330 	device_add_disk(dev, disk);
331 
332 	if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
333 		return -ENOMEM;
334 
335 	revalidate_disk(disk);
336 
337 	return 0;
338 }
339 
340 static int nd_pmem_probe(struct device *dev)
341 {
342 	struct nd_namespace_common *ndns;
343 
344 	ndns = nvdimm_namespace_common_probe(dev);
345 	if (IS_ERR(ndns))
346 		return PTR_ERR(ndns);
347 
348 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
349 		return -ENXIO;
350 
351 	if (is_nd_btt(dev))
352 		return nvdimm_namespace_attach_btt(ndns);
353 
354 	if (is_nd_pfn(dev))
355 		return pmem_attach_disk(dev, ndns);
356 
357 	/* if we find a valid info-block we'll come back as that personality */
358 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
359 			|| nd_dax_probe(dev, ndns) == 0)
360 		return -ENXIO;
361 
362 	/* ...otherwise we're just a raw pmem device */
363 	return pmem_attach_disk(dev, ndns);
364 }
365 
366 static int nd_pmem_remove(struct device *dev)
367 {
368 	if (is_nd_btt(dev))
369 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
370 	nvdimm_flush(to_nd_region(dev->parent));
371 
372 	return 0;
373 }
374 
375 static void nd_pmem_shutdown(struct device *dev)
376 {
377 	nvdimm_flush(to_nd_region(dev->parent));
378 }
379 
380 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
381 {
382 	struct pmem_device *pmem = dev_get_drvdata(dev);
383 	struct nd_region *nd_region = to_region(pmem);
384 	resource_size_t offset = 0, end_trunc = 0;
385 	struct nd_namespace_common *ndns;
386 	struct nd_namespace_io *nsio;
387 	struct resource res;
388 
389 	if (event != NVDIMM_REVALIDATE_POISON)
390 		return;
391 
392 	if (is_nd_btt(dev)) {
393 		struct nd_btt *nd_btt = to_nd_btt(dev);
394 
395 		ndns = nd_btt->ndns;
396 	} else if (is_nd_pfn(dev)) {
397 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
398 		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
399 
400 		ndns = nd_pfn->ndns;
401 		offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
402 		end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
403 	} else
404 		ndns = to_ndns(dev);
405 
406 	nsio = to_nd_namespace_io(&ndns->dev);
407 	res.start = nsio->res.start + offset;
408 	res.end = nsio->res.end - end_trunc;
409 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
410 }
411 
412 MODULE_ALIAS("pmem");
413 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
414 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
415 static struct nd_device_driver nd_pmem_driver = {
416 	.probe = nd_pmem_probe,
417 	.remove = nd_pmem_remove,
418 	.notify = nd_pmem_notify,
419 	.shutdown = nd_pmem_shutdown,
420 	.drv = {
421 		.name = "nd_pmem",
422 	},
423 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
424 };
425 
426 static int __init pmem_init(void)
427 {
428 	return nd_driver_register(&nd_pmem_driver);
429 }
430 module_init(pmem_init);
431 
432 static void pmem_exit(void)
433 {
434 	driver_unregister(&nd_pmem_driver.drv);
435 }
436 module_exit(pmem_exit);
437 
438 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
439 MODULE_LICENSE("GPL v2");
440