1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Persistent Memory Driver 4 * 5 * Copyright (c) 2014-2015, Intel Corporation. 6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 8 */ 9 10 #include <asm/cacheflush.h> 11 #include <linux/blkdev.h> 12 #include <linux/hdreg.h> 13 #include <linux/init.h> 14 #include <linux/platform_device.h> 15 #include <linux/set_memory.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/badblocks.h> 19 #include <linux/memremap.h> 20 #include <linux/vmalloc.h> 21 #include <linux/blk-mq.h> 22 #include <linux/pfn_t.h> 23 #include <linux/slab.h> 24 #include <linux/uio.h> 25 #include <linux/dax.h> 26 #include <linux/nd.h> 27 #include <linux/backing-dev.h> 28 #include "pmem.h" 29 #include "pfn.h" 30 #include "nd.h" 31 #include "nd-core.h" 32 33 static struct device *to_dev(struct pmem_device *pmem) 34 { 35 /* 36 * nvdimm bus services need a 'dev' parameter, and we record the device 37 * at init in bb.dev. 38 */ 39 return pmem->bb.dev; 40 } 41 42 static struct nd_region *to_region(struct pmem_device *pmem) 43 { 44 return to_nd_region(to_dev(pmem)->parent); 45 } 46 47 static void hwpoison_clear(struct pmem_device *pmem, 48 phys_addr_t phys, unsigned int len) 49 { 50 unsigned long pfn_start, pfn_end, pfn; 51 52 /* only pmem in the linear map supports HWPoison */ 53 if (is_vmalloc_addr(pmem->virt_addr)) 54 return; 55 56 pfn_start = PHYS_PFN(phys); 57 pfn_end = pfn_start + PHYS_PFN(len); 58 for (pfn = pfn_start; pfn < pfn_end; pfn++) { 59 struct page *page = pfn_to_page(pfn); 60 61 /* 62 * Note, no need to hold a get_dev_pagemap() reference 63 * here since we're in the driver I/O path and 64 * outstanding I/O requests pin the dev_pagemap. 65 */ 66 if (test_and_clear_pmem_poison(page)) 67 clear_mce_nospec(pfn); 68 } 69 } 70 71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 72 phys_addr_t offset, unsigned int len) 73 { 74 struct device *dev = to_dev(pmem); 75 sector_t sector; 76 long cleared; 77 blk_status_t rc = BLK_STS_OK; 78 79 sector = (offset - pmem->data_offset) / 512; 80 81 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); 82 if (cleared < len) 83 rc = BLK_STS_IOERR; 84 if (cleared > 0 && cleared / 512) { 85 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); 86 cleared /= 512; 87 dev_dbg(dev, "%#llx clear %ld sector%s\n", 88 (unsigned long long) sector, cleared, 89 cleared > 1 ? "s" : ""); 90 badblocks_clear(&pmem->bb, sector, cleared); 91 if (pmem->bb_state) 92 sysfs_notify_dirent(pmem->bb_state); 93 } 94 95 arch_invalidate_pmem(pmem->virt_addr + offset, len); 96 97 return rc; 98 } 99 100 static void write_pmem(void *pmem_addr, struct page *page, 101 unsigned int off, unsigned int len) 102 { 103 unsigned int chunk; 104 void *mem; 105 106 while (len) { 107 mem = kmap_atomic(page); 108 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 109 memcpy_flushcache(pmem_addr, mem + off, chunk); 110 kunmap_atomic(mem); 111 len -= chunk; 112 off = 0; 113 page++; 114 pmem_addr += chunk; 115 } 116 } 117 118 static blk_status_t read_pmem(struct page *page, unsigned int off, 119 void *pmem_addr, unsigned int len) 120 { 121 unsigned int chunk; 122 unsigned long rem; 123 void *mem; 124 125 while (len) { 126 mem = kmap_atomic(page); 127 chunk = min_t(unsigned int, len, PAGE_SIZE - off); 128 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk); 129 kunmap_atomic(mem); 130 if (rem) 131 return BLK_STS_IOERR; 132 len -= chunk; 133 off = 0; 134 page++; 135 pmem_addr += chunk; 136 } 137 return BLK_STS_OK; 138 } 139 140 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page, 141 unsigned int len, unsigned int off, unsigned int op, 142 sector_t sector) 143 { 144 blk_status_t rc = BLK_STS_OK; 145 bool bad_pmem = false; 146 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 147 void *pmem_addr = pmem->virt_addr + pmem_off; 148 149 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 150 bad_pmem = true; 151 152 if (!op_is_write(op)) { 153 if (unlikely(bad_pmem)) 154 rc = BLK_STS_IOERR; 155 else { 156 rc = read_pmem(page, off, pmem_addr, len); 157 flush_dcache_page(page); 158 } 159 } else { 160 /* 161 * Note that we write the data both before and after 162 * clearing poison. The write before clear poison 163 * handles situations where the latest written data is 164 * preserved and the clear poison operation simply marks 165 * the address range as valid without changing the data. 166 * In this case application software can assume that an 167 * interrupted write will either return the new good 168 * data or an error. 169 * 170 * However, if pmem_clear_poison() leaves the data in an 171 * indeterminate state we need to perform the write 172 * after clear poison. 173 */ 174 flush_dcache_page(page); 175 write_pmem(pmem_addr, page, off, len); 176 if (unlikely(bad_pmem)) { 177 rc = pmem_clear_poison(pmem, pmem_off, len); 178 write_pmem(pmem_addr, page, off, len); 179 } 180 } 181 182 return rc; 183 } 184 185 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) 186 { 187 int ret = 0; 188 blk_status_t rc = 0; 189 bool do_acct; 190 unsigned long start; 191 struct bio_vec bvec; 192 struct bvec_iter iter; 193 struct pmem_device *pmem = q->queuedata; 194 struct nd_region *nd_region = to_region(pmem); 195 196 if (bio->bi_opf & REQ_PREFLUSH) 197 ret = nvdimm_flush(nd_region, bio); 198 199 do_acct = nd_iostat_start(bio, &start); 200 bio_for_each_segment(bvec, bio, iter) { 201 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, 202 bvec.bv_offset, bio_op(bio), iter.bi_sector); 203 if (rc) { 204 bio->bi_status = rc; 205 break; 206 } 207 } 208 if (do_acct) 209 nd_iostat_end(bio, start); 210 211 if (bio->bi_opf & REQ_FUA) 212 ret = nvdimm_flush(nd_region, bio); 213 214 if (ret) 215 bio->bi_status = errno_to_blk_status(ret); 216 217 bio_endio(bio); 218 return BLK_QC_T_NONE; 219 } 220 221 static int pmem_rw_page(struct block_device *bdev, sector_t sector, 222 struct page *page, unsigned int op) 223 { 224 struct pmem_device *pmem = bdev->bd_queue->queuedata; 225 blk_status_t rc; 226 227 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE, 228 0, op, sector); 229 230 /* 231 * The ->rw_page interface is subtle and tricky. The core 232 * retries on any error, so we can only invoke page_endio() in 233 * the successful completion case. Otherwise, we'll see crashes 234 * caused by double completion. 235 */ 236 if (rc == 0) 237 page_endio(page, op_is_write(op), 0); 238 239 return blk_status_to_errno(rc); 240 } 241 242 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 243 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 244 long nr_pages, void **kaddr, pfn_t *pfn) 245 { 246 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 247 248 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, 249 PFN_PHYS(nr_pages)))) 250 return -EIO; 251 252 if (kaddr) 253 *kaddr = pmem->virt_addr + offset; 254 if (pfn) 255 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 256 257 /* 258 * If badblocks are present, limit known good range to the 259 * requested range. 260 */ 261 if (unlikely(pmem->bb.count)) 262 return nr_pages; 263 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 264 } 265 266 static const struct block_device_operations pmem_fops = { 267 .owner = THIS_MODULE, 268 .rw_page = pmem_rw_page, 269 .revalidate_disk = nvdimm_revalidate_disk, 270 }; 271 272 static long pmem_dax_direct_access(struct dax_device *dax_dev, 273 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 274 { 275 struct pmem_device *pmem = dax_get_private(dax_dev); 276 277 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); 278 } 279 280 /* 281 * Use the 'no check' versions of copy_from_iter_flushcache() and 282 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds 283 * checking, both file offset and device offset, is handled by 284 * dax_iomap_actor() 285 */ 286 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 287 void *addr, size_t bytes, struct iov_iter *i) 288 { 289 return _copy_from_iter_flushcache(addr, bytes, i); 290 } 291 292 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 293 void *addr, size_t bytes, struct iov_iter *i) 294 { 295 return _copy_to_iter_mcsafe(addr, bytes, i); 296 } 297 298 static const struct dax_operations pmem_dax_ops = { 299 .direct_access = pmem_dax_direct_access, 300 .dax_supported = generic_fsdax_supported, 301 .copy_from_iter = pmem_copy_from_iter, 302 .copy_to_iter = pmem_copy_to_iter, 303 }; 304 305 static const struct attribute_group *pmem_attribute_groups[] = { 306 &dax_attribute_group, 307 NULL, 308 }; 309 310 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap) 311 { 312 struct request_queue *q = 313 container_of(pgmap->ref, struct request_queue, q_usage_counter); 314 315 blk_cleanup_queue(q); 316 } 317 318 static void pmem_release_queue(void *pgmap) 319 { 320 pmem_pagemap_cleanup(pgmap); 321 } 322 323 static void pmem_pagemap_kill(struct dev_pagemap *pgmap) 324 { 325 struct request_queue *q = 326 container_of(pgmap->ref, struct request_queue, q_usage_counter); 327 328 blk_freeze_queue_start(q); 329 } 330 331 static void pmem_release_disk(void *__pmem) 332 { 333 struct pmem_device *pmem = __pmem; 334 335 kill_dax(pmem->dax_dev); 336 put_dax(pmem->dax_dev); 337 del_gendisk(pmem->disk); 338 put_disk(pmem->disk); 339 } 340 341 static void pmem_pagemap_page_free(struct page *page) 342 { 343 wake_up_var(&page->_refcount); 344 } 345 346 static const struct dev_pagemap_ops fsdax_pagemap_ops = { 347 .page_free = pmem_pagemap_page_free, 348 .kill = pmem_pagemap_kill, 349 .cleanup = pmem_pagemap_cleanup, 350 }; 351 352 static int pmem_attach_disk(struct device *dev, 353 struct nd_namespace_common *ndns) 354 { 355 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 356 struct nd_region *nd_region = to_nd_region(dev->parent); 357 int nid = dev_to_node(dev), fua; 358 struct resource *res = &nsio->res; 359 struct resource bb_res; 360 struct nd_pfn *nd_pfn = NULL; 361 struct dax_device *dax_dev; 362 struct nd_pfn_sb *pfn_sb; 363 struct pmem_device *pmem; 364 struct request_queue *q; 365 struct device *gendev; 366 struct gendisk *disk; 367 void *addr; 368 int rc; 369 unsigned long flags = 0UL; 370 371 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 372 if (!pmem) 373 return -ENOMEM; 374 375 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 376 if (is_nd_pfn(dev)) { 377 nd_pfn = to_nd_pfn(dev); 378 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); 379 if (rc) 380 return rc; 381 } 382 383 /* we're attaching a block device, disable raw namespace access */ 384 devm_nsio_disable(dev, nsio); 385 386 dev_set_drvdata(dev, pmem); 387 pmem->phys_addr = res->start; 388 pmem->size = resource_size(res); 389 fua = nvdimm_has_flush(nd_region); 390 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 391 dev_warn(dev, "unable to guarantee persistence of writes\n"); 392 fua = 0; 393 } 394 395 if (!devm_request_mem_region(dev, res->start, resource_size(res), 396 dev_name(&ndns->dev))) { 397 dev_warn(dev, "could not reserve region %pR\n", res); 398 return -EBUSY; 399 } 400 401 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev)); 402 if (!q) 403 return -ENOMEM; 404 405 pmem->pfn_flags = PFN_DEV; 406 pmem->pgmap.ref = &q->q_usage_counter; 407 if (is_nd_pfn(dev)) { 408 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 409 pmem->pgmap.ops = &fsdax_pagemap_ops; 410 addr = devm_memremap_pages(dev, &pmem->pgmap); 411 pfn_sb = nd_pfn->pfn_sb; 412 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 413 pmem->pfn_pad = resource_size(res) - 414 resource_size(&pmem->pgmap.res); 415 pmem->pfn_flags |= PFN_MAP; 416 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 417 bb_res.start += pmem->data_offset; 418 } else if (pmem_should_map_pages(dev)) { 419 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res)); 420 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; 421 pmem->pgmap.ops = &fsdax_pagemap_ops; 422 addr = devm_memremap_pages(dev, &pmem->pgmap); 423 pmem->pfn_flags |= PFN_MAP; 424 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); 425 } else { 426 if (devm_add_action_or_reset(dev, pmem_release_queue, 427 &pmem->pgmap)) 428 return -ENOMEM; 429 addr = devm_memremap(dev, pmem->phys_addr, 430 pmem->size, ARCH_MEMREMAP_PMEM); 431 memcpy(&bb_res, &nsio->res, sizeof(bb_res)); 432 } 433 434 if (IS_ERR(addr)) 435 return PTR_ERR(addr); 436 pmem->virt_addr = addr; 437 438 blk_queue_write_cache(q, true, fua); 439 blk_queue_make_request(q, pmem_make_request); 440 blk_queue_physical_block_size(q, PAGE_SIZE); 441 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 442 blk_queue_max_hw_sectors(q, UINT_MAX); 443 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 444 if (pmem->pfn_flags & PFN_MAP) 445 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 446 q->queuedata = pmem; 447 448 disk = alloc_disk_node(0, nid); 449 if (!disk) 450 return -ENOMEM; 451 pmem->disk = disk; 452 453 disk->fops = &pmem_fops; 454 disk->queue = q; 455 disk->flags = GENHD_FL_EXT_DEVT; 456 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; 457 nvdimm_namespace_disk_name(ndns, disk->disk_name); 458 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 459 / 512); 460 if (devm_init_badblocks(dev, &pmem->bb)) 461 return -ENOMEM; 462 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res); 463 disk->bb = &pmem->bb; 464 465 if (is_nvdimm_sync(nd_region)) 466 flags = DAXDEV_F_SYNC; 467 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags); 468 if (!dax_dev) { 469 put_disk(disk); 470 return -ENOMEM; 471 } 472 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); 473 pmem->dax_dev = dax_dev; 474 gendev = disk_to_dev(disk); 475 gendev->groups = pmem_attribute_groups; 476 477 device_add_disk(dev, disk, NULL); 478 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 479 return -ENOMEM; 480 481 revalidate_disk(disk); 482 483 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 484 "badblocks"); 485 if (!pmem->bb_state) 486 dev_warn(dev, "'badblocks' notification disabled\n"); 487 488 return 0; 489 } 490 491 static int nd_pmem_probe(struct device *dev) 492 { 493 int ret; 494 struct nd_namespace_common *ndns; 495 496 ndns = nvdimm_namespace_common_probe(dev); 497 if (IS_ERR(ndns)) 498 return PTR_ERR(ndns); 499 500 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev))) 501 return -ENXIO; 502 503 if (is_nd_btt(dev)) 504 return nvdimm_namespace_attach_btt(ndns); 505 506 if (is_nd_pfn(dev)) 507 return pmem_attach_disk(dev, ndns); 508 509 ret = nd_btt_probe(dev, ndns); 510 if (ret == 0) 511 return -ENXIO; 512 513 /* 514 * We have two failure conditions here, there is no 515 * info reserver block or we found a valid info reserve block 516 * but failed to initialize the pfn superblock. 517 * 518 * For the first case consider namespace as a raw pmem namespace 519 * and attach a disk. 520 * 521 * For the latter, consider this a success and advance the namespace 522 * seed. 523 */ 524 ret = nd_pfn_probe(dev, ndns); 525 if (ret == 0) 526 return -ENXIO; 527 else if (ret == -EOPNOTSUPP) 528 return ret; 529 530 ret = nd_dax_probe(dev, ndns); 531 if (ret == 0) 532 return -ENXIO; 533 else if (ret == -EOPNOTSUPP) 534 return ret; 535 return pmem_attach_disk(dev, ndns); 536 } 537 538 static int nd_pmem_remove(struct device *dev) 539 { 540 struct pmem_device *pmem = dev_get_drvdata(dev); 541 542 if (is_nd_btt(dev)) 543 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 544 else { 545 /* 546 * Note, this assumes nd_device_lock() context to not 547 * race nd_pmem_notify() 548 */ 549 sysfs_put(pmem->bb_state); 550 pmem->bb_state = NULL; 551 } 552 nvdimm_flush(to_nd_region(dev->parent), NULL); 553 554 return 0; 555 } 556 557 static void nd_pmem_shutdown(struct device *dev) 558 { 559 nvdimm_flush(to_nd_region(dev->parent), NULL); 560 } 561 562 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 563 { 564 struct nd_region *nd_region; 565 resource_size_t offset = 0, end_trunc = 0; 566 struct nd_namespace_common *ndns; 567 struct nd_namespace_io *nsio; 568 struct resource res; 569 struct badblocks *bb; 570 struct kernfs_node *bb_state; 571 572 if (event != NVDIMM_REVALIDATE_POISON) 573 return; 574 575 if (is_nd_btt(dev)) { 576 struct nd_btt *nd_btt = to_nd_btt(dev); 577 578 ndns = nd_btt->ndns; 579 nd_region = to_nd_region(ndns->dev.parent); 580 nsio = to_nd_namespace_io(&ndns->dev); 581 bb = &nsio->bb; 582 bb_state = NULL; 583 } else { 584 struct pmem_device *pmem = dev_get_drvdata(dev); 585 586 nd_region = to_region(pmem); 587 bb = &pmem->bb; 588 bb_state = pmem->bb_state; 589 590 if (is_nd_pfn(dev)) { 591 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 592 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 593 594 ndns = nd_pfn->ndns; 595 offset = pmem->data_offset + 596 __le32_to_cpu(pfn_sb->start_pad); 597 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 598 } else { 599 ndns = to_ndns(dev); 600 } 601 602 nsio = to_nd_namespace_io(&ndns->dev); 603 } 604 605 res.start = nsio->res.start + offset; 606 res.end = nsio->res.end - end_trunc; 607 nvdimm_badblocks_populate(nd_region, bb, &res); 608 if (bb_state) 609 sysfs_notify_dirent(bb_state); 610 } 611 612 MODULE_ALIAS("pmem"); 613 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 614 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 615 static struct nd_device_driver nd_pmem_driver = { 616 .probe = nd_pmem_probe, 617 .remove = nd_pmem_remove, 618 .notify = nd_pmem_notify, 619 .shutdown = nd_pmem_shutdown, 620 .drv = { 621 .name = "nd_pmem", 622 }, 623 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 624 }; 625 626 module_nd_driver(nd_pmem_driver); 627 628 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 629 MODULE_LICENSE("GPL v2"); 630