xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/hdreg.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/set_memory.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/badblocks.h>
18 #include <linux/memremap.h>
19 #include <linux/vmalloc.h>
20 #include <linux/blk-mq.h>
21 #include <linux/pfn_t.h>
22 #include <linux/slab.h>
23 #include <linux/uio.h>
24 #include <linux/dax.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "pfn.h"
31 #include "nd.h"
32 
33 static struct device *to_dev(struct pmem_device *pmem)
34 {
35 	/*
36 	 * nvdimm bus services need a 'dev' parameter, and we record the device
37 	 * at init in bb.dev.
38 	 */
39 	return pmem->bb.dev;
40 }
41 
42 static struct nd_region *to_region(struct pmem_device *pmem)
43 {
44 	return to_nd_region(to_dev(pmem)->parent);
45 }
46 
47 static void hwpoison_clear(struct pmem_device *pmem,
48 		phys_addr_t phys, unsigned int len)
49 {
50 	unsigned long pfn_start, pfn_end, pfn;
51 
52 	/* only pmem in the linear map supports HWPoison */
53 	if (is_vmalloc_addr(pmem->virt_addr))
54 		return;
55 
56 	pfn_start = PHYS_PFN(phys);
57 	pfn_end = pfn_start + PHYS_PFN(len);
58 	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59 		struct page *page = pfn_to_page(pfn);
60 
61 		/*
62 		 * Note, no need to hold a get_dev_pagemap() reference
63 		 * here since we're in the driver I/O path and
64 		 * outstanding I/O requests pin the dev_pagemap.
65 		 */
66 		if (test_and_clear_pmem_poison(page))
67 			clear_mce_nospec(pfn);
68 	}
69 }
70 
71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72 		phys_addr_t offset, unsigned int len)
73 {
74 	struct device *dev = to_dev(pmem);
75 	sector_t sector;
76 	long cleared;
77 	blk_status_t rc = BLK_STS_OK;
78 
79 	sector = (offset - pmem->data_offset) / 512;
80 
81 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82 	if (cleared < len)
83 		rc = BLK_STS_IOERR;
84 	if (cleared > 0 && cleared / 512) {
85 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86 		cleared /= 512;
87 		dev_dbg(dev, "%#llx clear %ld sector%s\n",
88 				(unsigned long long) sector, cleared,
89 				cleared > 1 ? "s" : "");
90 		badblocks_clear(&pmem->bb, sector, cleared);
91 		if (pmem->bb_state)
92 			sysfs_notify_dirent(pmem->bb_state);
93 	}
94 
95 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
96 
97 	return rc;
98 }
99 
100 static void write_pmem(void *pmem_addr, struct page *page,
101 		unsigned int off, unsigned int len)
102 {
103 	unsigned int chunk;
104 	void *mem;
105 
106 	while (len) {
107 		mem = kmap_atomic(page);
108 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109 		memcpy_flushcache(pmem_addr, mem + off, chunk);
110 		kunmap_atomic(mem);
111 		len -= chunk;
112 		off = 0;
113 		page++;
114 		pmem_addr += chunk;
115 	}
116 }
117 
118 static blk_status_t read_pmem(struct page *page, unsigned int off,
119 		void *pmem_addr, unsigned int len)
120 {
121 	unsigned int chunk;
122 	unsigned long rem;
123 	void *mem;
124 
125 	while (len) {
126 		mem = kmap_atomic(page);
127 		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128 		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129 		kunmap_atomic(mem);
130 		if (rem)
131 			return BLK_STS_IOERR;
132 		len -= chunk;
133 		off = 0;
134 		page++;
135 		pmem_addr += chunk;
136 	}
137 	return BLK_STS_OK;
138 }
139 
140 static blk_status_t pmem_do_read(struct pmem_device *pmem,
141 			struct page *page, unsigned int page_off,
142 			sector_t sector, unsigned int len)
143 {
144 	blk_status_t rc;
145 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 	void *pmem_addr = pmem->virt_addr + pmem_off;
147 
148 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 		return BLK_STS_IOERR;
150 
151 	rc = read_pmem(page, page_off, pmem_addr, len);
152 	flush_dcache_page(page);
153 	return rc;
154 }
155 
156 static blk_status_t pmem_do_write(struct pmem_device *pmem,
157 			struct page *page, unsigned int page_off,
158 			sector_t sector, unsigned int len)
159 {
160 	blk_status_t rc = BLK_STS_OK;
161 	bool bad_pmem = false;
162 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163 	void *pmem_addr = pmem->virt_addr + pmem_off;
164 
165 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166 		bad_pmem = true;
167 
168 	/*
169 	 * Note that we write the data both before and after
170 	 * clearing poison.  The write before clear poison
171 	 * handles situations where the latest written data is
172 	 * preserved and the clear poison operation simply marks
173 	 * the address range as valid without changing the data.
174 	 * In this case application software can assume that an
175 	 * interrupted write will either return the new good
176 	 * data or an error.
177 	 *
178 	 * However, if pmem_clear_poison() leaves the data in an
179 	 * indeterminate state we need to perform the write
180 	 * after clear poison.
181 	 */
182 	flush_dcache_page(page);
183 	write_pmem(pmem_addr, page, page_off, len);
184 	if (unlikely(bad_pmem)) {
185 		rc = pmem_clear_poison(pmem, pmem_off, len);
186 		write_pmem(pmem_addr, page, page_off, len);
187 	}
188 
189 	return rc;
190 }
191 
192 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
193 {
194 	int ret = 0;
195 	blk_status_t rc = 0;
196 	bool do_acct;
197 	unsigned long start;
198 	struct bio_vec bvec;
199 	struct bvec_iter iter;
200 	struct pmem_device *pmem = bio->bi_disk->private_data;
201 	struct nd_region *nd_region = to_region(pmem);
202 
203 	if (bio->bi_opf & REQ_PREFLUSH)
204 		ret = nvdimm_flush(nd_region, bio);
205 
206 	do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207 	if (do_acct)
208 		start = bio_start_io_acct(bio);
209 	bio_for_each_segment(bvec, bio, iter) {
210 		if (op_is_write(bio_op(bio)))
211 			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212 				iter.bi_sector, bvec.bv_len);
213 		else
214 			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215 				iter.bi_sector, bvec.bv_len);
216 		if (rc) {
217 			bio->bi_status = rc;
218 			break;
219 		}
220 	}
221 	if (do_acct)
222 		bio_end_io_acct(bio, start);
223 
224 	if (bio->bi_opf & REQ_FUA)
225 		ret = nvdimm_flush(nd_region, bio);
226 
227 	if (ret)
228 		bio->bi_status = errno_to_blk_status(ret);
229 
230 	bio_endio(bio);
231 	return BLK_QC_T_NONE;
232 }
233 
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235 		       struct page *page, unsigned int op)
236 {
237 	struct pmem_device *pmem = bdev->bd_disk->private_data;
238 	blk_status_t rc;
239 
240 	if (op_is_write(op))
241 		rc = pmem_do_write(pmem, page, 0, sector,
242 				   hpage_nr_pages(page) * PAGE_SIZE);
243 	else
244 		rc = pmem_do_read(pmem, page, 0, sector,
245 				   hpage_nr_pages(page) * PAGE_SIZE);
246 	/*
247 	 * The ->rw_page interface is subtle and tricky.  The core
248 	 * retries on any error, so we can only invoke page_endio() in
249 	 * the successful completion case.  Otherwise, we'll see crashes
250 	 * caused by double completion.
251 	 */
252 	if (rc == 0)
253 		page_endio(page, op_is_write(op), 0);
254 
255 	return blk_status_to_errno(rc);
256 }
257 
258 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
259 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
260 		long nr_pages, void **kaddr, pfn_t *pfn)
261 {
262 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
263 
264 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
265 					PFN_PHYS(nr_pages))))
266 		return -EIO;
267 
268 	if (kaddr)
269 		*kaddr = pmem->virt_addr + offset;
270 	if (pfn)
271 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
272 
273 	/*
274 	 * If badblocks are present, limit known good range to the
275 	 * requested range.
276 	 */
277 	if (unlikely(pmem->bb.count))
278 		return nr_pages;
279 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
280 }
281 
282 static const struct block_device_operations pmem_fops = {
283 	.owner =		THIS_MODULE,
284 	.rw_page =		pmem_rw_page,
285 	.revalidate_disk =	nvdimm_revalidate_disk,
286 };
287 
288 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
289 				    size_t nr_pages)
290 {
291 	struct pmem_device *pmem = dax_get_private(dax_dev);
292 
293 	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
294 				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
295 				   PAGE_SIZE));
296 }
297 
298 static long pmem_dax_direct_access(struct dax_device *dax_dev,
299 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
300 {
301 	struct pmem_device *pmem = dax_get_private(dax_dev);
302 
303 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
304 }
305 
306 /*
307  * Use the 'no check' versions of copy_from_iter_flushcache() and
308  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
309  * checking, both file offset and device offset, is handled by
310  * dax_iomap_actor()
311  */
312 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
313 		void *addr, size_t bytes, struct iov_iter *i)
314 {
315 	return _copy_from_iter_flushcache(addr, bytes, i);
316 }
317 
318 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
319 		void *addr, size_t bytes, struct iov_iter *i)
320 {
321 	return _copy_to_iter_mcsafe(addr, bytes, i);
322 }
323 
324 static const struct dax_operations pmem_dax_ops = {
325 	.direct_access = pmem_dax_direct_access,
326 	.dax_supported = generic_fsdax_supported,
327 	.copy_from_iter = pmem_copy_from_iter,
328 	.copy_to_iter = pmem_copy_to_iter,
329 	.zero_page_range = pmem_dax_zero_page_range,
330 };
331 
332 static const struct attribute_group *pmem_attribute_groups[] = {
333 	&dax_attribute_group,
334 	NULL,
335 };
336 
337 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
338 {
339 	struct request_queue *q =
340 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
341 
342 	blk_cleanup_queue(q);
343 }
344 
345 static void pmem_release_queue(void *pgmap)
346 {
347 	pmem_pagemap_cleanup(pgmap);
348 }
349 
350 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
351 {
352 	struct request_queue *q =
353 		container_of(pgmap->ref, struct request_queue, q_usage_counter);
354 
355 	blk_freeze_queue_start(q);
356 }
357 
358 static void pmem_release_disk(void *__pmem)
359 {
360 	struct pmem_device *pmem = __pmem;
361 
362 	kill_dax(pmem->dax_dev);
363 	put_dax(pmem->dax_dev);
364 	del_gendisk(pmem->disk);
365 	put_disk(pmem->disk);
366 }
367 
368 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
369 	.kill			= pmem_pagemap_kill,
370 	.cleanup		= pmem_pagemap_cleanup,
371 };
372 
373 static int pmem_attach_disk(struct device *dev,
374 		struct nd_namespace_common *ndns)
375 {
376 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
377 	struct nd_region *nd_region = to_nd_region(dev->parent);
378 	int nid = dev_to_node(dev), fua;
379 	struct resource *res = &nsio->res;
380 	struct resource bb_res;
381 	struct nd_pfn *nd_pfn = NULL;
382 	struct dax_device *dax_dev;
383 	struct nd_pfn_sb *pfn_sb;
384 	struct pmem_device *pmem;
385 	struct request_queue *q;
386 	struct device *gendev;
387 	struct gendisk *disk;
388 	void *addr;
389 	int rc;
390 	unsigned long flags = 0UL;
391 
392 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
393 	if (!pmem)
394 		return -ENOMEM;
395 
396 	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
397 	if (rc)
398 		return rc;
399 
400 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
401 	if (is_nd_pfn(dev)) {
402 		nd_pfn = to_nd_pfn(dev);
403 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
404 		if (rc)
405 			return rc;
406 	}
407 
408 	/* we're attaching a block device, disable raw namespace access */
409 	devm_namespace_disable(dev, ndns);
410 
411 	dev_set_drvdata(dev, pmem);
412 	pmem->phys_addr = res->start;
413 	pmem->size = resource_size(res);
414 	fua = nvdimm_has_flush(nd_region);
415 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
416 		dev_warn(dev, "unable to guarantee persistence of writes\n");
417 		fua = 0;
418 	}
419 
420 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
421 				dev_name(&ndns->dev))) {
422 		dev_warn(dev, "could not reserve region %pR\n", res);
423 		return -EBUSY;
424 	}
425 
426 	q = blk_alloc_queue(pmem_make_request, dev_to_node(dev));
427 	if (!q)
428 		return -ENOMEM;
429 
430 	pmem->pfn_flags = PFN_DEV;
431 	pmem->pgmap.ref = &q->q_usage_counter;
432 	if (is_nd_pfn(dev)) {
433 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
434 		pmem->pgmap.ops = &fsdax_pagemap_ops;
435 		addr = devm_memremap_pages(dev, &pmem->pgmap);
436 		pfn_sb = nd_pfn->pfn_sb;
437 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
438 		pmem->pfn_pad = resource_size(res) -
439 			resource_size(&pmem->pgmap.res);
440 		pmem->pfn_flags |= PFN_MAP;
441 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
442 		bb_res.start += pmem->data_offset;
443 	} else if (pmem_should_map_pages(dev)) {
444 		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
445 		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
446 		pmem->pgmap.ops = &fsdax_pagemap_ops;
447 		addr = devm_memremap_pages(dev, &pmem->pgmap);
448 		pmem->pfn_flags |= PFN_MAP;
449 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
450 	} else {
451 		if (devm_add_action_or_reset(dev, pmem_release_queue,
452 					&pmem->pgmap))
453 			return -ENOMEM;
454 		addr = devm_memremap(dev, pmem->phys_addr,
455 				pmem->size, ARCH_MEMREMAP_PMEM);
456 		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
457 	}
458 
459 	if (IS_ERR(addr))
460 		return PTR_ERR(addr);
461 	pmem->virt_addr = addr;
462 
463 	blk_queue_write_cache(q, true, fua);
464 	blk_queue_physical_block_size(q, PAGE_SIZE);
465 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
466 	blk_queue_max_hw_sectors(q, UINT_MAX);
467 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
468 	if (pmem->pfn_flags & PFN_MAP)
469 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
470 
471 	disk = alloc_disk_node(0, nid);
472 	if (!disk)
473 		return -ENOMEM;
474 	pmem->disk = disk;
475 
476 	disk->fops		= &pmem_fops;
477 	disk->queue		= q;
478 	disk->flags		= GENHD_FL_EXT_DEVT;
479 	disk->private_data	= pmem;
480 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
481 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
482 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
483 			/ 512);
484 	if (devm_init_badblocks(dev, &pmem->bb))
485 		return -ENOMEM;
486 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
487 	disk->bb = &pmem->bb;
488 
489 	if (is_nvdimm_sync(nd_region))
490 		flags = DAXDEV_F_SYNC;
491 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
492 	if (IS_ERR(dax_dev)) {
493 		put_disk(disk);
494 		return PTR_ERR(dax_dev);
495 	}
496 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
497 	pmem->dax_dev = dax_dev;
498 	gendev = disk_to_dev(disk);
499 	gendev->groups = pmem_attribute_groups;
500 
501 	device_add_disk(dev, disk, NULL);
502 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
503 		return -ENOMEM;
504 
505 	revalidate_disk(disk);
506 
507 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
508 					  "badblocks");
509 	if (!pmem->bb_state)
510 		dev_warn(dev, "'badblocks' notification disabled\n");
511 
512 	return 0;
513 }
514 
515 static int nd_pmem_probe(struct device *dev)
516 {
517 	int ret;
518 	struct nd_namespace_common *ndns;
519 
520 	ndns = nvdimm_namespace_common_probe(dev);
521 	if (IS_ERR(ndns))
522 		return PTR_ERR(ndns);
523 
524 	if (is_nd_btt(dev))
525 		return nvdimm_namespace_attach_btt(ndns);
526 
527 	if (is_nd_pfn(dev))
528 		return pmem_attach_disk(dev, ndns);
529 
530 	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
531 	if (ret)
532 		return ret;
533 
534 	ret = nd_btt_probe(dev, ndns);
535 	if (ret == 0)
536 		return -ENXIO;
537 
538 	/*
539 	 * We have two failure conditions here, there is no
540 	 * info reserver block or we found a valid info reserve block
541 	 * but failed to initialize the pfn superblock.
542 	 *
543 	 * For the first case consider namespace as a raw pmem namespace
544 	 * and attach a disk.
545 	 *
546 	 * For the latter, consider this a success and advance the namespace
547 	 * seed.
548 	 */
549 	ret = nd_pfn_probe(dev, ndns);
550 	if (ret == 0)
551 		return -ENXIO;
552 	else if (ret == -EOPNOTSUPP)
553 		return ret;
554 
555 	ret = nd_dax_probe(dev, ndns);
556 	if (ret == 0)
557 		return -ENXIO;
558 	else if (ret == -EOPNOTSUPP)
559 		return ret;
560 
561 	/* probe complete, attach handles namespace enabling */
562 	devm_namespace_disable(dev, ndns);
563 
564 	return pmem_attach_disk(dev, ndns);
565 }
566 
567 static int nd_pmem_remove(struct device *dev)
568 {
569 	struct pmem_device *pmem = dev_get_drvdata(dev);
570 
571 	if (is_nd_btt(dev))
572 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
573 	else {
574 		/*
575 		 * Note, this assumes nd_device_lock() context to not
576 		 * race nd_pmem_notify()
577 		 */
578 		sysfs_put(pmem->bb_state);
579 		pmem->bb_state = NULL;
580 	}
581 	nvdimm_flush(to_nd_region(dev->parent), NULL);
582 
583 	return 0;
584 }
585 
586 static void nd_pmem_shutdown(struct device *dev)
587 {
588 	nvdimm_flush(to_nd_region(dev->parent), NULL);
589 }
590 
591 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
592 {
593 	struct nd_region *nd_region;
594 	resource_size_t offset = 0, end_trunc = 0;
595 	struct nd_namespace_common *ndns;
596 	struct nd_namespace_io *nsio;
597 	struct resource res;
598 	struct badblocks *bb;
599 	struct kernfs_node *bb_state;
600 
601 	if (event != NVDIMM_REVALIDATE_POISON)
602 		return;
603 
604 	if (is_nd_btt(dev)) {
605 		struct nd_btt *nd_btt = to_nd_btt(dev);
606 
607 		ndns = nd_btt->ndns;
608 		nd_region = to_nd_region(ndns->dev.parent);
609 		nsio = to_nd_namespace_io(&ndns->dev);
610 		bb = &nsio->bb;
611 		bb_state = NULL;
612 	} else {
613 		struct pmem_device *pmem = dev_get_drvdata(dev);
614 
615 		nd_region = to_region(pmem);
616 		bb = &pmem->bb;
617 		bb_state = pmem->bb_state;
618 
619 		if (is_nd_pfn(dev)) {
620 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622 
623 			ndns = nd_pfn->ndns;
624 			offset = pmem->data_offset +
625 					__le32_to_cpu(pfn_sb->start_pad);
626 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627 		} else {
628 			ndns = to_ndns(dev);
629 		}
630 
631 		nsio = to_nd_namespace_io(&ndns->dev);
632 	}
633 
634 	res.start = nsio->res.start + offset;
635 	res.end = nsio->res.end - end_trunc;
636 	nvdimm_badblocks_populate(nd_region, bb, &res);
637 	if (bb_state)
638 		sysfs_notify_dirent(bb_state);
639 }
640 
641 MODULE_ALIAS("pmem");
642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
643 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
644 static struct nd_device_driver nd_pmem_driver = {
645 	.probe = nd_pmem_probe,
646 	.remove = nd_pmem_remove,
647 	.notify = nd_pmem_notify,
648 	.shutdown = nd_pmem_shutdown,
649 	.drv = {
650 		.name = "nd_pmem",
651 	},
652 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
653 };
654 
655 module_nd_driver(nd_pmem_driver);
656 
657 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
658 MODULE_LICENSE("GPL v2");
659