xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37 
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40 	/*
41 	 * nvdimm bus services need a 'dev' parameter, and we record the device
42 	 * at init in bb.dev.
43 	 */
44 	return pmem->bb.dev;
45 }
46 
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49 	return to_nd_region(to_dev(pmem)->parent);
50 }
51 
52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
53 		phys_addr_t offset, unsigned int len)
54 {
55 	struct device *dev = to_dev(pmem);
56 	sector_t sector;
57 	long cleared;
58 	blk_status_t rc = BLK_STS_OK;
59 
60 	sector = (offset - pmem->data_offset) / 512;
61 
62 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63 	if (cleared < len)
64 		rc = BLK_STS_IOERR;
65 	if (cleared > 0 && cleared / 512) {
66 		cleared /= 512;
67 		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68 				(unsigned long long) sector, cleared,
69 				cleared > 1 ? "s" : "");
70 		badblocks_clear(&pmem->bb, sector, cleared);
71 		if (pmem->bb_state)
72 			sysfs_notify_dirent(pmem->bb_state);
73 	}
74 
75 	arch_invalidate_pmem(pmem->virt_addr + offset, len);
76 
77 	return rc;
78 }
79 
80 static void write_pmem(void *pmem_addr, struct page *page,
81 		unsigned int off, unsigned int len)
82 {
83 	void *mem = kmap_atomic(page);
84 
85 	memcpy_flushcache(pmem_addr, mem + off, len);
86 	kunmap_atomic(mem);
87 }
88 
89 static blk_status_t read_pmem(struct page *page, unsigned int off,
90 		void *pmem_addr, unsigned int len)
91 {
92 	int rc;
93 	void *mem = kmap_atomic(page);
94 
95 	rc = memcpy_mcsafe(mem + off, pmem_addr, len);
96 	kunmap_atomic(mem);
97 	if (rc)
98 		return BLK_STS_IOERR;
99 	return BLK_STS_OK;
100 }
101 
102 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
103 			unsigned int len, unsigned int off, bool is_write,
104 			sector_t sector)
105 {
106 	blk_status_t rc = BLK_STS_OK;
107 	bool bad_pmem = false;
108 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
109 	void *pmem_addr = pmem->virt_addr + pmem_off;
110 
111 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
112 		bad_pmem = true;
113 
114 	if (!is_write) {
115 		if (unlikely(bad_pmem))
116 			rc = BLK_STS_IOERR;
117 		else {
118 			rc = read_pmem(page, off, pmem_addr, len);
119 			flush_dcache_page(page);
120 		}
121 	} else {
122 		/*
123 		 * Note that we write the data both before and after
124 		 * clearing poison.  The write before clear poison
125 		 * handles situations where the latest written data is
126 		 * preserved and the clear poison operation simply marks
127 		 * the address range as valid without changing the data.
128 		 * In this case application software can assume that an
129 		 * interrupted write will either return the new good
130 		 * data or an error.
131 		 *
132 		 * However, if pmem_clear_poison() leaves the data in an
133 		 * indeterminate state we need to perform the write
134 		 * after clear poison.
135 		 */
136 		flush_dcache_page(page);
137 		write_pmem(pmem_addr, page, off, len);
138 		if (unlikely(bad_pmem)) {
139 			rc = pmem_clear_poison(pmem, pmem_off, len);
140 			write_pmem(pmem_addr, page, off, len);
141 		}
142 	}
143 
144 	return rc;
145 }
146 
147 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
148 #ifndef REQ_FLUSH
149 #define REQ_FLUSH REQ_PREFLUSH
150 #endif
151 
152 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
153 {
154 	blk_status_t rc = 0;
155 	bool do_acct;
156 	unsigned long start;
157 	struct bio_vec bvec;
158 	struct bvec_iter iter;
159 	struct pmem_device *pmem = q->queuedata;
160 	struct nd_region *nd_region = to_region(pmem);
161 
162 	if (bio->bi_opf & REQ_FLUSH)
163 		nvdimm_flush(nd_region);
164 
165 	do_acct = nd_iostat_start(bio, &start);
166 	bio_for_each_segment(bvec, bio, iter) {
167 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
168 				bvec.bv_offset, op_is_write(bio_op(bio)),
169 				iter.bi_sector);
170 		if (rc) {
171 			bio->bi_status = rc;
172 			break;
173 		}
174 	}
175 	if (do_acct)
176 		nd_iostat_end(bio, start);
177 
178 	if (bio->bi_opf & REQ_FUA)
179 		nvdimm_flush(nd_region);
180 
181 	bio_endio(bio);
182 	return BLK_QC_T_NONE;
183 }
184 
185 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
186 		       struct page *page, bool is_write)
187 {
188 	struct pmem_device *pmem = bdev->bd_queue->queuedata;
189 	blk_status_t rc;
190 
191 	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
192 
193 	/*
194 	 * The ->rw_page interface is subtle and tricky.  The core
195 	 * retries on any error, so we can only invoke page_endio() in
196 	 * the successful completion case.  Otherwise, we'll see crashes
197 	 * caused by double completion.
198 	 */
199 	if (rc == 0)
200 		page_endio(page, is_write, 0);
201 
202 	return blk_status_to_errno(rc);
203 }
204 
205 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
206 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
207 		long nr_pages, void **kaddr, pfn_t *pfn)
208 {
209 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
210 
211 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
212 					PFN_PHYS(nr_pages))))
213 		return -EIO;
214 	*kaddr = pmem->virt_addr + offset;
215 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
216 
217 	/*
218 	 * If badblocks are present, limit known good range to the
219 	 * requested range.
220 	 */
221 	if (unlikely(pmem->bb.count))
222 		return nr_pages;
223 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
224 }
225 
226 static const struct block_device_operations pmem_fops = {
227 	.owner =		THIS_MODULE,
228 	.rw_page =		pmem_rw_page,
229 	.revalidate_disk =	nvdimm_revalidate_disk,
230 };
231 
232 static long pmem_dax_direct_access(struct dax_device *dax_dev,
233 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
234 {
235 	struct pmem_device *pmem = dax_get_private(dax_dev);
236 
237 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
238 }
239 
240 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
241 		void *addr, size_t bytes, struct iov_iter *i)
242 {
243 	return copy_from_iter_flushcache(addr, bytes, i);
244 }
245 
246 static void pmem_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff,
247 		void *addr, size_t size)
248 {
249 	arch_wb_cache_pmem(addr, size);
250 }
251 
252 static const struct dax_operations pmem_dax_ops = {
253 	.direct_access = pmem_dax_direct_access,
254 	.copy_from_iter = pmem_copy_from_iter,
255 	.flush = pmem_dax_flush,
256 };
257 
258 static const struct attribute_group *pmem_attribute_groups[] = {
259 	&dax_attribute_group,
260 	NULL,
261 };
262 
263 static void pmem_release_queue(void *q)
264 {
265 	blk_cleanup_queue(q);
266 }
267 
268 static void pmem_freeze_queue(void *q)
269 {
270 	blk_freeze_queue_start(q);
271 }
272 
273 static void pmem_release_disk(void *__pmem)
274 {
275 	struct pmem_device *pmem = __pmem;
276 
277 	kill_dax(pmem->dax_dev);
278 	put_dax(pmem->dax_dev);
279 	del_gendisk(pmem->disk);
280 	put_disk(pmem->disk);
281 }
282 
283 static int pmem_attach_disk(struct device *dev,
284 		struct nd_namespace_common *ndns)
285 {
286 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
287 	struct nd_region *nd_region = to_nd_region(dev->parent);
288 	struct vmem_altmap __altmap, *altmap = NULL;
289 	int nid = dev_to_node(dev), fua, wbc;
290 	struct resource *res = &nsio->res;
291 	struct nd_pfn *nd_pfn = NULL;
292 	struct dax_device *dax_dev;
293 	struct nd_pfn_sb *pfn_sb;
294 	struct pmem_device *pmem;
295 	struct resource pfn_res;
296 	struct request_queue *q;
297 	struct device *gendev;
298 	struct gendisk *disk;
299 	void *addr;
300 
301 	/* while nsio_rw_bytes is active, parse a pfn info block if present */
302 	if (is_nd_pfn(dev)) {
303 		nd_pfn = to_nd_pfn(dev);
304 		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
305 		if (IS_ERR(altmap))
306 			return PTR_ERR(altmap);
307 	}
308 
309 	/* we're attaching a block device, disable raw namespace access */
310 	devm_nsio_disable(dev, nsio);
311 
312 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
313 	if (!pmem)
314 		return -ENOMEM;
315 
316 	dev_set_drvdata(dev, pmem);
317 	pmem->phys_addr = res->start;
318 	pmem->size = resource_size(res);
319 	fua = nvdimm_has_flush(nd_region);
320 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
321 		dev_warn(dev, "unable to guarantee persistence of writes\n");
322 		fua = 0;
323 	}
324 	wbc = nvdimm_has_cache(nd_region);
325 
326 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
327 				dev_name(&ndns->dev))) {
328 		dev_warn(dev, "could not reserve region %pR\n", res);
329 		return -EBUSY;
330 	}
331 
332 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
333 	if (!q)
334 		return -ENOMEM;
335 
336 	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
337 		return -ENOMEM;
338 
339 	pmem->pfn_flags = PFN_DEV;
340 	if (is_nd_pfn(dev)) {
341 		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
342 				altmap);
343 		pfn_sb = nd_pfn->pfn_sb;
344 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
345 		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
346 		pmem->pfn_flags |= PFN_MAP;
347 		res = &pfn_res; /* for badblocks populate */
348 		res->start += pmem->data_offset;
349 	} else if (pmem_should_map_pages(dev)) {
350 		addr = devm_memremap_pages(dev, &nsio->res,
351 				&q->q_usage_counter, NULL);
352 		pmem->pfn_flags |= PFN_MAP;
353 	} else
354 		addr = devm_memremap(dev, pmem->phys_addr,
355 				pmem->size, ARCH_MEMREMAP_PMEM);
356 
357 	/*
358 	 * At release time the queue must be frozen before
359 	 * devm_memremap_pages is unwound
360 	 */
361 	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
362 		return -ENOMEM;
363 
364 	if (IS_ERR(addr))
365 		return PTR_ERR(addr);
366 	pmem->virt_addr = addr;
367 
368 	blk_queue_write_cache(q, wbc, fua);
369 	blk_queue_make_request(q, pmem_make_request);
370 	blk_queue_physical_block_size(q, PAGE_SIZE);
371 	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
372 	blk_queue_max_hw_sectors(q, UINT_MAX);
373 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
374 	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
375 	q->queuedata = pmem;
376 
377 	disk = alloc_disk_node(0, nid);
378 	if (!disk)
379 		return -ENOMEM;
380 	pmem->disk = disk;
381 
382 	disk->fops		= &pmem_fops;
383 	disk->queue		= q;
384 	disk->flags		= GENHD_FL_EXT_DEVT;
385 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
386 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
387 			/ 512);
388 	if (devm_init_badblocks(dev, &pmem->bb))
389 		return -ENOMEM;
390 	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
391 	disk->bb = &pmem->bb;
392 
393 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
394 	if (!dax_dev) {
395 		put_disk(disk);
396 		return -ENOMEM;
397 	}
398 	dax_write_cache(dax_dev, wbc);
399 	pmem->dax_dev = dax_dev;
400 
401 	gendev = disk_to_dev(disk);
402 	gendev->groups = pmem_attribute_groups;
403 
404 	device_add_disk(dev, disk);
405 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
406 		return -ENOMEM;
407 
408 	revalidate_disk(disk);
409 
410 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
411 					  "badblocks");
412 	if (!pmem->bb_state)
413 		dev_warn(dev, "'badblocks' notification disabled\n");
414 
415 	return 0;
416 }
417 
418 static int nd_pmem_probe(struct device *dev)
419 {
420 	struct nd_namespace_common *ndns;
421 
422 	ndns = nvdimm_namespace_common_probe(dev);
423 	if (IS_ERR(ndns))
424 		return PTR_ERR(ndns);
425 
426 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
427 		return -ENXIO;
428 
429 	if (is_nd_btt(dev))
430 		return nvdimm_namespace_attach_btt(ndns);
431 
432 	if (is_nd_pfn(dev))
433 		return pmem_attach_disk(dev, ndns);
434 
435 	/* if we find a valid info-block we'll come back as that personality */
436 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
437 			|| nd_dax_probe(dev, ndns) == 0)
438 		return -ENXIO;
439 
440 	/* ...otherwise we're just a raw pmem device */
441 	return pmem_attach_disk(dev, ndns);
442 }
443 
444 static int nd_pmem_remove(struct device *dev)
445 {
446 	struct pmem_device *pmem = dev_get_drvdata(dev);
447 
448 	if (is_nd_btt(dev))
449 		nvdimm_namespace_detach_btt(to_nd_btt(dev));
450 	else {
451 		/*
452 		 * Note, this assumes device_lock() context to not race
453 		 * nd_pmem_notify()
454 		 */
455 		sysfs_put(pmem->bb_state);
456 		pmem->bb_state = NULL;
457 	}
458 	nvdimm_flush(to_nd_region(dev->parent));
459 
460 	return 0;
461 }
462 
463 static void nd_pmem_shutdown(struct device *dev)
464 {
465 	nvdimm_flush(to_nd_region(dev->parent));
466 }
467 
468 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
469 {
470 	struct nd_region *nd_region;
471 	resource_size_t offset = 0, end_trunc = 0;
472 	struct nd_namespace_common *ndns;
473 	struct nd_namespace_io *nsio;
474 	struct resource res;
475 	struct badblocks *bb;
476 	struct kernfs_node *bb_state;
477 
478 	if (event != NVDIMM_REVALIDATE_POISON)
479 		return;
480 
481 	if (is_nd_btt(dev)) {
482 		struct nd_btt *nd_btt = to_nd_btt(dev);
483 
484 		ndns = nd_btt->ndns;
485 		nd_region = to_nd_region(ndns->dev.parent);
486 		nsio = to_nd_namespace_io(&ndns->dev);
487 		bb = &nsio->bb;
488 		bb_state = NULL;
489 	} else {
490 		struct pmem_device *pmem = dev_get_drvdata(dev);
491 
492 		nd_region = to_region(pmem);
493 		bb = &pmem->bb;
494 		bb_state = pmem->bb_state;
495 
496 		if (is_nd_pfn(dev)) {
497 			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
498 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
499 
500 			ndns = nd_pfn->ndns;
501 			offset = pmem->data_offset +
502 					__le32_to_cpu(pfn_sb->start_pad);
503 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
504 		} else {
505 			ndns = to_ndns(dev);
506 		}
507 
508 		nsio = to_nd_namespace_io(&ndns->dev);
509 	}
510 
511 	res.start = nsio->res.start + offset;
512 	res.end = nsio->res.end - end_trunc;
513 	nvdimm_badblocks_populate(nd_region, bb, &res);
514 	if (bb_state)
515 		sysfs_notify_dirent(bb_state);
516 }
517 
518 MODULE_ALIAS("pmem");
519 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
520 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
521 static struct nd_device_driver nd_pmem_driver = {
522 	.probe = nd_pmem_probe,
523 	.remove = nd_pmem_remove,
524 	.notify = nd_pmem_notify,
525 	.shutdown = nd_pmem_shutdown,
526 	.drv = {
527 		.name = "nd_pmem",
528 	},
529 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
530 };
531 
532 static int __init pmem_init(void)
533 {
534 	return nd_driver_register(&nd_pmem_driver);
535 }
536 module_init(pmem_init);
537 
538 static void pmem_exit(void)
539 {
540 	driver_unregister(&nd_pmem_driver.drv);
541 }
542 module_exit(pmem_exit);
543 
544 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
545 MODULE_LICENSE("GPL v2");
546