1 /* 2 * Persistent Memory Driver 3 * 4 * Copyright (c) 2014-2015, Intel Corporation. 5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. 6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms and conditions of the GNU General Public License, 10 * version 2, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 */ 17 18 #include <asm/cacheflush.h> 19 #include <linux/blkdev.h> 20 #include <linux/hdreg.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/badblocks.h> 26 #include <linux/memremap.h> 27 #include <linux/vmalloc.h> 28 #include <linux/blk-mq.h> 29 #include <linux/pfn_t.h> 30 #include <linux/slab.h> 31 #include <linux/uio.h> 32 #include <linux/dax.h> 33 #include <linux/nd.h> 34 #include "pmem.h" 35 #include "pfn.h" 36 #include "nd.h" 37 38 static struct device *to_dev(struct pmem_device *pmem) 39 { 40 /* 41 * nvdimm bus services need a 'dev' parameter, and we record the device 42 * at init in bb.dev. 43 */ 44 return pmem->bb.dev; 45 } 46 47 static struct nd_region *to_region(struct pmem_device *pmem) 48 { 49 return to_nd_region(to_dev(pmem)->parent); 50 } 51 52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem, 53 phys_addr_t offset, unsigned int len) 54 { 55 struct device *dev = to_dev(pmem); 56 sector_t sector; 57 long cleared; 58 blk_status_t rc = BLK_STS_OK; 59 60 sector = (offset - pmem->data_offset) / 512; 61 62 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); 63 if (cleared < len) 64 rc = BLK_STS_IOERR; 65 if (cleared > 0 && cleared / 512) { 66 cleared /= 512; 67 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__, 68 (unsigned long long) sector, cleared, 69 cleared > 1 ? "s" : ""); 70 badblocks_clear(&pmem->bb, sector, cleared); 71 if (pmem->bb_state) 72 sysfs_notify_dirent(pmem->bb_state); 73 } 74 75 arch_invalidate_pmem(pmem->virt_addr + offset, len); 76 77 return rc; 78 } 79 80 static void write_pmem(void *pmem_addr, struct page *page, 81 unsigned int off, unsigned int len) 82 { 83 void *mem = kmap_atomic(page); 84 85 memcpy_flushcache(pmem_addr, mem + off, len); 86 kunmap_atomic(mem); 87 } 88 89 static blk_status_t read_pmem(struct page *page, unsigned int off, 90 void *pmem_addr, unsigned int len) 91 { 92 int rc; 93 void *mem = kmap_atomic(page); 94 95 rc = memcpy_mcsafe(mem + off, pmem_addr, len); 96 kunmap_atomic(mem); 97 if (rc) 98 return BLK_STS_IOERR; 99 return BLK_STS_OK; 100 } 101 102 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page, 103 unsigned int len, unsigned int off, bool is_write, 104 sector_t sector) 105 { 106 blk_status_t rc = BLK_STS_OK; 107 bool bad_pmem = false; 108 phys_addr_t pmem_off = sector * 512 + pmem->data_offset; 109 void *pmem_addr = pmem->virt_addr + pmem_off; 110 111 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) 112 bad_pmem = true; 113 114 if (!is_write) { 115 if (unlikely(bad_pmem)) 116 rc = BLK_STS_IOERR; 117 else { 118 rc = read_pmem(page, off, pmem_addr, len); 119 flush_dcache_page(page); 120 } 121 } else { 122 /* 123 * Note that we write the data both before and after 124 * clearing poison. The write before clear poison 125 * handles situations where the latest written data is 126 * preserved and the clear poison operation simply marks 127 * the address range as valid without changing the data. 128 * In this case application software can assume that an 129 * interrupted write will either return the new good 130 * data or an error. 131 * 132 * However, if pmem_clear_poison() leaves the data in an 133 * indeterminate state we need to perform the write 134 * after clear poison. 135 */ 136 flush_dcache_page(page); 137 write_pmem(pmem_addr, page, off, len); 138 if (unlikely(bad_pmem)) { 139 rc = pmem_clear_poison(pmem, pmem_off, len); 140 write_pmem(pmem_addr, page, off, len); 141 } 142 } 143 144 return rc; 145 } 146 147 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */ 148 #ifndef REQ_FLUSH 149 #define REQ_FLUSH REQ_PREFLUSH 150 #endif 151 152 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) 153 { 154 blk_status_t rc = 0; 155 bool do_acct; 156 unsigned long start; 157 struct bio_vec bvec; 158 struct bvec_iter iter; 159 struct pmem_device *pmem = q->queuedata; 160 struct nd_region *nd_region = to_region(pmem); 161 162 if (bio->bi_opf & REQ_FLUSH) 163 nvdimm_flush(nd_region); 164 165 do_acct = nd_iostat_start(bio, &start); 166 bio_for_each_segment(bvec, bio, iter) { 167 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, 168 bvec.bv_offset, op_is_write(bio_op(bio)), 169 iter.bi_sector); 170 if (rc) { 171 bio->bi_status = rc; 172 break; 173 } 174 } 175 if (do_acct) 176 nd_iostat_end(bio, start); 177 178 if (bio->bi_opf & REQ_FUA) 179 nvdimm_flush(nd_region); 180 181 bio_endio(bio); 182 return BLK_QC_T_NONE; 183 } 184 185 static int pmem_rw_page(struct block_device *bdev, sector_t sector, 186 struct page *page, bool is_write) 187 { 188 struct pmem_device *pmem = bdev->bd_queue->queuedata; 189 blk_status_t rc; 190 191 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector); 192 193 /* 194 * The ->rw_page interface is subtle and tricky. The core 195 * retries on any error, so we can only invoke page_endio() in 196 * the successful completion case. Otherwise, we'll see crashes 197 * caused by double completion. 198 */ 199 if (rc == 0) 200 page_endio(page, is_write, 0); 201 202 return blk_status_to_errno(rc); 203 } 204 205 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ 206 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, 207 long nr_pages, void **kaddr, pfn_t *pfn) 208 { 209 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; 210 211 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, 212 PFN_PHYS(nr_pages)))) 213 return -EIO; 214 *kaddr = pmem->virt_addr + offset; 215 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); 216 217 /* 218 * If badblocks are present, limit known good range to the 219 * requested range. 220 */ 221 if (unlikely(pmem->bb.count)) 222 return nr_pages; 223 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); 224 } 225 226 static const struct block_device_operations pmem_fops = { 227 .owner = THIS_MODULE, 228 .rw_page = pmem_rw_page, 229 .revalidate_disk = nvdimm_revalidate_disk, 230 }; 231 232 static long pmem_dax_direct_access(struct dax_device *dax_dev, 233 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 234 { 235 struct pmem_device *pmem = dax_get_private(dax_dev); 236 237 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); 238 } 239 240 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 241 void *addr, size_t bytes, struct iov_iter *i) 242 { 243 return copy_from_iter_flushcache(addr, bytes, i); 244 } 245 246 static void pmem_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff, 247 void *addr, size_t size) 248 { 249 arch_wb_cache_pmem(addr, size); 250 } 251 252 static const struct dax_operations pmem_dax_ops = { 253 .direct_access = pmem_dax_direct_access, 254 .copy_from_iter = pmem_copy_from_iter, 255 .flush = pmem_dax_flush, 256 }; 257 258 static const struct attribute_group *pmem_attribute_groups[] = { 259 &dax_attribute_group, 260 NULL, 261 }; 262 263 static void pmem_release_queue(void *q) 264 { 265 blk_cleanup_queue(q); 266 } 267 268 static void pmem_freeze_queue(void *q) 269 { 270 blk_freeze_queue_start(q); 271 } 272 273 static void pmem_release_disk(void *__pmem) 274 { 275 struct pmem_device *pmem = __pmem; 276 277 kill_dax(pmem->dax_dev); 278 put_dax(pmem->dax_dev); 279 del_gendisk(pmem->disk); 280 put_disk(pmem->disk); 281 } 282 283 static int pmem_attach_disk(struct device *dev, 284 struct nd_namespace_common *ndns) 285 { 286 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); 287 struct nd_region *nd_region = to_nd_region(dev->parent); 288 struct vmem_altmap __altmap, *altmap = NULL; 289 int nid = dev_to_node(dev), fua, wbc; 290 struct resource *res = &nsio->res; 291 struct nd_pfn *nd_pfn = NULL; 292 struct dax_device *dax_dev; 293 struct nd_pfn_sb *pfn_sb; 294 struct pmem_device *pmem; 295 struct resource pfn_res; 296 struct request_queue *q; 297 struct device *gendev; 298 struct gendisk *disk; 299 void *addr; 300 301 /* while nsio_rw_bytes is active, parse a pfn info block if present */ 302 if (is_nd_pfn(dev)) { 303 nd_pfn = to_nd_pfn(dev); 304 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap); 305 if (IS_ERR(altmap)) 306 return PTR_ERR(altmap); 307 } 308 309 /* we're attaching a block device, disable raw namespace access */ 310 devm_nsio_disable(dev, nsio); 311 312 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); 313 if (!pmem) 314 return -ENOMEM; 315 316 dev_set_drvdata(dev, pmem); 317 pmem->phys_addr = res->start; 318 pmem->size = resource_size(res); 319 fua = nvdimm_has_flush(nd_region); 320 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { 321 dev_warn(dev, "unable to guarantee persistence of writes\n"); 322 fua = 0; 323 } 324 wbc = nvdimm_has_cache(nd_region); 325 326 if (!devm_request_mem_region(dev, res->start, resource_size(res), 327 dev_name(&ndns->dev))) { 328 dev_warn(dev, "could not reserve region %pR\n", res); 329 return -EBUSY; 330 } 331 332 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev)); 333 if (!q) 334 return -ENOMEM; 335 336 if (devm_add_action_or_reset(dev, pmem_release_queue, q)) 337 return -ENOMEM; 338 339 pmem->pfn_flags = PFN_DEV; 340 if (is_nd_pfn(dev)) { 341 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter, 342 altmap); 343 pfn_sb = nd_pfn->pfn_sb; 344 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); 345 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res); 346 pmem->pfn_flags |= PFN_MAP; 347 res = &pfn_res; /* for badblocks populate */ 348 res->start += pmem->data_offset; 349 } else if (pmem_should_map_pages(dev)) { 350 addr = devm_memremap_pages(dev, &nsio->res, 351 &q->q_usage_counter, NULL); 352 pmem->pfn_flags |= PFN_MAP; 353 } else 354 addr = devm_memremap(dev, pmem->phys_addr, 355 pmem->size, ARCH_MEMREMAP_PMEM); 356 357 /* 358 * At release time the queue must be frozen before 359 * devm_memremap_pages is unwound 360 */ 361 if (devm_add_action_or_reset(dev, pmem_freeze_queue, q)) 362 return -ENOMEM; 363 364 if (IS_ERR(addr)) 365 return PTR_ERR(addr); 366 pmem->virt_addr = addr; 367 368 blk_queue_write_cache(q, wbc, fua); 369 blk_queue_make_request(q, pmem_make_request); 370 blk_queue_physical_block_size(q, PAGE_SIZE); 371 blk_queue_logical_block_size(q, pmem_sector_size(ndns)); 372 blk_queue_max_hw_sectors(q, UINT_MAX); 373 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 374 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q); 375 q->queuedata = pmem; 376 377 disk = alloc_disk_node(0, nid); 378 if (!disk) 379 return -ENOMEM; 380 pmem->disk = disk; 381 382 disk->fops = &pmem_fops; 383 disk->queue = q; 384 disk->flags = GENHD_FL_EXT_DEVT; 385 nvdimm_namespace_disk_name(ndns, disk->disk_name); 386 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) 387 / 512); 388 if (devm_init_badblocks(dev, &pmem->bb)) 389 return -ENOMEM; 390 nvdimm_badblocks_populate(nd_region, &pmem->bb, res); 391 disk->bb = &pmem->bb; 392 393 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops); 394 if (!dax_dev) { 395 put_disk(disk); 396 return -ENOMEM; 397 } 398 dax_write_cache(dax_dev, wbc); 399 pmem->dax_dev = dax_dev; 400 401 gendev = disk_to_dev(disk); 402 gendev->groups = pmem_attribute_groups; 403 404 device_add_disk(dev, disk); 405 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) 406 return -ENOMEM; 407 408 revalidate_disk(disk); 409 410 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, 411 "badblocks"); 412 if (!pmem->bb_state) 413 dev_warn(dev, "'badblocks' notification disabled\n"); 414 415 return 0; 416 } 417 418 static int nd_pmem_probe(struct device *dev) 419 { 420 struct nd_namespace_common *ndns; 421 422 ndns = nvdimm_namespace_common_probe(dev); 423 if (IS_ERR(ndns)) 424 return PTR_ERR(ndns); 425 426 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev))) 427 return -ENXIO; 428 429 if (is_nd_btt(dev)) 430 return nvdimm_namespace_attach_btt(ndns); 431 432 if (is_nd_pfn(dev)) 433 return pmem_attach_disk(dev, ndns); 434 435 /* if we find a valid info-block we'll come back as that personality */ 436 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0 437 || nd_dax_probe(dev, ndns) == 0) 438 return -ENXIO; 439 440 /* ...otherwise we're just a raw pmem device */ 441 return pmem_attach_disk(dev, ndns); 442 } 443 444 static int nd_pmem_remove(struct device *dev) 445 { 446 struct pmem_device *pmem = dev_get_drvdata(dev); 447 448 if (is_nd_btt(dev)) 449 nvdimm_namespace_detach_btt(to_nd_btt(dev)); 450 else { 451 /* 452 * Note, this assumes device_lock() context to not race 453 * nd_pmem_notify() 454 */ 455 sysfs_put(pmem->bb_state); 456 pmem->bb_state = NULL; 457 } 458 nvdimm_flush(to_nd_region(dev->parent)); 459 460 return 0; 461 } 462 463 static void nd_pmem_shutdown(struct device *dev) 464 { 465 nvdimm_flush(to_nd_region(dev->parent)); 466 } 467 468 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) 469 { 470 struct nd_region *nd_region; 471 resource_size_t offset = 0, end_trunc = 0; 472 struct nd_namespace_common *ndns; 473 struct nd_namespace_io *nsio; 474 struct resource res; 475 struct badblocks *bb; 476 struct kernfs_node *bb_state; 477 478 if (event != NVDIMM_REVALIDATE_POISON) 479 return; 480 481 if (is_nd_btt(dev)) { 482 struct nd_btt *nd_btt = to_nd_btt(dev); 483 484 ndns = nd_btt->ndns; 485 nd_region = to_nd_region(ndns->dev.parent); 486 nsio = to_nd_namespace_io(&ndns->dev); 487 bb = &nsio->bb; 488 bb_state = NULL; 489 } else { 490 struct pmem_device *pmem = dev_get_drvdata(dev); 491 492 nd_region = to_region(pmem); 493 bb = &pmem->bb; 494 bb_state = pmem->bb_state; 495 496 if (is_nd_pfn(dev)) { 497 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 498 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; 499 500 ndns = nd_pfn->ndns; 501 offset = pmem->data_offset + 502 __le32_to_cpu(pfn_sb->start_pad); 503 end_trunc = __le32_to_cpu(pfn_sb->end_trunc); 504 } else { 505 ndns = to_ndns(dev); 506 } 507 508 nsio = to_nd_namespace_io(&ndns->dev); 509 } 510 511 res.start = nsio->res.start + offset; 512 res.end = nsio->res.end - end_trunc; 513 nvdimm_badblocks_populate(nd_region, bb, &res); 514 if (bb_state) 515 sysfs_notify_dirent(bb_state); 516 } 517 518 MODULE_ALIAS("pmem"); 519 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); 520 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); 521 static struct nd_device_driver nd_pmem_driver = { 522 .probe = nd_pmem_probe, 523 .remove = nd_pmem_remove, 524 .notify = nd_pmem_notify, 525 .shutdown = nd_pmem_shutdown, 526 .drv = { 527 .name = "nd_pmem", 528 }, 529 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, 530 }; 531 532 static int __init pmem_init(void) 533 { 534 return nd_driver_register(&nd_pmem_driver); 535 } 536 module_init(pmem_init); 537 538 static void pmem_exit(void) 539 { 540 driver_unregister(&nd_pmem_driver.drv); 541 } 542 module_exit(pmem_exit); 543 544 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); 545 MODULE_LICENSE("GPL v2"); 546