xref: /openbmc/linux/drivers/nvdimm/pmem.c (revision 3e26a691)
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34 
35 struct pmem_device {
36 	struct request_queue	*pmem_queue;
37 	struct gendisk		*pmem_disk;
38 	struct nd_namespace_common *ndns;
39 
40 	/* One contiguous memory region per device */
41 	phys_addr_t		phys_addr;
42 	/* when non-zero this device is hosting a 'pfn' instance */
43 	phys_addr_t		data_offset;
44 	u64			pfn_flags;
45 	void __pmem		*virt_addr;
46 	/* immutable base size of the namespace */
47 	size_t			size;
48 	/* trim size when namespace capacity has been section aligned */
49 	u32			pfn_pad;
50 	struct badblocks	bb;
51 };
52 
53 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
54 {
55 	if (bb->count) {
56 		sector_t first_bad;
57 		int num_bad;
58 
59 		return !!badblocks_check(bb, sector, len / 512, &first_bad,
60 				&num_bad);
61 	}
62 
63 	return false;
64 }
65 
66 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
67 		unsigned int len)
68 {
69 	struct device *dev = disk_to_dev(pmem->pmem_disk);
70 	sector_t sector;
71 	long cleared;
72 
73 	sector = (offset - pmem->data_offset) / 512;
74 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
75 
76 	if (cleared > 0 && cleared / 512) {
77 		dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
78 				__func__, (unsigned long long) sector,
79 				cleared / 512, cleared / 512 > 1 ? "s" : "");
80 		badblocks_clear(&pmem->bb, sector, cleared / 512);
81 	}
82 	invalidate_pmem(pmem->virt_addr + offset, len);
83 }
84 
85 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86 			unsigned int len, unsigned int off, int rw,
87 			sector_t sector)
88 {
89 	int rc = 0;
90 	bool bad_pmem = false;
91 	void *mem = kmap_atomic(page);
92 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93 	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
94 
95 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
96 		bad_pmem = true;
97 
98 	if (rw == READ) {
99 		if (unlikely(bad_pmem))
100 			rc = -EIO;
101 		else {
102 			memcpy_from_pmem(mem + off, pmem_addr, len);
103 			flush_dcache_page(page);
104 		}
105 	} else {
106 		flush_dcache_page(page);
107 		memcpy_to_pmem(pmem_addr, mem + off, len);
108 		if (unlikely(bad_pmem)) {
109 			pmem_clear_poison(pmem, pmem_off, len);
110 			memcpy_to_pmem(pmem_addr, mem + off, len);
111 		}
112 	}
113 
114 	kunmap_atomic(mem);
115 	return rc;
116 }
117 
118 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
119 {
120 	int rc = 0;
121 	bool do_acct;
122 	unsigned long start;
123 	struct bio_vec bvec;
124 	struct bvec_iter iter;
125 	struct block_device *bdev = bio->bi_bdev;
126 	struct pmem_device *pmem = bdev->bd_disk->private_data;
127 
128 	do_acct = nd_iostat_start(bio, &start);
129 	bio_for_each_segment(bvec, bio, iter) {
130 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
131 				bvec.bv_offset, bio_data_dir(bio),
132 				iter.bi_sector);
133 		if (rc) {
134 			bio->bi_error = rc;
135 			break;
136 		}
137 	}
138 	if (do_acct)
139 		nd_iostat_end(bio, start);
140 
141 	if (bio_data_dir(bio))
142 		wmb_pmem();
143 
144 	bio_endio(bio);
145 	return BLK_QC_T_NONE;
146 }
147 
148 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
149 		       struct page *page, int rw)
150 {
151 	struct pmem_device *pmem = bdev->bd_disk->private_data;
152 	int rc;
153 
154 	rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
155 	if (rw & WRITE)
156 		wmb_pmem();
157 
158 	/*
159 	 * The ->rw_page interface is subtle and tricky.  The core
160 	 * retries on any error, so we can only invoke page_endio() in
161 	 * the successful completion case.  Otherwise, we'll see crashes
162 	 * caused by double completion.
163 	 */
164 	if (rc == 0)
165 		page_endio(page, rw & WRITE, 0);
166 
167 	return rc;
168 }
169 
170 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
171 		      void __pmem **kaddr, pfn_t *pfn)
172 {
173 	struct pmem_device *pmem = bdev->bd_disk->private_data;
174 	resource_size_t offset = sector * 512 + pmem->data_offset;
175 
176 	*kaddr = pmem->virt_addr + offset;
177 	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
178 
179 	return pmem->size - pmem->pfn_pad - offset;
180 }
181 
182 static const struct block_device_operations pmem_fops = {
183 	.owner =		THIS_MODULE,
184 	.rw_page =		pmem_rw_page,
185 	.direct_access =	pmem_direct_access,
186 	.revalidate_disk =	nvdimm_revalidate_disk,
187 };
188 
189 static struct pmem_device *pmem_alloc(struct device *dev,
190 		struct resource *res, int id)
191 {
192 	struct pmem_device *pmem;
193 	struct request_queue *q;
194 
195 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
196 	if (!pmem)
197 		return ERR_PTR(-ENOMEM);
198 
199 	pmem->phys_addr = res->start;
200 	pmem->size = resource_size(res);
201 	if (!arch_has_wmb_pmem())
202 		dev_warn(dev, "unable to guarantee persistence of writes\n");
203 
204 	if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
205 			dev_name(dev))) {
206 		dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
207 				&pmem->phys_addr, pmem->size);
208 		return ERR_PTR(-EBUSY);
209 	}
210 
211 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
212 	if (!q)
213 		return ERR_PTR(-ENOMEM);
214 
215 	pmem->pfn_flags = PFN_DEV;
216 	if (pmem_should_map_pages(dev)) {
217 		pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
218 				&q->q_usage_counter, NULL);
219 		pmem->pfn_flags |= PFN_MAP;
220 	} else
221 		pmem->virt_addr = (void __pmem *) devm_memremap(dev,
222 				pmem->phys_addr, pmem->size,
223 				ARCH_MEMREMAP_PMEM);
224 
225 	if (IS_ERR(pmem->virt_addr)) {
226 		blk_cleanup_queue(q);
227 		return (void __force *) pmem->virt_addr;
228 	}
229 
230 	pmem->pmem_queue = q;
231 	return pmem;
232 }
233 
234 static void pmem_detach_disk(struct pmem_device *pmem)
235 {
236 	if (!pmem->pmem_disk)
237 		return;
238 
239 	del_gendisk(pmem->pmem_disk);
240 	put_disk(pmem->pmem_disk);
241 	blk_cleanup_queue(pmem->pmem_queue);
242 }
243 
244 static int pmem_attach_disk(struct device *dev,
245 		struct nd_namespace_common *ndns, struct pmem_device *pmem)
246 {
247 	int nid = dev_to_node(dev);
248 	struct gendisk *disk;
249 
250 	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
251 	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
252 	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
253 	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
254 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
255 
256 	disk = alloc_disk_node(0, nid);
257 	if (!disk) {
258 		blk_cleanup_queue(pmem->pmem_queue);
259 		return -ENOMEM;
260 	}
261 
262 	disk->fops		= &pmem_fops;
263 	disk->private_data	= pmem;
264 	disk->queue		= pmem->pmem_queue;
265 	disk->flags		= GENHD_FL_EXT_DEVT;
266 	nvdimm_namespace_disk_name(ndns, disk->disk_name);
267 	disk->driverfs_dev = dev;
268 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
269 			/ 512);
270 	pmem->pmem_disk = disk;
271 	devm_exit_badblocks(dev, &pmem->bb);
272 	if (devm_init_badblocks(dev, &pmem->bb))
273 		return -ENOMEM;
274 	nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
275 
276 	disk->bb = &pmem->bb;
277 	add_disk(disk);
278 	revalidate_disk(disk);
279 
280 	return 0;
281 }
282 
283 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
284 		resource_size_t offset, void *buf, size_t size, int rw)
285 {
286 	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
287 
288 	if (unlikely(offset + size > pmem->size)) {
289 		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
290 		return -EFAULT;
291 	}
292 
293 	if (rw == READ) {
294 		unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
295 
296 		if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
297 			return -EIO;
298 		memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
299 	} else {
300 		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
301 		wmb_pmem();
302 	}
303 
304 	return 0;
305 }
306 
307 static int nd_pfn_init(struct nd_pfn *nd_pfn)
308 {
309 	struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
310 	struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
311 	struct nd_namespace_common *ndns = nd_pfn->ndns;
312 	u32 start_pad = 0, end_trunc = 0;
313 	resource_size_t start, size;
314 	struct nd_namespace_io *nsio;
315 	struct nd_region *nd_region;
316 	unsigned long npfns;
317 	phys_addr_t offset;
318 	u64 checksum;
319 	int rc;
320 
321 	if (!pfn_sb)
322 		return -ENOMEM;
323 
324 	nd_pfn->pfn_sb = pfn_sb;
325 	rc = nd_pfn_validate(nd_pfn);
326 	if (rc == -ENODEV)
327 		/* no info block, do init */;
328 	else
329 		return rc;
330 
331 	nd_region = to_nd_region(nd_pfn->dev.parent);
332 	if (nd_region->ro) {
333 		dev_info(&nd_pfn->dev,
334 				"%s is read-only, unable to init metadata\n",
335 				dev_name(&nd_region->dev));
336 		goto err;
337 	}
338 
339 	memset(pfn_sb, 0, sizeof(*pfn_sb));
340 
341 	/*
342 	 * Check if pmem collides with 'System RAM' when section aligned and
343 	 * trim it accordingly
344 	 */
345 	nsio = to_nd_namespace_io(&ndns->dev);
346 	start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
347 	size = resource_size(&nsio->res);
348 	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
349 				IORES_DESC_NONE) == REGION_MIXED) {
350 
351 		start = nsio->res.start;
352 		start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
353 	}
354 
355 	start = nsio->res.start;
356 	size = PHYS_SECTION_ALIGN_UP(start + size) - start;
357 	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
358 				IORES_DESC_NONE) == REGION_MIXED) {
359 		size = resource_size(&nsio->res);
360 		end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
361 	}
362 
363 	if (start_pad + end_trunc)
364 		dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
365 				dev_name(&ndns->dev), start_pad + end_trunc);
366 
367 	/*
368 	 * Note, we use 64 here for the standard size of struct page,
369 	 * debugging options may cause it to be larger in which case the
370 	 * implementation will limit the pfns advertised through
371 	 * ->direct_access() to those that are included in the memmap.
372 	 */
373 	start += start_pad;
374 	npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
375 	if (nd_pfn->mode == PFN_MODE_PMEM)
376 		offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
377 			- start;
378 	else if (nd_pfn->mode == PFN_MODE_RAM)
379 		offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
380 	else
381 		goto err;
382 
383 	if (offset + start_pad + end_trunc >= pmem->size) {
384 		dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
385 				dev_name(&ndns->dev));
386 		goto err;
387 	}
388 
389 	npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
390 	pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
391 	pfn_sb->dataoff = cpu_to_le64(offset);
392 	pfn_sb->npfns = cpu_to_le64(npfns);
393 	memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
394 	memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
395 	memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
396 	pfn_sb->version_major = cpu_to_le16(1);
397 	pfn_sb->version_minor = cpu_to_le16(1);
398 	pfn_sb->start_pad = cpu_to_le32(start_pad);
399 	pfn_sb->end_trunc = cpu_to_le32(end_trunc);
400 	checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
401 	pfn_sb->checksum = cpu_to_le64(checksum);
402 
403 	rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
404 	if (rc)
405 		goto err;
406 
407 	return 0;
408  err:
409 	nd_pfn->pfn_sb = NULL;
410 	kfree(pfn_sb);
411 	return -ENXIO;
412 }
413 
414 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
415 {
416 	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
417 	struct pmem_device *pmem;
418 
419 	/* free pmem disk */
420 	pmem = dev_get_drvdata(&nd_pfn->dev);
421 	pmem_detach_disk(pmem);
422 
423 	/* release nd_pfn resources */
424 	kfree(nd_pfn->pfn_sb);
425 	nd_pfn->pfn_sb = NULL;
426 
427 	return 0;
428 }
429 
430 /*
431  * We hotplug memory at section granularity, pad the reserved area from
432  * the previous section base to the namespace base address.
433  */
434 static unsigned long init_altmap_base(resource_size_t base)
435 {
436 	unsigned long base_pfn = PHYS_PFN(base);
437 
438 	return PFN_SECTION_ALIGN_DOWN(base_pfn);
439 }
440 
441 static unsigned long init_altmap_reserve(resource_size_t base)
442 {
443 	unsigned long reserve = PHYS_PFN(SZ_8K);
444 	unsigned long base_pfn = PHYS_PFN(base);
445 
446 	reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
447 	return reserve;
448 }
449 
450 static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
451 {
452 	int rc;
453 	struct resource res;
454 	struct request_queue *q;
455 	struct pmem_device *pmem;
456 	struct vmem_altmap *altmap;
457 	struct device *dev = &nd_pfn->dev;
458 	struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
459 	struct nd_namespace_common *ndns = nd_pfn->ndns;
460 	u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
461 	u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
462 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
463 	resource_size_t base = nsio->res.start + start_pad;
464 	struct vmem_altmap __altmap = {
465 		.base_pfn = init_altmap_base(base),
466 		.reserve = init_altmap_reserve(base),
467 	};
468 
469 	pmem = dev_get_drvdata(dev);
470 	pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
471 	pmem->pfn_pad = start_pad + end_trunc;
472 	nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
473 	if (nd_pfn->mode == PFN_MODE_RAM) {
474 		if (pmem->data_offset < SZ_8K)
475 			return -EINVAL;
476 		nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
477 		altmap = NULL;
478 	} else if (nd_pfn->mode == PFN_MODE_PMEM) {
479 		nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
480 			/ PAGE_SIZE;
481 		if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
482 			dev_info(&nd_pfn->dev,
483 					"number of pfns truncated from %lld to %ld\n",
484 					le64_to_cpu(nd_pfn->pfn_sb->npfns),
485 					nd_pfn->npfns);
486 		altmap = & __altmap;
487 		altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
488 		altmap->alloc = 0;
489 	} else {
490 		rc = -ENXIO;
491 		goto err;
492 	}
493 
494 	/* establish pfn range for lookup, and switch to direct map */
495 	q = pmem->pmem_queue;
496 	memcpy(&res, &nsio->res, sizeof(res));
497 	res.start += start_pad;
498 	res.end -= end_trunc;
499 	devm_memunmap(dev, (void __force *) pmem->virt_addr);
500 	pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
501 			&q->q_usage_counter, altmap);
502 	pmem->pfn_flags |= PFN_MAP;
503 	if (IS_ERR(pmem->virt_addr)) {
504 		rc = PTR_ERR(pmem->virt_addr);
505 		goto err;
506 	}
507 
508 	/* attach pmem disk in "pfn-mode" */
509 	rc = pmem_attach_disk(dev, ndns, pmem);
510 	if (rc)
511 		goto err;
512 
513 	return rc;
514  err:
515 	nvdimm_namespace_detach_pfn(ndns);
516 	return rc;
517 
518 }
519 
520 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
521 {
522 	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
523 	int rc;
524 
525 	if (!nd_pfn->uuid || !nd_pfn->ndns)
526 		return -ENODEV;
527 
528 	rc = nd_pfn_init(nd_pfn);
529 	if (rc)
530 		return rc;
531 	/* we need a valid pfn_sb before we can init a vmem_altmap */
532 	return __nvdimm_namespace_attach_pfn(nd_pfn);
533 }
534 
535 static int nd_pmem_probe(struct device *dev)
536 {
537 	struct nd_region *nd_region = to_nd_region(dev->parent);
538 	struct nd_namespace_common *ndns;
539 	struct nd_namespace_io *nsio;
540 	struct pmem_device *pmem;
541 
542 	ndns = nvdimm_namespace_common_probe(dev);
543 	if (IS_ERR(ndns))
544 		return PTR_ERR(ndns);
545 
546 	nsio = to_nd_namespace_io(&ndns->dev);
547 	pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
548 	if (IS_ERR(pmem))
549 		return PTR_ERR(pmem);
550 
551 	pmem->ndns = ndns;
552 	dev_set_drvdata(dev, pmem);
553 	ndns->rw_bytes = pmem_rw_bytes;
554 	if (devm_init_badblocks(dev, &pmem->bb))
555 		return -ENOMEM;
556 	nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
557 
558 	if (is_nd_btt(dev)) {
559 		/* btt allocates its own request_queue */
560 		blk_cleanup_queue(pmem->pmem_queue);
561 		pmem->pmem_queue = NULL;
562 		return nvdimm_namespace_attach_btt(ndns);
563 	}
564 
565 	if (is_nd_pfn(dev))
566 		return nvdimm_namespace_attach_pfn(ndns);
567 
568 	if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
569 		/*
570 		 * We'll come back as either btt-pmem, or pfn-pmem, so
571 		 * drop the queue allocation for now.
572 		 */
573 		blk_cleanup_queue(pmem->pmem_queue);
574 		return -ENXIO;
575 	}
576 
577 	return pmem_attach_disk(dev, ndns, pmem);
578 }
579 
580 static int nd_pmem_remove(struct device *dev)
581 {
582 	struct pmem_device *pmem = dev_get_drvdata(dev);
583 
584 	if (is_nd_btt(dev))
585 		nvdimm_namespace_detach_btt(pmem->ndns);
586 	else if (is_nd_pfn(dev))
587 		nvdimm_namespace_detach_pfn(pmem->ndns);
588 	else
589 		pmem_detach_disk(pmem);
590 
591 	return 0;
592 }
593 
594 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
595 {
596 	struct pmem_device *pmem = dev_get_drvdata(dev);
597 	struct nd_namespace_common *ndns = pmem->ndns;
598 
599 	if (event != NVDIMM_REVALIDATE_POISON)
600 		return;
601 
602 	if (is_nd_btt(dev))
603 		nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
604 	else
605 		nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
606 }
607 
608 MODULE_ALIAS("pmem");
609 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
610 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
611 static struct nd_device_driver nd_pmem_driver = {
612 	.probe = nd_pmem_probe,
613 	.remove = nd_pmem_remove,
614 	.notify = nd_pmem_notify,
615 	.drv = {
616 		.name = "nd_pmem",
617 	},
618 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
619 };
620 
621 static int __init pmem_init(void)
622 {
623 	return nd_driver_register(&nd_pmem_driver);
624 }
625 module_init(pmem_init);
626 
627 static void pmem_exit(void)
628 {
629 	driver_unregister(&nd_pmem_driver.drv);
630 }
631 module_exit(pmem_exit);
632 
633 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
634 MODULE_LICENSE("GPL v2");
635