1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 #include <linux/vmalloc.h> 15 #include <linux/device.h> 16 #include <linux/ndctl.h> 17 #include <linux/slab.h> 18 #include <linux/io.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include "nd-core.h" 22 #include "label.h" 23 #include "nd.h" 24 25 static DEFINE_IDA(dimm_ida); 26 27 /* 28 * Retrieve bus and dimm handle and return if this bus supports 29 * get_config_data commands 30 */ 31 int nvdimm_check_config_data(struct device *dev) 32 { 33 struct nvdimm *nvdimm = to_nvdimm(dev); 34 35 if (!nvdimm->cmd_mask || 36 !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) { 37 if (nvdimm->flags & NDD_ALIASING) 38 return -ENXIO; 39 else 40 return -ENOTTY; 41 } 42 43 return 0; 44 } 45 46 static int validate_dimm(struct nvdimm_drvdata *ndd) 47 { 48 int rc; 49 50 if (!ndd) 51 return -EINVAL; 52 53 rc = nvdimm_check_config_data(ndd->dev); 54 if (rc) 55 dev_dbg(ndd->dev, "%pf: %s error: %d\n", 56 __builtin_return_address(0), __func__, rc); 57 return rc; 58 } 59 60 /** 61 * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area 62 * @nvdimm: dimm to initialize 63 */ 64 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd) 65 { 66 struct nd_cmd_get_config_size *cmd = &ndd->nsarea; 67 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 68 struct nvdimm_bus_descriptor *nd_desc; 69 int rc = validate_dimm(ndd); 70 71 if (rc) 72 return rc; 73 74 if (cmd->config_size) 75 return 0; /* already valid */ 76 77 memset(cmd, 0, sizeof(*cmd)); 78 nd_desc = nvdimm_bus->nd_desc; 79 return nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 80 ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), NULL); 81 } 82 83 int nvdimm_init_config_data(struct nvdimm_drvdata *ndd) 84 { 85 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 86 struct nd_cmd_get_config_data_hdr *cmd; 87 struct nvdimm_bus_descriptor *nd_desc; 88 int rc = validate_dimm(ndd); 89 u32 max_cmd_size, config_size; 90 size_t offset; 91 92 if (rc) 93 return rc; 94 95 if (ndd->data) 96 return 0; 97 98 if (ndd->nsarea.status || ndd->nsarea.max_xfer == 0 99 || ndd->nsarea.config_size < ND_LABEL_MIN_SIZE) { 100 dev_dbg(ndd->dev, "failed to init config data area: (%d:%d)\n", 101 ndd->nsarea.max_xfer, ndd->nsarea.config_size); 102 return -ENXIO; 103 } 104 105 ndd->data = kmalloc(ndd->nsarea.config_size, GFP_KERNEL); 106 if (!ndd->data) 107 ndd->data = vmalloc(ndd->nsarea.config_size); 108 109 if (!ndd->data) 110 return -ENOMEM; 111 112 max_cmd_size = min_t(u32, PAGE_SIZE, ndd->nsarea.max_xfer); 113 cmd = kzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL); 114 if (!cmd) 115 return -ENOMEM; 116 117 nd_desc = nvdimm_bus->nd_desc; 118 for (config_size = ndd->nsarea.config_size, offset = 0; 119 config_size; config_size -= cmd->in_length, 120 offset += cmd->in_length) { 121 cmd->in_length = min(config_size, max_cmd_size); 122 cmd->in_offset = offset; 123 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 124 ND_CMD_GET_CONFIG_DATA, cmd, 125 cmd->in_length + sizeof(*cmd), NULL); 126 if (rc || cmd->status) { 127 rc = -ENXIO; 128 break; 129 } 130 memcpy(ndd->data + offset, cmd->out_buf, cmd->in_length); 131 } 132 dev_dbg(ndd->dev, "%s: len: %zu rc: %d\n", __func__, offset, rc); 133 kfree(cmd); 134 135 return rc; 136 } 137 138 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset, 139 void *buf, size_t len) 140 { 141 int rc = validate_dimm(ndd); 142 size_t max_cmd_size, buf_offset; 143 struct nd_cmd_set_config_hdr *cmd; 144 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 145 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 146 147 if (rc) 148 return rc; 149 150 if (!ndd->data) 151 return -ENXIO; 152 153 if (offset + len > ndd->nsarea.config_size) 154 return -ENXIO; 155 156 max_cmd_size = min_t(u32, PAGE_SIZE, len); 157 max_cmd_size = min_t(u32, max_cmd_size, ndd->nsarea.max_xfer); 158 cmd = kzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL); 159 if (!cmd) 160 return -ENOMEM; 161 162 for (buf_offset = 0; len; len -= cmd->in_length, 163 buf_offset += cmd->in_length) { 164 size_t cmd_size; 165 u32 *status; 166 167 cmd->in_offset = offset + buf_offset; 168 cmd->in_length = min(max_cmd_size, len); 169 memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length); 170 171 /* status is output in the last 4-bytes of the command buffer */ 172 cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32); 173 status = ((void *) cmd) + cmd_size - sizeof(u32); 174 175 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 176 ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, NULL); 177 if (rc || *status) { 178 rc = rc ? rc : -ENXIO; 179 break; 180 } 181 } 182 kfree(cmd); 183 184 return rc; 185 } 186 187 void nvdimm_set_aliasing(struct device *dev) 188 { 189 struct nvdimm *nvdimm = to_nvdimm(dev); 190 191 nvdimm->flags |= NDD_ALIASING; 192 } 193 194 static void nvdimm_release(struct device *dev) 195 { 196 struct nvdimm *nvdimm = to_nvdimm(dev); 197 198 ida_simple_remove(&dimm_ida, nvdimm->id); 199 kfree(nvdimm); 200 } 201 202 static struct device_type nvdimm_device_type = { 203 .name = "nvdimm", 204 .release = nvdimm_release, 205 }; 206 207 bool is_nvdimm(struct device *dev) 208 { 209 return dev->type == &nvdimm_device_type; 210 } 211 212 struct nvdimm *to_nvdimm(struct device *dev) 213 { 214 struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev); 215 216 WARN_ON(!is_nvdimm(dev)); 217 return nvdimm; 218 } 219 EXPORT_SYMBOL_GPL(to_nvdimm); 220 221 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr) 222 { 223 struct nd_region *nd_region = &ndbr->nd_region; 224 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 225 226 return nd_mapping->nvdimm; 227 } 228 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm); 229 230 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping) 231 { 232 struct nvdimm *nvdimm = nd_mapping->nvdimm; 233 234 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 235 236 return dev_get_drvdata(&nvdimm->dev); 237 } 238 EXPORT_SYMBOL(to_ndd); 239 240 void nvdimm_drvdata_release(struct kref *kref) 241 { 242 struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref); 243 struct device *dev = ndd->dev; 244 struct resource *res, *_r; 245 246 dev_dbg(dev, "%s\n", __func__); 247 248 nvdimm_bus_lock(dev); 249 for_each_dpa_resource_safe(ndd, res, _r) 250 nvdimm_free_dpa(ndd, res); 251 nvdimm_bus_unlock(dev); 252 253 kvfree(ndd->data); 254 kfree(ndd); 255 put_device(dev); 256 } 257 258 void get_ndd(struct nvdimm_drvdata *ndd) 259 { 260 kref_get(&ndd->kref); 261 } 262 263 void put_ndd(struct nvdimm_drvdata *ndd) 264 { 265 if (ndd) 266 kref_put(&ndd->kref, nvdimm_drvdata_release); 267 } 268 269 const char *nvdimm_name(struct nvdimm *nvdimm) 270 { 271 return dev_name(&nvdimm->dev); 272 } 273 EXPORT_SYMBOL_GPL(nvdimm_name); 274 275 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm) 276 { 277 return &nvdimm->dev.kobj; 278 } 279 EXPORT_SYMBOL_GPL(nvdimm_kobj); 280 281 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm) 282 { 283 return nvdimm->cmd_mask; 284 } 285 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask); 286 287 void *nvdimm_provider_data(struct nvdimm *nvdimm) 288 { 289 if (nvdimm) 290 return nvdimm->provider_data; 291 return NULL; 292 } 293 EXPORT_SYMBOL_GPL(nvdimm_provider_data); 294 295 static ssize_t commands_show(struct device *dev, 296 struct device_attribute *attr, char *buf) 297 { 298 struct nvdimm *nvdimm = to_nvdimm(dev); 299 int cmd, len = 0; 300 301 if (!nvdimm->cmd_mask) 302 return sprintf(buf, "\n"); 303 304 for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG) 305 len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd)); 306 len += sprintf(buf + len, "\n"); 307 return len; 308 } 309 static DEVICE_ATTR_RO(commands); 310 311 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 312 char *buf) 313 { 314 struct nvdimm *nvdimm = to_nvdimm(dev); 315 316 /* 317 * The state may be in the process of changing, userspace should 318 * quiesce probing if it wants a static answer 319 */ 320 nvdimm_bus_lock(dev); 321 nvdimm_bus_unlock(dev); 322 return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy) 323 ? "active" : "idle"); 324 } 325 static DEVICE_ATTR_RO(state); 326 327 static ssize_t available_slots_show(struct device *dev, 328 struct device_attribute *attr, char *buf) 329 { 330 struct nvdimm_drvdata *ndd = dev_get_drvdata(dev); 331 ssize_t rc; 332 u32 nfree; 333 334 if (!ndd) 335 return -ENXIO; 336 337 nvdimm_bus_lock(dev); 338 nfree = nd_label_nfree(ndd); 339 if (nfree - 1 > nfree) { 340 dev_WARN_ONCE(dev, 1, "we ate our last label?\n"); 341 nfree = 0; 342 } else 343 nfree--; 344 rc = sprintf(buf, "%d\n", nfree); 345 nvdimm_bus_unlock(dev); 346 return rc; 347 } 348 static DEVICE_ATTR_RO(available_slots); 349 350 static struct attribute *nvdimm_attributes[] = { 351 &dev_attr_state.attr, 352 &dev_attr_commands.attr, 353 &dev_attr_available_slots.attr, 354 NULL, 355 }; 356 357 struct attribute_group nvdimm_attribute_group = { 358 .attrs = nvdimm_attributes, 359 }; 360 EXPORT_SYMBOL_GPL(nvdimm_attribute_group); 361 362 struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, 363 const struct attribute_group **groups, unsigned long flags, 364 unsigned long cmd_mask, int num_flush, 365 struct resource *flush_wpq) 366 { 367 struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); 368 struct device *dev; 369 370 if (!nvdimm) 371 return NULL; 372 373 nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL); 374 if (nvdimm->id < 0) { 375 kfree(nvdimm); 376 return NULL; 377 } 378 nvdimm->provider_data = provider_data; 379 nvdimm->flags = flags; 380 nvdimm->cmd_mask = cmd_mask; 381 nvdimm->num_flush = num_flush; 382 nvdimm->flush_wpq = flush_wpq; 383 atomic_set(&nvdimm->busy, 0); 384 dev = &nvdimm->dev; 385 dev_set_name(dev, "nmem%d", nvdimm->id); 386 dev->parent = &nvdimm_bus->dev; 387 dev->type = &nvdimm_device_type; 388 dev->devt = MKDEV(nvdimm_major, nvdimm->id); 389 dev->groups = groups; 390 nd_device_register(dev); 391 392 return nvdimm; 393 } 394 EXPORT_SYMBOL_GPL(nvdimm_create); 395 396 int alias_dpa_busy(struct device *dev, void *data) 397 { 398 resource_size_t map_end, blk_start, new; 399 struct blk_alloc_info *info = data; 400 struct nd_mapping *nd_mapping; 401 struct nd_region *nd_region; 402 struct nvdimm_drvdata *ndd; 403 struct resource *res; 404 int i; 405 406 if (!is_nd_pmem(dev)) 407 return 0; 408 409 nd_region = to_nd_region(dev); 410 for (i = 0; i < nd_region->ndr_mappings; i++) { 411 nd_mapping = &nd_region->mapping[i]; 412 if (nd_mapping->nvdimm == info->nd_mapping->nvdimm) 413 break; 414 } 415 416 if (i >= nd_region->ndr_mappings) 417 return 0; 418 419 ndd = to_ndd(nd_mapping); 420 map_end = nd_mapping->start + nd_mapping->size - 1; 421 blk_start = nd_mapping->start; 422 423 /* 424 * In the allocation case ->res is set to free space that we are 425 * looking to validate against PMEM aliasing collision rules 426 * (i.e. BLK is allocated after all aliased PMEM). 427 */ 428 if (info->res) { 429 if (info->res->start >= nd_mapping->start 430 && info->res->start < map_end) 431 /* pass */; 432 else 433 return 0; 434 } 435 436 retry: 437 /* 438 * Find the free dpa from the end of the last pmem allocation to 439 * the end of the interleave-set mapping. 440 */ 441 for_each_dpa_resource(ndd, res) { 442 if (strncmp(res->name, "pmem", 4) != 0) 443 continue; 444 if ((res->start >= blk_start && res->start < map_end) 445 || (res->end >= blk_start 446 && res->end <= map_end)) { 447 new = max(blk_start, min(map_end + 1, res->end + 1)); 448 if (new != blk_start) { 449 blk_start = new; 450 goto retry; 451 } 452 } 453 } 454 455 /* update the free space range with the probed blk_start */ 456 if (info->res && blk_start > info->res->start) { 457 info->res->start = max(info->res->start, blk_start); 458 if (info->res->start > info->res->end) 459 info->res->end = info->res->start - 1; 460 return 1; 461 } 462 463 info->available -= blk_start - nd_mapping->start; 464 465 return 0; 466 } 467 468 /** 469 * nd_blk_available_dpa - account the unused dpa of BLK region 470 * @nd_mapping: container of dpa-resource-root + labels 471 * 472 * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but 473 * we arrange for them to never start at an lower dpa than the last 474 * PMEM allocation in an aliased region. 475 */ 476 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region) 477 { 478 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 479 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 480 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 481 struct blk_alloc_info info = { 482 .nd_mapping = nd_mapping, 483 .available = nd_mapping->size, 484 .res = NULL, 485 }; 486 struct resource *res; 487 488 if (!ndd) 489 return 0; 490 491 device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy); 492 493 /* now account for busy blk allocations in unaliased dpa */ 494 for_each_dpa_resource(ndd, res) { 495 if (strncmp(res->name, "blk", 3) != 0) 496 continue; 497 info.available -= resource_size(res); 498 } 499 500 return info.available; 501 } 502 503 /** 504 * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa 505 * @nd_mapping: container of dpa-resource-root + labels 506 * @nd_region: constrain available space check to this reference region 507 * @overlap: calculate available space assuming this level of overlap 508 * 509 * Validate that a PMEM label, if present, aligns with the start of an 510 * interleave set and truncate the available size at the lowest BLK 511 * overlap point. 512 * 513 * The expectation is that this routine is called multiple times as it 514 * probes for the largest BLK encroachment for any single member DIMM of 515 * the interleave set. Once that value is determined the PMEM-limit for 516 * the set can be established. 517 */ 518 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region, 519 struct nd_mapping *nd_mapping, resource_size_t *overlap) 520 { 521 resource_size_t map_start, map_end, busy = 0, available, blk_start; 522 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 523 struct resource *res; 524 const char *reason; 525 526 if (!ndd) 527 return 0; 528 529 map_start = nd_mapping->start; 530 map_end = map_start + nd_mapping->size - 1; 531 blk_start = max(map_start, map_end + 1 - *overlap); 532 for_each_dpa_resource(ndd, res) { 533 if (res->start >= map_start && res->start < map_end) { 534 if (strncmp(res->name, "blk", 3) == 0) 535 blk_start = min(blk_start, 536 max(map_start, res->start)); 537 else if (res->end > map_end) { 538 reason = "misaligned to iset"; 539 goto err; 540 } else 541 busy += resource_size(res); 542 } else if (res->end >= map_start && res->end <= map_end) { 543 if (strncmp(res->name, "blk", 3) == 0) { 544 /* 545 * If a BLK allocation overlaps the start of 546 * PMEM the entire interleave set may now only 547 * be used for BLK. 548 */ 549 blk_start = map_start; 550 } else 551 busy += resource_size(res); 552 } else if (map_start > res->start && map_start < res->end) { 553 /* total eclipse of the mapping */ 554 busy += nd_mapping->size; 555 blk_start = map_start; 556 } 557 } 558 559 *overlap = map_end + 1 - blk_start; 560 available = blk_start - map_start; 561 if (busy < available) 562 return available - busy; 563 return 0; 564 565 err: 566 nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason); 567 return 0; 568 } 569 570 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res) 571 { 572 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 573 kfree(res->name); 574 __release_region(&ndd->dpa, res->start, resource_size(res)); 575 } 576 577 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd, 578 struct nd_label_id *label_id, resource_size_t start, 579 resource_size_t n) 580 { 581 char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL); 582 struct resource *res; 583 584 if (!name) 585 return NULL; 586 587 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 588 res = __request_region(&ndd->dpa, start, n, name, 0); 589 if (!res) 590 kfree(name); 591 return res; 592 } 593 594 /** 595 * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id 596 * @nvdimm: container of dpa-resource-root + labels 597 * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid> 598 */ 599 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd, 600 struct nd_label_id *label_id) 601 { 602 resource_size_t allocated = 0; 603 struct resource *res; 604 605 for_each_dpa_resource(ndd, res) 606 if (strcmp(res->name, label_id->id) == 0) 607 allocated += resource_size(res); 608 609 return allocated; 610 } 611 612 static int count_dimms(struct device *dev, void *c) 613 { 614 int *count = c; 615 616 if (is_nvdimm(dev)) 617 (*count)++; 618 return 0; 619 } 620 621 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count) 622 { 623 int count = 0; 624 /* Flush any possible dimm registration failures */ 625 nd_synchronize(); 626 627 device_for_each_child(&nvdimm_bus->dev, &count, count_dimms); 628 dev_dbg(&nvdimm_bus->dev, "%s: count: %d\n", __func__, count); 629 if (count != dimm_count) 630 return -ENXIO; 631 return 0; 632 } 633 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count); 634 635 void __exit nvdimm_devs_exit(void) 636 { 637 ida_destroy(&dimm_ida); 638 } 639