1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/libnvdimm.h> 14 #include <linux/badblocks.h> 15 #include <linux/export.h> 16 #include <linux/module.h> 17 #include <linux/blkdev.h> 18 #include <linux/device.h> 19 #include <linux/ctype.h> 20 #include <linux/ndctl.h> 21 #include <linux/mutex.h> 22 #include <linux/slab.h> 23 #include <linux/io.h> 24 #include "nd-core.h" 25 #include "nd.h" 26 27 LIST_HEAD(nvdimm_bus_list); 28 DEFINE_MUTEX(nvdimm_bus_list_mutex); 29 30 void nvdimm_bus_lock(struct device *dev) 31 { 32 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 33 34 if (!nvdimm_bus) 35 return; 36 mutex_lock(&nvdimm_bus->reconfig_mutex); 37 } 38 EXPORT_SYMBOL(nvdimm_bus_lock); 39 40 void nvdimm_bus_unlock(struct device *dev) 41 { 42 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 43 44 if (!nvdimm_bus) 45 return; 46 mutex_unlock(&nvdimm_bus->reconfig_mutex); 47 } 48 EXPORT_SYMBOL(nvdimm_bus_unlock); 49 50 bool is_nvdimm_bus_locked(struct device *dev) 51 { 52 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 53 54 if (!nvdimm_bus) 55 return false; 56 return mutex_is_locked(&nvdimm_bus->reconfig_mutex); 57 } 58 EXPORT_SYMBOL(is_nvdimm_bus_locked); 59 60 struct nvdimm_map { 61 struct nvdimm_bus *nvdimm_bus; 62 struct list_head list; 63 resource_size_t offset; 64 unsigned long flags; 65 size_t size; 66 union { 67 void *mem; 68 void __iomem *iomem; 69 }; 70 struct kref kref; 71 }; 72 73 static struct nvdimm_map *find_nvdimm_map(struct device *dev, 74 resource_size_t offset) 75 { 76 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 77 struct nvdimm_map *nvdimm_map; 78 79 list_for_each_entry(nvdimm_map, &nvdimm_bus->mapping_list, list) 80 if (nvdimm_map->offset == offset) 81 return nvdimm_map; 82 return NULL; 83 } 84 85 static struct nvdimm_map *alloc_nvdimm_map(struct device *dev, 86 resource_size_t offset, size_t size, unsigned long flags) 87 { 88 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 89 struct nvdimm_map *nvdimm_map; 90 91 nvdimm_map = kzalloc(sizeof(*nvdimm_map), GFP_KERNEL); 92 if (!nvdimm_map) 93 return NULL; 94 95 INIT_LIST_HEAD(&nvdimm_map->list); 96 nvdimm_map->nvdimm_bus = nvdimm_bus; 97 nvdimm_map->offset = offset; 98 nvdimm_map->flags = flags; 99 nvdimm_map->size = size; 100 kref_init(&nvdimm_map->kref); 101 102 if (!request_mem_region(offset, size, dev_name(&nvdimm_bus->dev))) { 103 dev_err(&nvdimm_bus->dev, "failed to request %pa + %zd for %s\n", 104 &offset, size, dev_name(dev)); 105 goto err_request_region; 106 } 107 108 if (flags) 109 nvdimm_map->mem = memremap(offset, size, flags); 110 else 111 nvdimm_map->iomem = ioremap(offset, size); 112 113 if (!nvdimm_map->mem) 114 goto err_map; 115 116 dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev), "%s: bus unlocked!", 117 __func__); 118 list_add(&nvdimm_map->list, &nvdimm_bus->mapping_list); 119 120 return nvdimm_map; 121 122 err_map: 123 release_mem_region(offset, size); 124 err_request_region: 125 kfree(nvdimm_map); 126 return NULL; 127 } 128 129 static void nvdimm_map_release(struct kref *kref) 130 { 131 struct nvdimm_bus *nvdimm_bus; 132 struct nvdimm_map *nvdimm_map; 133 134 nvdimm_map = container_of(kref, struct nvdimm_map, kref); 135 nvdimm_bus = nvdimm_map->nvdimm_bus; 136 137 dev_dbg(&nvdimm_bus->dev, "%s: %pa\n", __func__, &nvdimm_map->offset); 138 list_del(&nvdimm_map->list); 139 if (nvdimm_map->flags) 140 memunmap(nvdimm_map->mem); 141 else 142 iounmap(nvdimm_map->iomem); 143 release_mem_region(nvdimm_map->offset, nvdimm_map->size); 144 kfree(nvdimm_map); 145 } 146 147 static void nvdimm_map_put(void *data) 148 { 149 struct nvdimm_map *nvdimm_map = data; 150 struct nvdimm_bus *nvdimm_bus = nvdimm_map->nvdimm_bus; 151 152 nvdimm_bus_lock(&nvdimm_bus->dev); 153 kref_put(&nvdimm_map->kref, nvdimm_map_release); 154 nvdimm_bus_unlock(&nvdimm_bus->dev); 155 } 156 157 /** 158 * devm_nvdimm_memremap - map a resource that is shared across regions 159 * @dev: device that will own a reference to the shared mapping 160 * @offset: physical base address of the mapping 161 * @size: mapping size 162 * @flags: memremap flags, or, if zero, perform an ioremap instead 163 */ 164 void *devm_nvdimm_memremap(struct device *dev, resource_size_t offset, 165 size_t size, unsigned long flags) 166 { 167 struct nvdimm_map *nvdimm_map; 168 169 nvdimm_bus_lock(dev); 170 nvdimm_map = find_nvdimm_map(dev, offset); 171 if (!nvdimm_map) 172 nvdimm_map = alloc_nvdimm_map(dev, offset, size, flags); 173 else 174 kref_get(&nvdimm_map->kref); 175 nvdimm_bus_unlock(dev); 176 177 if (!nvdimm_map) 178 return NULL; 179 180 if (devm_add_action_or_reset(dev, nvdimm_map_put, nvdimm_map)) 181 return NULL; 182 183 return nvdimm_map->mem; 184 } 185 EXPORT_SYMBOL_GPL(devm_nvdimm_memremap); 186 187 u64 nd_fletcher64(void *addr, size_t len, bool le) 188 { 189 u32 *buf = addr; 190 u32 lo32 = 0; 191 u64 hi32 = 0; 192 int i; 193 194 for (i = 0; i < len / sizeof(u32); i++) { 195 lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i]; 196 hi32 += lo32; 197 } 198 199 return hi32 << 32 | lo32; 200 } 201 EXPORT_SYMBOL_GPL(nd_fletcher64); 202 203 struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus) 204 { 205 /* struct nvdimm_bus definition is private to libnvdimm */ 206 return nvdimm_bus->nd_desc; 207 } 208 EXPORT_SYMBOL_GPL(to_nd_desc); 209 210 struct device *to_nvdimm_bus_dev(struct nvdimm_bus *nvdimm_bus) 211 { 212 /* struct nvdimm_bus definition is private to libnvdimm */ 213 return &nvdimm_bus->dev; 214 } 215 EXPORT_SYMBOL_GPL(to_nvdimm_bus_dev); 216 217 static bool is_uuid_sep(char sep) 218 { 219 if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0') 220 return true; 221 return false; 222 } 223 224 static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf, 225 size_t len) 226 { 227 const char *str = buf; 228 u8 uuid[16]; 229 int i; 230 231 for (i = 0; i < 16; i++) { 232 if (!isxdigit(str[0]) || !isxdigit(str[1])) { 233 dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n", 234 __func__, i, str - buf, str[0], 235 str + 1 - buf, str[1]); 236 return -EINVAL; 237 } 238 239 uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]); 240 str += 2; 241 if (is_uuid_sep(*str)) 242 str++; 243 } 244 245 memcpy(uuid_out, uuid, sizeof(uuid)); 246 return 0; 247 } 248 249 /** 250 * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes 251 * @dev: container device for the uuid property 252 * @uuid_out: uuid buffer to replace 253 * @buf: raw sysfs buffer to parse 254 * 255 * Enforce that uuids can only be changed while the device is disabled 256 * (driver detached) 257 * LOCKING: expects device_lock() is held on entry 258 */ 259 int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf, 260 size_t len) 261 { 262 u8 uuid[16]; 263 int rc; 264 265 if (dev->driver) 266 return -EBUSY; 267 268 rc = nd_uuid_parse(dev, uuid, buf, len); 269 if (rc) 270 return rc; 271 272 kfree(*uuid_out); 273 *uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 274 if (!(*uuid_out)) 275 return -ENOMEM; 276 277 return 0; 278 } 279 280 ssize_t nd_sector_size_show(unsigned long current_lbasize, 281 const unsigned long *supported, char *buf) 282 { 283 ssize_t len = 0; 284 int i; 285 286 for (i = 0; supported[i]; i++) 287 if (current_lbasize == supported[i]) 288 len += sprintf(buf + len, "[%ld] ", supported[i]); 289 else 290 len += sprintf(buf + len, "%ld ", supported[i]); 291 len += sprintf(buf + len, "\n"); 292 return len; 293 } 294 295 ssize_t nd_sector_size_store(struct device *dev, const char *buf, 296 unsigned long *current_lbasize, const unsigned long *supported) 297 { 298 unsigned long lbasize; 299 int rc, i; 300 301 if (dev->driver) 302 return -EBUSY; 303 304 rc = kstrtoul(buf, 0, &lbasize); 305 if (rc) 306 return rc; 307 308 for (i = 0; supported[i]; i++) 309 if (lbasize == supported[i]) 310 break; 311 312 if (supported[i]) { 313 *current_lbasize = lbasize; 314 return 0; 315 } else { 316 return -EINVAL; 317 } 318 } 319 320 static ssize_t commands_show(struct device *dev, 321 struct device_attribute *attr, char *buf) 322 { 323 int cmd, len = 0; 324 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 325 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 326 327 for_each_set_bit(cmd, &nd_desc->cmd_mask, BITS_PER_LONG) 328 len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd)); 329 len += sprintf(buf + len, "\n"); 330 return len; 331 } 332 static DEVICE_ATTR_RO(commands); 333 334 static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus) 335 { 336 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 337 struct device *parent = nvdimm_bus->dev.parent; 338 339 if (nd_desc->provider_name) 340 return nd_desc->provider_name; 341 else if (parent) 342 return dev_name(parent); 343 else 344 return "unknown"; 345 } 346 347 static ssize_t provider_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 351 352 return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus)); 353 } 354 static DEVICE_ATTR_RO(provider); 355 356 static int flush_namespaces(struct device *dev, void *data) 357 { 358 device_lock(dev); 359 device_unlock(dev); 360 return 0; 361 } 362 363 static int flush_regions_dimms(struct device *dev, void *data) 364 { 365 device_lock(dev); 366 device_unlock(dev); 367 device_for_each_child(dev, NULL, flush_namespaces); 368 return 0; 369 } 370 371 static ssize_t wait_probe_show(struct device *dev, 372 struct device_attribute *attr, char *buf) 373 { 374 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 375 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 376 int rc; 377 378 if (nd_desc->flush_probe) { 379 rc = nd_desc->flush_probe(nd_desc); 380 if (rc) 381 return rc; 382 } 383 nd_synchronize(); 384 device_for_each_child(dev, NULL, flush_regions_dimms); 385 return sprintf(buf, "1\n"); 386 } 387 static DEVICE_ATTR_RO(wait_probe); 388 389 static struct attribute *nvdimm_bus_attributes[] = { 390 &dev_attr_commands.attr, 391 &dev_attr_wait_probe.attr, 392 &dev_attr_provider.attr, 393 NULL, 394 }; 395 396 struct attribute_group nvdimm_bus_attribute_group = { 397 .attrs = nvdimm_bus_attributes, 398 }; 399 EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group); 400 401 static void set_badblock(struct badblocks *bb, sector_t s, int num) 402 { 403 dev_dbg(bb->dev, "Found a poison range (0x%llx, 0x%llx)\n", 404 (u64) s * 512, (u64) num * 512); 405 /* this isn't an error as the hardware will still throw an exception */ 406 if (badblocks_set(bb, s, num, 1)) 407 dev_info_once(bb->dev, "%s: failed for sector %llx\n", 408 __func__, (u64) s); 409 } 410 411 /** 412 * __add_badblock_range() - Convert a physical address range to bad sectors 413 * @bb: badblocks instance to populate 414 * @ns_offset: namespace offset where the error range begins (in bytes) 415 * @len: number of bytes of poison to be added 416 * 417 * This assumes that the range provided with (ns_offset, len) is within 418 * the bounds of physical addresses for this namespace, i.e. lies in the 419 * interval [ns_start, ns_start + ns_size) 420 */ 421 static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len) 422 { 423 const unsigned int sector_size = 512; 424 sector_t start_sector, end_sector; 425 u64 num_sectors; 426 u32 rem; 427 428 start_sector = div_u64(ns_offset, sector_size); 429 end_sector = div_u64_rem(ns_offset + len, sector_size, &rem); 430 if (rem) 431 end_sector++; 432 num_sectors = end_sector - start_sector; 433 434 if (unlikely(num_sectors > (u64)INT_MAX)) { 435 u64 remaining = num_sectors; 436 sector_t s = start_sector; 437 438 while (remaining) { 439 int done = min_t(u64, remaining, INT_MAX); 440 441 set_badblock(bb, s, done); 442 remaining -= done; 443 s += done; 444 } 445 } else 446 set_badblock(bb, start_sector, num_sectors); 447 } 448 449 static void badblocks_populate(struct list_head *poison_list, 450 struct badblocks *bb, const struct resource *res) 451 { 452 struct nd_poison *pl; 453 454 if (list_empty(poison_list)) 455 return; 456 457 list_for_each_entry(pl, poison_list, list) { 458 u64 pl_end = pl->start + pl->length - 1; 459 460 /* Discard intervals with no intersection */ 461 if (pl_end < res->start) 462 continue; 463 if (pl->start > res->end) 464 continue; 465 /* Deal with any overlap after start of the namespace */ 466 if (pl->start >= res->start) { 467 u64 start = pl->start; 468 u64 len; 469 470 if (pl_end <= res->end) 471 len = pl->length; 472 else 473 len = res->start + resource_size(res) 474 - pl->start; 475 __add_badblock_range(bb, start - res->start, len); 476 continue; 477 } 478 /* Deal with overlap for poison starting before the namespace */ 479 if (pl->start < res->start) { 480 u64 len; 481 482 if (pl_end < res->end) 483 len = pl->start + pl->length - res->start; 484 else 485 len = resource_size(res); 486 __add_badblock_range(bb, 0, len); 487 } 488 } 489 } 490 491 /** 492 * nvdimm_badblocks_populate() - Convert a list of poison ranges to badblocks 493 * @region: parent region of the range to interrogate 494 * @bb: badblocks instance to populate 495 * @res: resource range to consider 496 * 497 * The poison list generated during bus initialization may contain 498 * multiple, possibly overlapping physical address ranges. Compare each 499 * of these ranges to the resource range currently being initialized, 500 * and add badblocks entries for all matching sub-ranges 501 */ 502 void nvdimm_badblocks_populate(struct nd_region *nd_region, 503 struct badblocks *bb, const struct resource *res) 504 { 505 struct nvdimm_bus *nvdimm_bus; 506 struct list_head *poison_list; 507 508 if (!is_memory(&nd_region->dev)) { 509 dev_WARN_ONCE(&nd_region->dev, 1, 510 "%s only valid for pmem regions\n", __func__); 511 return; 512 } 513 nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 514 poison_list = &nvdimm_bus->poison_list; 515 516 nvdimm_bus_lock(&nvdimm_bus->dev); 517 badblocks_populate(poison_list, bb, res); 518 nvdimm_bus_unlock(&nvdimm_bus->dev); 519 } 520 EXPORT_SYMBOL_GPL(nvdimm_badblocks_populate); 521 522 static void append_poison_entry(struct nvdimm_bus *nvdimm_bus, 523 struct nd_poison *pl, u64 addr, u64 length) 524 { 525 lockdep_assert_held(&nvdimm_bus->poison_lock); 526 pl->start = addr; 527 pl->length = length; 528 list_add_tail(&pl->list, &nvdimm_bus->poison_list); 529 } 530 531 static int add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length, 532 gfp_t flags) 533 { 534 struct nd_poison *pl; 535 536 pl = kzalloc(sizeof(*pl), flags); 537 if (!pl) 538 return -ENOMEM; 539 540 append_poison_entry(nvdimm_bus, pl, addr, length); 541 return 0; 542 } 543 544 static int bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) 545 { 546 struct nd_poison *pl, *pl_new; 547 548 spin_unlock(&nvdimm_bus->poison_lock); 549 pl_new = kzalloc(sizeof(*pl_new), GFP_KERNEL); 550 spin_lock(&nvdimm_bus->poison_lock); 551 552 if (list_empty(&nvdimm_bus->poison_list)) { 553 if (!pl_new) 554 return -ENOMEM; 555 append_poison_entry(nvdimm_bus, pl_new, addr, length); 556 return 0; 557 } 558 559 /* 560 * There is a chance this is a duplicate, check for those first. 561 * This will be the common case as ARS_STATUS returns all known 562 * errors in the SPA space, and we can't query it per region 563 */ 564 list_for_each_entry(pl, &nvdimm_bus->poison_list, list) 565 if (pl->start == addr) { 566 /* If length has changed, update this list entry */ 567 if (pl->length != length) 568 pl->length = length; 569 kfree(pl_new); 570 return 0; 571 } 572 573 /* 574 * If not a duplicate or a simple length update, add the entry as is, 575 * as any overlapping ranges will get resolved when the list is consumed 576 * and converted to badblocks 577 */ 578 if (!pl_new) 579 return -ENOMEM; 580 append_poison_entry(nvdimm_bus, pl_new, addr, length); 581 582 return 0; 583 } 584 585 int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) 586 { 587 int rc; 588 589 spin_lock(&nvdimm_bus->poison_lock); 590 rc = bus_add_poison(nvdimm_bus, addr, length); 591 spin_unlock(&nvdimm_bus->poison_lock); 592 593 return rc; 594 } 595 EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison); 596 597 void nvdimm_forget_poison(struct nvdimm_bus *nvdimm_bus, phys_addr_t start, 598 unsigned int len) 599 { 600 struct list_head *poison_list = &nvdimm_bus->poison_list; 601 u64 clr_end = start + len - 1; 602 struct nd_poison *pl, *next; 603 604 spin_lock(&nvdimm_bus->poison_lock); 605 WARN_ON_ONCE(list_empty(poison_list)); 606 607 /* 608 * [start, clr_end] is the poison interval being cleared. 609 * [pl->start, pl_end] is the poison_list entry we're comparing 610 * the above interval against. The poison list entry may need 611 * to be modified (update either start or length), deleted, or 612 * split into two based on the overlap characteristics 613 */ 614 615 list_for_each_entry_safe(pl, next, poison_list, list) { 616 u64 pl_end = pl->start + pl->length - 1; 617 618 /* Skip intervals with no intersection */ 619 if (pl_end < start) 620 continue; 621 if (pl->start > clr_end) 622 continue; 623 /* Delete completely overlapped poison entries */ 624 if ((pl->start >= start) && (pl_end <= clr_end)) { 625 list_del(&pl->list); 626 kfree(pl); 627 continue; 628 } 629 /* Adjust start point of partially cleared entries */ 630 if ((start <= pl->start) && (clr_end > pl->start)) { 631 pl->length -= clr_end - pl->start + 1; 632 pl->start = clr_end + 1; 633 continue; 634 } 635 /* Adjust pl->length for partial clearing at the tail end */ 636 if ((pl->start < start) && (pl_end <= clr_end)) { 637 /* pl->start remains the same */ 638 pl->length = start - pl->start; 639 continue; 640 } 641 /* 642 * If clearing in the middle of an entry, we split it into 643 * two by modifying the current entry to represent one half of 644 * the split, and adding a new entry for the second half. 645 */ 646 if ((pl->start < start) && (pl_end > clr_end)) { 647 u64 new_start = clr_end + 1; 648 u64 new_len = pl_end - new_start + 1; 649 650 /* Add new entry covering the right half */ 651 add_poison(nvdimm_bus, new_start, new_len, GFP_NOWAIT); 652 /* Adjust this entry to cover the left half */ 653 pl->length = start - pl->start; 654 continue; 655 } 656 } 657 spin_unlock(&nvdimm_bus->poison_lock); 658 } 659 EXPORT_SYMBOL_GPL(nvdimm_forget_poison); 660 661 #ifdef CONFIG_BLK_DEV_INTEGRITY 662 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) 663 { 664 struct blk_integrity bi; 665 666 if (meta_size == 0) 667 return 0; 668 669 memset(&bi, 0, sizeof(bi)); 670 671 bi.tuple_size = meta_size; 672 bi.tag_size = meta_size; 673 674 blk_integrity_register(disk, &bi); 675 blk_queue_max_integrity_segments(disk->queue, 1); 676 677 return 0; 678 } 679 EXPORT_SYMBOL(nd_integrity_init); 680 681 #else /* CONFIG_BLK_DEV_INTEGRITY */ 682 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) 683 { 684 return 0; 685 } 686 EXPORT_SYMBOL(nd_integrity_init); 687 688 #endif 689 690 static __init int libnvdimm_init(void) 691 { 692 int rc; 693 694 rc = nvdimm_bus_init(); 695 if (rc) 696 return rc; 697 rc = nvdimm_init(); 698 if (rc) 699 goto err_dimm; 700 rc = nd_region_init(); 701 if (rc) 702 goto err_region; 703 704 nd_label_init(); 705 706 return 0; 707 err_region: 708 nvdimm_exit(); 709 err_dimm: 710 nvdimm_bus_exit(); 711 return rc; 712 } 713 714 static __exit void libnvdimm_exit(void) 715 { 716 WARN_ON(!list_empty(&nvdimm_bus_list)); 717 nd_region_exit(); 718 nvdimm_exit(); 719 nvdimm_bus_exit(); 720 nd_region_devs_exit(); 721 nvdimm_devs_exit(); 722 } 723 724 MODULE_LICENSE("GPL v2"); 725 MODULE_AUTHOR("Intel Corporation"); 726 subsys_initcall(libnvdimm_init); 727 module_exit(libnvdimm_exit); 728