1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/libnvdimm.h> 7 #include <linux/sched/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/uaccess.h> 10 #include <linux/module.h> 11 #include <linux/blkdev.h> 12 #include <linux/fcntl.h> 13 #include <linux/async.h> 14 #include <linux/genhd.h> 15 #include <linux/ndctl.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/fs.h> 20 #include <linux/io.h> 21 #include <linux/mm.h> 22 #include <linux/nd.h> 23 #include "nd-core.h" 24 #include "nd.h" 25 #include "pfn.h" 26 27 int nvdimm_major; 28 static int nvdimm_bus_major; 29 struct class *nd_class; 30 static DEFINE_IDA(nd_ida); 31 32 static int to_nd_device_type(struct device *dev) 33 { 34 if (is_nvdimm(dev)) 35 return ND_DEVICE_DIMM; 36 else if (is_memory(dev)) 37 return ND_DEVICE_REGION_PMEM; 38 else if (is_nd_blk(dev)) 39 return ND_DEVICE_REGION_BLK; 40 else if (is_nd_dax(dev)) 41 return ND_DEVICE_DAX_PMEM; 42 else if (is_nd_region(dev->parent)) 43 return nd_region_to_nstype(to_nd_region(dev->parent)); 44 45 return 0; 46 } 47 48 static int nvdimm_bus_uevent(struct device *dev, struct kobj_uevent_env *env) 49 { 50 return add_uevent_var(env, "MODALIAS=" ND_DEVICE_MODALIAS_FMT, 51 to_nd_device_type(dev)); 52 } 53 54 static struct module *to_bus_provider(struct device *dev) 55 { 56 /* pin bus providers while regions are enabled */ 57 if (is_nd_region(dev)) { 58 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 59 60 return nvdimm_bus->nd_desc->module; 61 } 62 return NULL; 63 } 64 65 static void nvdimm_bus_probe_start(struct nvdimm_bus *nvdimm_bus) 66 { 67 nvdimm_bus_lock(&nvdimm_bus->dev); 68 nvdimm_bus->probe_active++; 69 nvdimm_bus_unlock(&nvdimm_bus->dev); 70 } 71 72 static void nvdimm_bus_probe_end(struct nvdimm_bus *nvdimm_bus) 73 { 74 nvdimm_bus_lock(&nvdimm_bus->dev); 75 if (--nvdimm_bus->probe_active == 0) 76 wake_up(&nvdimm_bus->wait); 77 nvdimm_bus_unlock(&nvdimm_bus->dev); 78 } 79 80 static int nvdimm_bus_probe(struct device *dev) 81 { 82 struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver); 83 struct module *provider = to_bus_provider(dev); 84 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 85 int rc; 86 87 if (!try_module_get(provider)) 88 return -ENXIO; 89 90 dev_dbg(&nvdimm_bus->dev, "START: %s.probe(%s)\n", 91 dev->driver->name, dev_name(dev)); 92 93 nvdimm_bus_probe_start(nvdimm_bus); 94 debug_nvdimm_lock(dev); 95 rc = nd_drv->probe(dev); 96 debug_nvdimm_unlock(dev); 97 98 if (rc == 0) 99 nd_region_probe_success(nvdimm_bus, dev); 100 else 101 nd_region_disable(nvdimm_bus, dev); 102 nvdimm_bus_probe_end(nvdimm_bus); 103 104 dev_dbg(&nvdimm_bus->dev, "END: %s.probe(%s) = %d\n", dev->driver->name, 105 dev_name(dev), rc); 106 107 if (rc != 0) 108 module_put(provider); 109 return rc; 110 } 111 112 static int nvdimm_bus_remove(struct device *dev) 113 { 114 struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver); 115 struct module *provider = to_bus_provider(dev); 116 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 117 int rc = 0; 118 119 if (nd_drv->remove) { 120 debug_nvdimm_lock(dev); 121 rc = nd_drv->remove(dev); 122 debug_nvdimm_unlock(dev); 123 } 124 nd_region_disable(nvdimm_bus, dev); 125 126 dev_dbg(&nvdimm_bus->dev, "%s.remove(%s) = %d\n", dev->driver->name, 127 dev_name(dev), rc); 128 module_put(provider); 129 return rc; 130 } 131 132 static void nvdimm_bus_shutdown(struct device *dev) 133 { 134 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 135 struct nd_device_driver *nd_drv = NULL; 136 137 if (dev->driver) 138 nd_drv = to_nd_device_driver(dev->driver); 139 140 if (nd_drv && nd_drv->shutdown) { 141 nd_drv->shutdown(dev); 142 dev_dbg(&nvdimm_bus->dev, "%s.shutdown(%s)\n", 143 dev->driver->name, dev_name(dev)); 144 } 145 } 146 147 void nd_device_notify(struct device *dev, enum nvdimm_event event) 148 { 149 nd_device_lock(dev); 150 if (dev->driver) { 151 struct nd_device_driver *nd_drv; 152 153 nd_drv = to_nd_device_driver(dev->driver); 154 if (nd_drv->notify) 155 nd_drv->notify(dev, event); 156 } 157 nd_device_unlock(dev); 158 } 159 EXPORT_SYMBOL(nd_device_notify); 160 161 void nvdimm_region_notify(struct nd_region *nd_region, enum nvdimm_event event) 162 { 163 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 164 165 if (!nvdimm_bus) 166 return; 167 168 /* caller is responsible for holding a reference on the device */ 169 nd_device_notify(&nd_region->dev, event); 170 } 171 EXPORT_SYMBOL_GPL(nvdimm_region_notify); 172 173 struct clear_badblocks_context { 174 resource_size_t phys, cleared; 175 }; 176 177 static int nvdimm_clear_badblocks_region(struct device *dev, void *data) 178 { 179 struct clear_badblocks_context *ctx = data; 180 struct nd_region *nd_region; 181 resource_size_t ndr_end; 182 sector_t sector; 183 184 /* make sure device is a region */ 185 if (!is_nd_pmem(dev)) 186 return 0; 187 188 nd_region = to_nd_region(dev); 189 ndr_end = nd_region->ndr_start + nd_region->ndr_size - 1; 190 191 /* make sure we are in the region */ 192 if (ctx->phys < nd_region->ndr_start 193 || (ctx->phys + ctx->cleared) > ndr_end) 194 return 0; 195 196 sector = (ctx->phys - nd_region->ndr_start) / 512; 197 badblocks_clear(&nd_region->bb, sector, ctx->cleared / 512); 198 199 if (nd_region->bb_state) 200 sysfs_notify_dirent(nd_region->bb_state); 201 202 return 0; 203 } 204 205 static void nvdimm_clear_badblocks_regions(struct nvdimm_bus *nvdimm_bus, 206 phys_addr_t phys, u64 cleared) 207 { 208 struct clear_badblocks_context ctx = { 209 .phys = phys, 210 .cleared = cleared, 211 }; 212 213 device_for_each_child(&nvdimm_bus->dev, &ctx, 214 nvdimm_clear_badblocks_region); 215 } 216 217 static void nvdimm_account_cleared_poison(struct nvdimm_bus *nvdimm_bus, 218 phys_addr_t phys, u64 cleared) 219 { 220 if (cleared > 0) 221 badrange_forget(&nvdimm_bus->badrange, phys, cleared); 222 223 if (cleared > 0 && cleared / 512) 224 nvdimm_clear_badblocks_regions(nvdimm_bus, phys, cleared); 225 } 226 227 long nvdimm_clear_poison(struct device *dev, phys_addr_t phys, 228 unsigned int len) 229 { 230 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 231 struct nvdimm_bus_descriptor *nd_desc; 232 struct nd_cmd_clear_error clear_err; 233 struct nd_cmd_ars_cap ars_cap; 234 u32 clear_err_unit, mask; 235 unsigned int noio_flag; 236 int cmd_rc, rc; 237 238 if (!nvdimm_bus) 239 return -ENXIO; 240 241 nd_desc = nvdimm_bus->nd_desc; 242 /* 243 * if ndctl does not exist, it's PMEM_LEGACY and 244 * we want to just pretend everything is handled. 245 */ 246 if (!nd_desc->ndctl) 247 return len; 248 249 memset(&ars_cap, 0, sizeof(ars_cap)); 250 ars_cap.address = phys; 251 ars_cap.length = len; 252 noio_flag = memalloc_noio_save(); 253 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, &ars_cap, 254 sizeof(ars_cap), &cmd_rc); 255 memalloc_noio_restore(noio_flag); 256 if (rc < 0) 257 return rc; 258 if (cmd_rc < 0) 259 return cmd_rc; 260 clear_err_unit = ars_cap.clear_err_unit; 261 if (!clear_err_unit || !is_power_of_2(clear_err_unit)) 262 return -ENXIO; 263 264 mask = clear_err_unit - 1; 265 if ((phys | len) & mask) 266 return -ENXIO; 267 memset(&clear_err, 0, sizeof(clear_err)); 268 clear_err.address = phys; 269 clear_err.length = len; 270 noio_flag = memalloc_noio_save(); 271 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_CLEAR_ERROR, &clear_err, 272 sizeof(clear_err), &cmd_rc); 273 memalloc_noio_restore(noio_flag); 274 if (rc < 0) 275 return rc; 276 if (cmd_rc < 0) 277 return cmd_rc; 278 279 nvdimm_account_cleared_poison(nvdimm_bus, phys, clear_err.cleared); 280 281 return clear_err.cleared; 282 } 283 EXPORT_SYMBOL_GPL(nvdimm_clear_poison); 284 285 static int nvdimm_bus_match(struct device *dev, struct device_driver *drv); 286 287 static struct bus_type nvdimm_bus_type = { 288 .name = "nd", 289 .uevent = nvdimm_bus_uevent, 290 .match = nvdimm_bus_match, 291 .probe = nvdimm_bus_probe, 292 .remove = nvdimm_bus_remove, 293 .shutdown = nvdimm_bus_shutdown, 294 }; 295 296 static void nvdimm_bus_release(struct device *dev) 297 { 298 struct nvdimm_bus *nvdimm_bus; 299 300 nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); 301 ida_simple_remove(&nd_ida, nvdimm_bus->id); 302 kfree(nvdimm_bus); 303 } 304 305 bool is_nvdimm_bus(struct device *dev) 306 { 307 return dev->release == nvdimm_bus_release; 308 } 309 310 struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev) 311 { 312 struct device *dev; 313 314 for (dev = nd_dev; dev; dev = dev->parent) 315 if (is_nvdimm_bus(dev)) 316 break; 317 dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n"); 318 if (dev) 319 return to_nvdimm_bus(dev); 320 return NULL; 321 } 322 323 struct nvdimm_bus *to_nvdimm_bus(struct device *dev) 324 { 325 struct nvdimm_bus *nvdimm_bus; 326 327 nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); 328 WARN_ON(!is_nvdimm_bus(dev)); 329 return nvdimm_bus; 330 } 331 EXPORT_SYMBOL_GPL(to_nvdimm_bus); 332 333 struct nvdimm_bus *nvdimm_to_bus(struct nvdimm *nvdimm) 334 { 335 return to_nvdimm_bus(nvdimm->dev.parent); 336 } 337 EXPORT_SYMBOL_GPL(nvdimm_to_bus); 338 339 struct nvdimm_bus *nvdimm_bus_register(struct device *parent, 340 struct nvdimm_bus_descriptor *nd_desc) 341 { 342 struct nvdimm_bus *nvdimm_bus; 343 int rc; 344 345 nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL); 346 if (!nvdimm_bus) 347 return NULL; 348 INIT_LIST_HEAD(&nvdimm_bus->list); 349 INIT_LIST_HEAD(&nvdimm_bus->mapping_list); 350 init_waitqueue_head(&nvdimm_bus->wait); 351 nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL); 352 if (nvdimm_bus->id < 0) { 353 kfree(nvdimm_bus); 354 return NULL; 355 } 356 mutex_init(&nvdimm_bus->reconfig_mutex); 357 badrange_init(&nvdimm_bus->badrange); 358 nvdimm_bus->nd_desc = nd_desc; 359 nvdimm_bus->dev.parent = parent; 360 nvdimm_bus->dev.release = nvdimm_bus_release; 361 nvdimm_bus->dev.groups = nd_desc->attr_groups; 362 nvdimm_bus->dev.bus = &nvdimm_bus_type; 363 nvdimm_bus->dev.of_node = nd_desc->of_node; 364 dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id); 365 rc = device_register(&nvdimm_bus->dev); 366 if (rc) { 367 dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc); 368 goto err; 369 } 370 371 return nvdimm_bus; 372 err: 373 put_device(&nvdimm_bus->dev); 374 return NULL; 375 } 376 EXPORT_SYMBOL_GPL(nvdimm_bus_register); 377 378 void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus) 379 { 380 if (!nvdimm_bus) 381 return; 382 device_unregister(&nvdimm_bus->dev); 383 } 384 EXPORT_SYMBOL_GPL(nvdimm_bus_unregister); 385 386 static int child_unregister(struct device *dev, void *data) 387 { 388 /* 389 * the singular ndctl class device per bus needs to be 390 * "device_destroy"ed, so skip it here 391 * 392 * i.e. remove classless children 393 */ 394 if (dev->class) 395 return 0; 396 397 if (is_nvdimm(dev)) { 398 struct nvdimm *nvdimm = to_nvdimm(dev); 399 bool dev_put = false; 400 401 /* We are shutting down. Make state frozen artificially. */ 402 nvdimm_bus_lock(dev); 403 nvdimm->sec.state = NVDIMM_SECURITY_FROZEN; 404 if (test_and_clear_bit(NDD_WORK_PENDING, &nvdimm->flags)) 405 dev_put = true; 406 nvdimm_bus_unlock(dev); 407 cancel_delayed_work_sync(&nvdimm->dwork); 408 if (dev_put) 409 put_device(dev); 410 } 411 nd_device_unregister(dev, ND_SYNC); 412 413 return 0; 414 } 415 416 static void free_badrange_list(struct list_head *badrange_list) 417 { 418 struct badrange_entry *bre, *next; 419 420 list_for_each_entry_safe(bre, next, badrange_list, list) { 421 list_del(&bre->list); 422 kfree(bre); 423 } 424 list_del_init(badrange_list); 425 } 426 427 static int nd_bus_remove(struct device *dev) 428 { 429 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 430 431 mutex_lock(&nvdimm_bus_list_mutex); 432 list_del_init(&nvdimm_bus->list); 433 mutex_unlock(&nvdimm_bus_list_mutex); 434 435 wait_event(nvdimm_bus->wait, 436 atomic_read(&nvdimm_bus->ioctl_active) == 0); 437 438 nd_synchronize(); 439 device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister); 440 441 spin_lock(&nvdimm_bus->badrange.lock); 442 free_badrange_list(&nvdimm_bus->badrange.list); 443 spin_unlock(&nvdimm_bus->badrange.lock); 444 445 nvdimm_bus_destroy_ndctl(nvdimm_bus); 446 447 return 0; 448 } 449 450 static int nd_bus_probe(struct device *dev) 451 { 452 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 453 int rc; 454 455 rc = nvdimm_bus_create_ndctl(nvdimm_bus); 456 if (rc) 457 return rc; 458 459 mutex_lock(&nvdimm_bus_list_mutex); 460 list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list); 461 mutex_unlock(&nvdimm_bus_list_mutex); 462 463 /* enable bus provider attributes to look up their local context */ 464 dev_set_drvdata(dev, nvdimm_bus->nd_desc); 465 466 return 0; 467 } 468 469 static struct nd_device_driver nd_bus_driver = { 470 .probe = nd_bus_probe, 471 .remove = nd_bus_remove, 472 .drv = { 473 .name = "nd_bus", 474 .suppress_bind_attrs = true, 475 .bus = &nvdimm_bus_type, 476 .owner = THIS_MODULE, 477 .mod_name = KBUILD_MODNAME, 478 }, 479 }; 480 481 static int nvdimm_bus_match(struct device *dev, struct device_driver *drv) 482 { 483 struct nd_device_driver *nd_drv = to_nd_device_driver(drv); 484 485 if (is_nvdimm_bus(dev) && nd_drv == &nd_bus_driver) 486 return true; 487 488 return !!test_bit(to_nd_device_type(dev), &nd_drv->type); 489 } 490 491 static ASYNC_DOMAIN_EXCLUSIVE(nd_async_domain); 492 493 void nd_synchronize(void) 494 { 495 async_synchronize_full_domain(&nd_async_domain); 496 } 497 EXPORT_SYMBOL_GPL(nd_synchronize); 498 499 static void nd_async_device_register(void *d, async_cookie_t cookie) 500 { 501 struct device *dev = d; 502 503 if (device_add(dev) != 0) { 504 dev_err(dev, "%s: failed\n", __func__); 505 put_device(dev); 506 } 507 put_device(dev); 508 if (dev->parent) 509 put_device(dev->parent); 510 } 511 512 static void nd_async_device_unregister(void *d, async_cookie_t cookie) 513 { 514 struct device *dev = d; 515 516 /* flush bus operations before delete */ 517 nvdimm_bus_lock(dev); 518 nvdimm_bus_unlock(dev); 519 520 device_unregister(dev); 521 put_device(dev); 522 } 523 524 void __nd_device_register(struct device *dev) 525 { 526 if (!dev) 527 return; 528 529 /* 530 * Ensure that region devices always have their NUMA node set as 531 * early as possible. This way we are able to make certain that 532 * any memory associated with the creation and the creation 533 * itself of the region is associated with the correct node. 534 */ 535 if (is_nd_region(dev)) 536 set_dev_node(dev, to_nd_region(dev)->numa_node); 537 538 dev->bus = &nvdimm_bus_type; 539 if (dev->parent) { 540 get_device(dev->parent); 541 if (dev_to_node(dev) == NUMA_NO_NODE) 542 set_dev_node(dev, dev_to_node(dev->parent)); 543 } 544 get_device(dev); 545 546 async_schedule_dev_domain(nd_async_device_register, dev, 547 &nd_async_domain); 548 } 549 550 void nd_device_register(struct device *dev) 551 { 552 device_initialize(dev); 553 __nd_device_register(dev); 554 } 555 EXPORT_SYMBOL(nd_device_register); 556 557 void nd_device_unregister(struct device *dev, enum nd_async_mode mode) 558 { 559 bool killed; 560 561 switch (mode) { 562 case ND_ASYNC: 563 /* 564 * In the async case this is being triggered with the 565 * device lock held and the unregistration work needs to 566 * be moved out of line iff this is thread has won the 567 * race to schedule the deletion. 568 */ 569 if (!kill_device(dev)) 570 return; 571 572 get_device(dev); 573 async_schedule_domain(nd_async_device_unregister, dev, 574 &nd_async_domain); 575 break; 576 case ND_SYNC: 577 /* 578 * In the sync case the device is being unregistered due 579 * to a state change of the parent. Claim the kill state 580 * to synchronize against other unregistration requests, 581 * or otherwise let the async path handle it if the 582 * unregistration was already queued. 583 */ 584 nd_device_lock(dev); 585 killed = kill_device(dev); 586 nd_device_unlock(dev); 587 588 if (!killed) 589 return; 590 591 nd_synchronize(); 592 device_unregister(dev); 593 break; 594 } 595 } 596 EXPORT_SYMBOL(nd_device_unregister); 597 598 /** 599 * __nd_driver_register() - register a region or a namespace driver 600 * @nd_drv: driver to register 601 * @owner: automatically set by nd_driver_register() macro 602 * @mod_name: automatically set by nd_driver_register() macro 603 */ 604 int __nd_driver_register(struct nd_device_driver *nd_drv, struct module *owner, 605 const char *mod_name) 606 { 607 struct device_driver *drv = &nd_drv->drv; 608 609 if (!nd_drv->type) { 610 pr_debug("driver type bitmask not set (%ps)\n", 611 __builtin_return_address(0)); 612 return -EINVAL; 613 } 614 615 if (!nd_drv->probe) { 616 pr_debug("%s ->probe() must be specified\n", mod_name); 617 return -EINVAL; 618 } 619 620 drv->bus = &nvdimm_bus_type; 621 drv->owner = owner; 622 drv->mod_name = mod_name; 623 624 return driver_register(drv); 625 } 626 EXPORT_SYMBOL(__nd_driver_register); 627 628 int nvdimm_revalidate_disk(struct gendisk *disk) 629 { 630 struct device *dev = disk_to_dev(disk)->parent; 631 struct nd_region *nd_region = to_nd_region(dev->parent); 632 int disk_ro = get_disk_ro(disk); 633 634 /* 635 * Upgrade to read-only if the region is read-only preserve as 636 * read-only if the disk is already read-only. 637 */ 638 if (disk_ro || nd_region->ro == disk_ro) 639 return 0; 640 641 dev_info(dev, "%s read-only, marking %s read-only\n", 642 dev_name(&nd_region->dev), disk->disk_name); 643 set_disk_ro(disk, 1); 644 645 return 0; 646 647 } 648 EXPORT_SYMBOL(nvdimm_revalidate_disk); 649 650 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 651 char *buf) 652 { 653 return sprintf(buf, ND_DEVICE_MODALIAS_FMT "\n", 654 to_nd_device_type(dev)); 655 } 656 static DEVICE_ATTR_RO(modalias); 657 658 static ssize_t devtype_show(struct device *dev, struct device_attribute *attr, 659 char *buf) 660 { 661 return sprintf(buf, "%s\n", dev->type->name); 662 } 663 static DEVICE_ATTR_RO(devtype); 664 665 static struct attribute *nd_device_attributes[] = { 666 &dev_attr_modalias.attr, 667 &dev_attr_devtype.attr, 668 NULL, 669 }; 670 671 /* 672 * nd_device_attribute_group - generic attributes for all devices on an nd bus 673 */ 674 struct attribute_group nd_device_attribute_group = { 675 .attrs = nd_device_attributes, 676 }; 677 EXPORT_SYMBOL_GPL(nd_device_attribute_group); 678 679 static ssize_t numa_node_show(struct device *dev, 680 struct device_attribute *attr, char *buf) 681 { 682 return sprintf(buf, "%d\n", dev_to_node(dev)); 683 } 684 static DEVICE_ATTR_RO(numa_node); 685 686 static struct attribute *nd_numa_attributes[] = { 687 &dev_attr_numa_node.attr, 688 NULL, 689 }; 690 691 static umode_t nd_numa_attr_visible(struct kobject *kobj, struct attribute *a, 692 int n) 693 { 694 if (!IS_ENABLED(CONFIG_NUMA)) 695 return 0; 696 697 return a->mode; 698 } 699 700 /* 701 * nd_numa_attribute_group - NUMA attributes for all devices on an nd bus 702 */ 703 struct attribute_group nd_numa_attribute_group = { 704 .attrs = nd_numa_attributes, 705 .is_visible = nd_numa_attr_visible, 706 }; 707 EXPORT_SYMBOL_GPL(nd_numa_attribute_group); 708 709 int nvdimm_bus_create_ndctl(struct nvdimm_bus *nvdimm_bus) 710 { 711 dev_t devt = MKDEV(nvdimm_bus_major, nvdimm_bus->id); 712 struct device *dev; 713 714 dev = device_create(nd_class, &nvdimm_bus->dev, devt, nvdimm_bus, 715 "ndctl%d", nvdimm_bus->id); 716 717 if (IS_ERR(dev)) 718 dev_dbg(&nvdimm_bus->dev, "failed to register ndctl%d: %ld\n", 719 nvdimm_bus->id, PTR_ERR(dev)); 720 return PTR_ERR_OR_ZERO(dev); 721 } 722 723 void nvdimm_bus_destroy_ndctl(struct nvdimm_bus *nvdimm_bus) 724 { 725 device_destroy(nd_class, MKDEV(nvdimm_bus_major, nvdimm_bus->id)); 726 } 727 728 static const struct nd_cmd_desc __nd_cmd_dimm_descs[] = { 729 [ND_CMD_IMPLEMENTED] = { }, 730 [ND_CMD_SMART] = { 731 .out_num = 2, 732 .out_sizes = { 4, 128, }, 733 }, 734 [ND_CMD_SMART_THRESHOLD] = { 735 .out_num = 2, 736 .out_sizes = { 4, 8, }, 737 }, 738 [ND_CMD_DIMM_FLAGS] = { 739 .out_num = 2, 740 .out_sizes = { 4, 4 }, 741 }, 742 [ND_CMD_GET_CONFIG_SIZE] = { 743 .out_num = 3, 744 .out_sizes = { 4, 4, 4, }, 745 }, 746 [ND_CMD_GET_CONFIG_DATA] = { 747 .in_num = 2, 748 .in_sizes = { 4, 4, }, 749 .out_num = 2, 750 .out_sizes = { 4, UINT_MAX, }, 751 }, 752 [ND_CMD_SET_CONFIG_DATA] = { 753 .in_num = 3, 754 .in_sizes = { 4, 4, UINT_MAX, }, 755 .out_num = 1, 756 .out_sizes = { 4, }, 757 }, 758 [ND_CMD_VENDOR] = { 759 .in_num = 3, 760 .in_sizes = { 4, 4, UINT_MAX, }, 761 .out_num = 3, 762 .out_sizes = { 4, 4, UINT_MAX, }, 763 }, 764 [ND_CMD_CALL] = { 765 .in_num = 2, 766 .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, }, 767 .out_num = 1, 768 .out_sizes = { UINT_MAX, }, 769 }, 770 }; 771 772 const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd) 773 { 774 if (cmd < ARRAY_SIZE(__nd_cmd_dimm_descs)) 775 return &__nd_cmd_dimm_descs[cmd]; 776 return NULL; 777 } 778 EXPORT_SYMBOL_GPL(nd_cmd_dimm_desc); 779 780 static const struct nd_cmd_desc __nd_cmd_bus_descs[] = { 781 [ND_CMD_IMPLEMENTED] = { }, 782 [ND_CMD_ARS_CAP] = { 783 .in_num = 2, 784 .in_sizes = { 8, 8, }, 785 .out_num = 4, 786 .out_sizes = { 4, 4, 4, 4, }, 787 }, 788 [ND_CMD_ARS_START] = { 789 .in_num = 5, 790 .in_sizes = { 8, 8, 2, 1, 5, }, 791 .out_num = 2, 792 .out_sizes = { 4, 4, }, 793 }, 794 [ND_CMD_ARS_STATUS] = { 795 .out_num = 3, 796 .out_sizes = { 4, 4, UINT_MAX, }, 797 }, 798 [ND_CMD_CLEAR_ERROR] = { 799 .in_num = 2, 800 .in_sizes = { 8, 8, }, 801 .out_num = 3, 802 .out_sizes = { 4, 4, 8, }, 803 }, 804 [ND_CMD_CALL] = { 805 .in_num = 2, 806 .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, }, 807 .out_num = 1, 808 .out_sizes = { UINT_MAX, }, 809 }, 810 }; 811 812 const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd) 813 { 814 if (cmd < ARRAY_SIZE(__nd_cmd_bus_descs)) 815 return &__nd_cmd_bus_descs[cmd]; 816 return NULL; 817 } 818 EXPORT_SYMBOL_GPL(nd_cmd_bus_desc); 819 820 u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd, 821 const struct nd_cmd_desc *desc, int idx, void *buf) 822 { 823 if (idx >= desc->in_num) 824 return UINT_MAX; 825 826 if (desc->in_sizes[idx] < UINT_MAX) 827 return desc->in_sizes[idx]; 828 829 if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA && idx == 2) { 830 struct nd_cmd_set_config_hdr *hdr = buf; 831 832 return hdr->in_length; 833 } else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) { 834 struct nd_cmd_vendor_hdr *hdr = buf; 835 836 return hdr->in_length; 837 } else if (cmd == ND_CMD_CALL) { 838 struct nd_cmd_pkg *pkg = buf; 839 840 return pkg->nd_size_in; 841 } 842 843 return UINT_MAX; 844 } 845 EXPORT_SYMBOL_GPL(nd_cmd_in_size); 846 847 u32 nd_cmd_out_size(struct nvdimm *nvdimm, int cmd, 848 const struct nd_cmd_desc *desc, int idx, const u32 *in_field, 849 const u32 *out_field, unsigned long remainder) 850 { 851 if (idx >= desc->out_num) 852 return UINT_MAX; 853 854 if (desc->out_sizes[idx] < UINT_MAX) 855 return desc->out_sizes[idx]; 856 857 if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && idx == 1) 858 return in_field[1]; 859 else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) 860 return out_field[1]; 861 else if (!nvdimm && cmd == ND_CMD_ARS_STATUS && idx == 2) { 862 /* 863 * Per table 9-276 ARS Data in ACPI 6.1, out_field[1] is 864 * "Size of Output Buffer in bytes, including this 865 * field." 866 */ 867 if (out_field[1] < 4) 868 return 0; 869 /* 870 * ACPI 6.1 is ambiguous if 'status' is included in the 871 * output size. If we encounter an output size that 872 * overshoots the remainder by 4 bytes, assume it was 873 * including 'status'. 874 */ 875 if (out_field[1] - 4 == remainder) 876 return remainder; 877 return out_field[1] - 8; 878 } else if (cmd == ND_CMD_CALL) { 879 struct nd_cmd_pkg *pkg = (struct nd_cmd_pkg *) in_field; 880 881 return pkg->nd_size_out; 882 } 883 884 885 return UINT_MAX; 886 } 887 EXPORT_SYMBOL_GPL(nd_cmd_out_size); 888 889 void wait_nvdimm_bus_probe_idle(struct device *dev) 890 { 891 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 892 893 do { 894 if (nvdimm_bus->probe_active == 0) 895 break; 896 nvdimm_bus_unlock(dev); 897 nd_device_unlock(dev); 898 wait_event(nvdimm_bus->wait, 899 nvdimm_bus->probe_active == 0); 900 nd_device_lock(dev); 901 nvdimm_bus_lock(dev); 902 } while (true); 903 } 904 905 static int nd_pmem_forget_poison_check(struct device *dev, void *data) 906 { 907 struct nd_cmd_clear_error *clear_err = 908 (struct nd_cmd_clear_error *)data; 909 struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL; 910 struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL; 911 struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL; 912 struct nd_namespace_common *ndns = NULL; 913 struct nd_namespace_io *nsio; 914 resource_size_t offset = 0, end_trunc = 0, start, end, pstart, pend; 915 916 if (nd_dax || !dev->driver) 917 return 0; 918 919 start = clear_err->address; 920 end = clear_err->address + clear_err->cleared - 1; 921 922 if (nd_btt || nd_pfn || nd_dax) { 923 if (nd_btt) 924 ndns = nd_btt->ndns; 925 else if (nd_pfn) 926 ndns = nd_pfn->ndns; 927 else if (nd_dax) 928 ndns = nd_dax->nd_pfn.ndns; 929 930 if (!ndns) 931 return 0; 932 } else 933 ndns = to_ndns(dev); 934 935 nsio = to_nd_namespace_io(&ndns->dev); 936 pstart = nsio->res.start + offset; 937 pend = nsio->res.end - end_trunc; 938 939 if ((pstart >= start) && (pend <= end)) 940 return -EBUSY; 941 942 return 0; 943 944 } 945 946 static int nd_ns_forget_poison_check(struct device *dev, void *data) 947 { 948 return device_for_each_child(dev, data, nd_pmem_forget_poison_check); 949 } 950 951 /* set_config requires an idle interleave set */ 952 static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus, 953 struct nvdimm *nvdimm, unsigned int cmd, void *data) 954 { 955 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 956 957 /* ask the bus provider if it would like to block this request */ 958 if (nd_desc->clear_to_send) { 959 int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd, data); 960 961 if (rc) 962 return rc; 963 } 964 965 /* require clear error to go through the pmem driver */ 966 if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR) 967 return device_for_each_child(&nvdimm_bus->dev, data, 968 nd_ns_forget_poison_check); 969 970 if (!nvdimm || cmd != ND_CMD_SET_CONFIG_DATA) 971 return 0; 972 973 /* prevent label manipulation while the kernel owns label updates */ 974 wait_nvdimm_bus_probe_idle(&nvdimm_bus->dev); 975 if (atomic_read(&nvdimm->busy)) 976 return -EBUSY; 977 return 0; 978 } 979 980 static int __nd_ioctl(struct nvdimm_bus *nvdimm_bus, struct nvdimm *nvdimm, 981 int read_only, unsigned int ioctl_cmd, unsigned long arg) 982 { 983 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 984 const struct nd_cmd_desc *desc = NULL; 985 unsigned int cmd = _IOC_NR(ioctl_cmd); 986 struct device *dev = &nvdimm_bus->dev; 987 void __user *p = (void __user *) arg; 988 char *out_env = NULL, *in_env = NULL; 989 const char *cmd_name, *dimm_name; 990 u32 in_len = 0, out_len = 0; 991 unsigned int func = cmd; 992 unsigned long cmd_mask; 993 struct nd_cmd_pkg pkg; 994 int rc, i, cmd_rc; 995 void *buf = NULL; 996 u64 buf_len = 0; 997 998 if (nvdimm) { 999 desc = nd_cmd_dimm_desc(cmd); 1000 cmd_name = nvdimm_cmd_name(cmd); 1001 cmd_mask = nvdimm->cmd_mask; 1002 dimm_name = dev_name(&nvdimm->dev); 1003 } else { 1004 desc = nd_cmd_bus_desc(cmd); 1005 cmd_name = nvdimm_bus_cmd_name(cmd); 1006 cmd_mask = nd_desc->cmd_mask; 1007 dimm_name = "bus"; 1008 } 1009 1010 if (cmd == ND_CMD_CALL) { 1011 if (copy_from_user(&pkg, p, sizeof(pkg))) 1012 return -EFAULT; 1013 } 1014 1015 if (!desc || (desc->out_num + desc->in_num == 0) || 1016 !test_bit(cmd, &cmd_mask)) 1017 return -ENOTTY; 1018 1019 /* fail write commands (when read-only) */ 1020 if (read_only) 1021 switch (cmd) { 1022 case ND_CMD_VENDOR: 1023 case ND_CMD_SET_CONFIG_DATA: 1024 case ND_CMD_ARS_START: 1025 case ND_CMD_CLEAR_ERROR: 1026 case ND_CMD_CALL: 1027 dev_dbg(dev, "'%s' command while read-only.\n", 1028 nvdimm ? nvdimm_cmd_name(cmd) 1029 : nvdimm_bus_cmd_name(cmd)); 1030 return -EPERM; 1031 default: 1032 break; 1033 } 1034 1035 /* process an input envelope */ 1036 in_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL); 1037 if (!in_env) 1038 return -ENOMEM; 1039 for (i = 0; i < desc->in_num; i++) { 1040 u32 in_size, copy; 1041 1042 in_size = nd_cmd_in_size(nvdimm, cmd, desc, i, in_env); 1043 if (in_size == UINT_MAX) { 1044 dev_err(dev, "%s:%s unknown input size cmd: %s field: %d\n", 1045 __func__, dimm_name, cmd_name, i); 1046 rc = -ENXIO; 1047 goto out; 1048 } 1049 if (in_len < ND_CMD_MAX_ENVELOPE) 1050 copy = min_t(u32, ND_CMD_MAX_ENVELOPE - in_len, in_size); 1051 else 1052 copy = 0; 1053 if (copy && copy_from_user(&in_env[in_len], p + in_len, copy)) { 1054 rc = -EFAULT; 1055 goto out; 1056 } 1057 in_len += in_size; 1058 } 1059 1060 if (cmd == ND_CMD_CALL) { 1061 func = pkg.nd_command; 1062 dev_dbg(dev, "%s, idx: %llu, in: %u, out: %u, len %llu\n", 1063 dimm_name, pkg.nd_command, 1064 in_len, out_len, buf_len); 1065 } 1066 1067 /* process an output envelope */ 1068 out_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL); 1069 if (!out_env) { 1070 rc = -ENOMEM; 1071 goto out; 1072 } 1073 1074 for (i = 0; i < desc->out_num; i++) { 1075 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, 1076 (u32 *) in_env, (u32 *) out_env, 0); 1077 u32 copy; 1078 1079 if (out_size == UINT_MAX) { 1080 dev_dbg(dev, "%s unknown output size cmd: %s field: %d\n", 1081 dimm_name, cmd_name, i); 1082 rc = -EFAULT; 1083 goto out; 1084 } 1085 if (out_len < ND_CMD_MAX_ENVELOPE) 1086 copy = min_t(u32, ND_CMD_MAX_ENVELOPE - out_len, out_size); 1087 else 1088 copy = 0; 1089 if (copy && copy_from_user(&out_env[out_len], 1090 p + in_len + out_len, copy)) { 1091 rc = -EFAULT; 1092 goto out; 1093 } 1094 out_len += out_size; 1095 } 1096 1097 buf_len = (u64) out_len + (u64) in_len; 1098 if (buf_len > ND_IOCTL_MAX_BUFLEN) { 1099 dev_dbg(dev, "%s cmd: %s buf_len: %llu > %d\n", dimm_name, 1100 cmd_name, buf_len, ND_IOCTL_MAX_BUFLEN); 1101 rc = -EINVAL; 1102 goto out; 1103 } 1104 1105 buf = vmalloc(buf_len); 1106 if (!buf) { 1107 rc = -ENOMEM; 1108 goto out; 1109 } 1110 1111 if (copy_from_user(buf, p, buf_len)) { 1112 rc = -EFAULT; 1113 goto out; 1114 } 1115 1116 nd_device_lock(dev); 1117 nvdimm_bus_lock(dev); 1118 rc = nd_cmd_clear_to_send(nvdimm_bus, nvdimm, func, buf); 1119 if (rc) 1120 goto out_unlock; 1121 1122 rc = nd_desc->ndctl(nd_desc, nvdimm, cmd, buf, buf_len, &cmd_rc); 1123 if (rc < 0) 1124 goto out_unlock; 1125 1126 if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR && cmd_rc >= 0) { 1127 struct nd_cmd_clear_error *clear_err = buf; 1128 1129 nvdimm_account_cleared_poison(nvdimm_bus, clear_err->address, 1130 clear_err->cleared); 1131 } 1132 1133 if (copy_to_user(p, buf, buf_len)) 1134 rc = -EFAULT; 1135 1136 out_unlock: 1137 nvdimm_bus_unlock(dev); 1138 nd_device_unlock(dev); 1139 out: 1140 kfree(in_env); 1141 kfree(out_env); 1142 vfree(buf); 1143 return rc; 1144 } 1145 1146 enum nd_ioctl_mode { 1147 BUS_IOCTL, 1148 DIMM_IOCTL, 1149 }; 1150 1151 static int match_dimm(struct device *dev, void *data) 1152 { 1153 long id = (long) data; 1154 1155 if (is_nvdimm(dev)) { 1156 struct nvdimm *nvdimm = to_nvdimm(dev); 1157 1158 return nvdimm->id == id; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static long nd_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 1165 enum nd_ioctl_mode mode) 1166 1167 { 1168 struct nvdimm_bus *nvdimm_bus, *found = NULL; 1169 long id = (long) file->private_data; 1170 struct nvdimm *nvdimm = NULL; 1171 int rc, ro; 1172 1173 ro = ((file->f_flags & O_ACCMODE) == O_RDONLY); 1174 mutex_lock(&nvdimm_bus_list_mutex); 1175 list_for_each_entry(nvdimm_bus, &nvdimm_bus_list, list) { 1176 if (mode == DIMM_IOCTL) { 1177 struct device *dev; 1178 1179 dev = device_find_child(&nvdimm_bus->dev, 1180 file->private_data, match_dimm); 1181 if (!dev) 1182 continue; 1183 nvdimm = to_nvdimm(dev); 1184 found = nvdimm_bus; 1185 } else if (nvdimm_bus->id == id) { 1186 found = nvdimm_bus; 1187 } 1188 1189 if (found) { 1190 atomic_inc(&nvdimm_bus->ioctl_active); 1191 break; 1192 } 1193 } 1194 mutex_unlock(&nvdimm_bus_list_mutex); 1195 1196 if (!found) 1197 return -ENXIO; 1198 1199 nvdimm_bus = found; 1200 rc = __nd_ioctl(nvdimm_bus, nvdimm, ro, cmd, arg); 1201 1202 if (nvdimm) 1203 put_device(&nvdimm->dev); 1204 if (atomic_dec_and_test(&nvdimm_bus->ioctl_active)) 1205 wake_up(&nvdimm_bus->wait); 1206 1207 return rc; 1208 } 1209 1210 static long bus_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1211 { 1212 return nd_ioctl(file, cmd, arg, BUS_IOCTL); 1213 } 1214 1215 static long dimm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1216 { 1217 return nd_ioctl(file, cmd, arg, DIMM_IOCTL); 1218 } 1219 1220 static int nd_open(struct inode *inode, struct file *file) 1221 { 1222 long minor = iminor(inode); 1223 1224 file->private_data = (void *) minor; 1225 return 0; 1226 } 1227 1228 static const struct file_operations nvdimm_bus_fops = { 1229 .owner = THIS_MODULE, 1230 .open = nd_open, 1231 .unlocked_ioctl = bus_ioctl, 1232 .compat_ioctl = bus_ioctl, 1233 .llseek = noop_llseek, 1234 }; 1235 1236 static const struct file_operations nvdimm_fops = { 1237 .owner = THIS_MODULE, 1238 .open = nd_open, 1239 .unlocked_ioctl = dimm_ioctl, 1240 .compat_ioctl = dimm_ioctl, 1241 .llseek = noop_llseek, 1242 }; 1243 1244 int __init nvdimm_bus_init(void) 1245 { 1246 int rc; 1247 1248 rc = bus_register(&nvdimm_bus_type); 1249 if (rc) 1250 return rc; 1251 1252 rc = register_chrdev(0, "ndctl", &nvdimm_bus_fops); 1253 if (rc < 0) 1254 goto err_bus_chrdev; 1255 nvdimm_bus_major = rc; 1256 1257 rc = register_chrdev(0, "dimmctl", &nvdimm_fops); 1258 if (rc < 0) 1259 goto err_dimm_chrdev; 1260 nvdimm_major = rc; 1261 1262 nd_class = class_create(THIS_MODULE, "nd"); 1263 if (IS_ERR(nd_class)) { 1264 rc = PTR_ERR(nd_class); 1265 goto err_class; 1266 } 1267 1268 rc = driver_register(&nd_bus_driver.drv); 1269 if (rc) 1270 goto err_nd_bus; 1271 1272 return 0; 1273 1274 err_nd_bus: 1275 class_destroy(nd_class); 1276 err_class: 1277 unregister_chrdev(nvdimm_major, "dimmctl"); 1278 err_dimm_chrdev: 1279 unregister_chrdev(nvdimm_bus_major, "ndctl"); 1280 err_bus_chrdev: 1281 bus_unregister(&nvdimm_bus_type); 1282 1283 return rc; 1284 } 1285 1286 void nvdimm_bus_exit(void) 1287 { 1288 driver_unregister(&nd_bus_driver.drv); 1289 class_destroy(nd_class); 1290 unregister_chrdev(nvdimm_bus_major, "ndctl"); 1291 unregister_chrdev(nvdimm_major, "dimmctl"); 1292 bus_unregister(&nvdimm_bus_type); 1293 ida_destroy(&nd_ida); 1294 } 1295