xref: /openbmc/linux/drivers/nvdimm/btt.c (revision e68235c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Block Translation Table
4  * Copyright (c) 2014-2015, Intel Corporation.
5  */
6 #include <linux/highmem.h>
7 #include <linux/debugfs.h>
8 #include <linux/blkdev.h>
9 #include <linux/pagemap.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/hdreg.h>
14 #include <linux/sizes.h>
15 #include <linux/ndctl.h>
16 #include <linux/fs.h>
17 #include <linux/nd.h>
18 #include <linux/backing-dev.h>
19 #include "btt.h"
20 #include "nd.h"
21 
22 enum log_ent_request {
23 	LOG_NEW_ENT = 0,
24 	LOG_OLD_ENT
25 };
26 
27 static struct device *to_dev(struct arena_info *arena)
28 {
29 	return &arena->nd_btt->dev;
30 }
31 
32 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset)
33 {
34 	return offset + nd_btt->initial_offset;
35 }
36 
37 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset,
38 		void *buf, size_t n, unsigned long flags)
39 {
40 	struct nd_btt *nd_btt = arena->nd_btt;
41 	struct nd_namespace_common *ndns = nd_btt->ndns;
42 
43 	/* arena offsets may be shifted from the base of the device */
44 	offset = adjust_initial_offset(nd_btt, offset);
45 	return nvdimm_read_bytes(ndns, offset, buf, n, flags);
46 }
47 
48 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset,
49 		void *buf, size_t n, unsigned long flags)
50 {
51 	struct nd_btt *nd_btt = arena->nd_btt;
52 	struct nd_namespace_common *ndns = nd_btt->ndns;
53 
54 	/* arena offsets may be shifted from the base of the device */
55 	offset = adjust_initial_offset(nd_btt, offset);
56 	return nvdimm_write_bytes(ndns, offset, buf, n, flags);
57 }
58 
59 static int btt_info_write(struct arena_info *arena, struct btt_sb *super)
60 {
61 	int ret;
62 
63 	/*
64 	 * infooff and info2off should always be at least 512B aligned.
65 	 * We rely on that to make sure rw_bytes does error clearing
66 	 * correctly, so make sure that is the case.
67 	 */
68 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512),
69 		"arena->infooff: %#llx is unaligned\n", arena->infooff);
70 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512),
71 		"arena->info2off: %#llx is unaligned\n", arena->info2off);
72 
73 	ret = arena_write_bytes(arena, arena->info2off, super,
74 			sizeof(struct btt_sb), 0);
75 	if (ret)
76 		return ret;
77 
78 	return arena_write_bytes(arena, arena->infooff, super,
79 			sizeof(struct btt_sb), 0);
80 }
81 
82 static int btt_info_read(struct arena_info *arena, struct btt_sb *super)
83 {
84 	return arena_read_bytes(arena, arena->infooff, super,
85 			sizeof(struct btt_sb), 0);
86 }
87 
88 /*
89  * 'raw' version of btt_map write
90  * Assumptions:
91  *   mapping is in little-endian
92  *   mapping contains 'E' and 'Z' flags as desired
93  */
94 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping,
95 		unsigned long flags)
96 {
97 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
98 
99 	if (unlikely(lba >= arena->external_nlba))
100 		dev_err_ratelimited(to_dev(arena),
101 			"%s: lba %#x out of range (max: %#x)\n",
102 			__func__, lba, arena->external_nlba);
103 	return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags);
104 }
105 
106 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping,
107 			u32 z_flag, u32 e_flag, unsigned long rwb_flags)
108 {
109 	u32 ze;
110 	__le32 mapping_le;
111 
112 	/*
113 	 * This 'mapping' is supposed to be just the LBA mapping, without
114 	 * any flags set, so strip the flag bits.
115 	 */
116 	mapping = ent_lba(mapping);
117 
118 	ze = (z_flag << 1) + e_flag;
119 	switch (ze) {
120 	case 0:
121 		/*
122 		 * We want to set neither of the Z or E flags, and
123 		 * in the actual layout, this means setting the bit
124 		 * positions of both to '1' to indicate a 'normal'
125 		 * map entry
126 		 */
127 		mapping |= MAP_ENT_NORMAL;
128 		break;
129 	case 1:
130 		mapping |= (1 << MAP_ERR_SHIFT);
131 		break;
132 	case 2:
133 		mapping |= (1 << MAP_TRIM_SHIFT);
134 		break;
135 	default:
136 		/*
137 		 * The case where Z and E are both sent in as '1' could be
138 		 * construed as a valid 'normal' case, but we decide not to,
139 		 * to avoid confusion
140 		 */
141 		dev_err_ratelimited(to_dev(arena),
142 			"Invalid use of Z and E flags\n");
143 		return -EIO;
144 	}
145 
146 	mapping_le = cpu_to_le32(mapping);
147 	return __btt_map_write(arena, lba, mapping_le, rwb_flags);
148 }
149 
150 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping,
151 			int *trim, int *error, unsigned long rwb_flags)
152 {
153 	int ret;
154 	__le32 in;
155 	u32 raw_mapping, postmap, ze, z_flag, e_flag;
156 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
157 
158 	if (unlikely(lba >= arena->external_nlba))
159 		dev_err_ratelimited(to_dev(arena),
160 			"%s: lba %#x out of range (max: %#x)\n",
161 			__func__, lba, arena->external_nlba);
162 
163 	ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags);
164 	if (ret)
165 		return ret;
166 
167 	raw_mapping = le32_to_cpu(in);
168 
169 	z_flag = ent_z_flag(raw_mapping);
170 	e_flag = ent_e_flag(raw_mapping);
171 	ze = (z_flag << 1) + e_flag;
172 	postmap = ent_lba(raw_mapping);
173 
174 	/* Reuse the {z,e}_flag variables for *trim and *error */
175 	z_flag = 0;
176 	e_flag = 0;
177 
178 	switch (ze) {
179 	case 0:
180 		/* Initial state. Return postmap = premap */
181 		*mapping = lba;
182 		break;
183 	case 1:
184 		*mapping = postmap;
185 		e_flag = 1;
186 		break;
187 	case 2:
188 		*mapping = postmap;
189 		z_flag = 1;
190 		break;
191 	case 3:
192 		*mapping = postmap;
193 		break;
194 	default:
195 		return -EIO;
196 	}
197 
198 	if (trim)
199 		*trim = z_flag;
200 	if (error)
201 		*error = e_flag;
202 
203 	return ret;
204 }
205 
206 static int btt_log_group_read(struct arena_info *arena, u32 lane,
207 			struct log_group *log)
208 {
209 	return arena_read_bytes(arena,
210 			arena->logoff + (lane * LOG_GRP_SIZE), log,
211 			LOG_GRP_SIZE, 0);
212 }
213 
214 static struct dentry *debugfs_root;
215 
216 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent,
217 				int idx)
218 {
219 	char dirname[32];
220 	struct dentry *d;
221 
222 	/* If for some reason, parent bttN was not created, exit */
223 	if (!parent)
224 		return;
225 
226 	snprintf(dirname, 32, "arena%d", idx);
227 	d = debugfs_create_dir(dirname, parent);
228 	if (IS_ERR_OR_NULL(d))
229 		return;
230 	a->debugfs_dir = d;
231 
232 	debugfs_create_x64("size", S_IRUGO, d, &a->size);
233 	debugfs_create_x64("external_lba_start", S_IRUGO, d,
234 				&a->external_lba_start);
235 	debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba);
236 	debugfs_create_u32("internal_lbasize", S_IRUGO, d,
237 				&a->internal_lbasize);
238 	debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba);
239 	debugfs_create_u32("external_lbasize", S_IRUGO, d,
240 				&a->external_lbasize);
241 	debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree);
242 	debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major);
243 	debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor);
244 	debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff);
245 	debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff);
246 	debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff);
247 	debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff);
248 	debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff);
249 	debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off);
250 	debugfs_create_x32("flags", S_IRUGO, d, &a->flags);
251 	debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]);
252 	debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]);
253 }
254 
255 static void btt_debugfs_init(struct btt *btt)
256 {
257 	int i = 0;
258 	struct arena_info *arena;
259 
260 	btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev),
261 						debugfs_root);
262 	if (IS_ERR_OR_NULL(btt->debugfs_dir))
263 		return;
264 
265 	list_for_each_entry(arena, &btt->arena_list, list) {
266 		arena_debugfs_init(arena, btt->debugfs_dir, i);
267 		i++;
268 	}
269 }
270 
271 static u32 log_seq(struct log_group *log, int log_idx)
272 {
273 	return le32_to_cpu(log->ent[log_idx].seq);
274 }
275 
276 /*
277  * This function accepts two log entries, and uses the
278  * sequence number to find the 'older' entry.
279  * It also updates the sequence number in this old entry to
280  * make it the 'new' one if the mark_flag is set.
281  * Finally, it returns which of the entries was the older one.
282  *
283  * TODO The logic feels a bit kludge-y. make it better..
284  */
285 static int btt_log_get_old(struct arena_info *a, struct log_group *log)
286 {
287 	int idx0 = a->log_index[0];
288 	int idx1 = a->log_index[1];
289 	int old;
290 
291 	/*
292 	 * the first ever time this is seen, the entry goes into [0]
293 	 * the next time, the following logic works out to put this
294 	 * (next) entry into [1]
295 	 */
296 	if (log_seq(log, idx0) == 0) {
297 		log->ent[idx0].seq = cpu_to_le32(1);
298 		return 0;
299 	}
300 
301 	if (log_seq(log, idx0) == log_seq(log, idx1))
302 		return -EINVAL;
303 	if (log_seq(log, idx0) + log_seq(log, idx1) > 5)
304 		return -EINVAL;
305 
306 	if (log_seq(log, idx0) < log_seq(log, idx1)) {
307 		if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1)
308 			old = 0;
309 		else
310 			old = 1;
311 	} else {
312 		if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1)
313 			old = 1;
314 		else
315 			old = 0;
316 	}
317 
318 	return old;
319 }
320 
321 /*
322  * This function copies the desired (old/new) log entry into ent if
323  * it is not NULL. It returns the sub-slot number (0 or 1)
324  * where the desired log entry was found. Negative return values
325  * indicate errors.
326  */
327 static int btt_log_read(struct arena_info *arena, u32 lane,
328 			struct log_entry *ent, int old_flag)
329 {
330 	int ret;
331 	int old_ent, ret_ent;
332 	struct log_group log;
333 
334 	ret = btt_log_group_read(arena, lane, &log);
335 	if (ret)
336 		return -EIO;
337 
338 	old_ent = btt_log_get_old(arena, &log);
339 	if (old_ent < 0 || old_ent > 1) {
340 		dev_err(to_dev(arena),
341 				"log corruption (%d): lane %d seq [%d, %d]\n",
342 				old_ent, lane, log.ent[arena->log_index[0]].seq,
343 				log.ent[arena->log_index[1]].seq);
344 		/* TODO set error state? */
345 		return -EIO;
346 	}
347 
348 	ret_ent = (old_flag ? old_ent : (1 - old_ent));
349 
350 	if (ent != NULL)
351 		memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE);
352 
353 	return ret_ent;
354 }
355 
356 /*
357  * This function commits a log entry to media
358  * It does _not_ prepare the freelist entry for the next write
359  * btt_flog_write is the wrapper for updating the freelist elements
360  */
361 static int __btt_log_write(struct arena_info *arena, u32 lane,
362 			u32 sub, struct log_entry *ent, unsigned long flags)
363 {
364 	int ret;
365 	u32 group_slot = arena->log_index[sub];
366 	unsigned int log_half = LOG_ENT_SIZE / 2;
367 	void *src = ent;
368 	u64 ns_off;
369 
370 	ns_off = arena->logoff + (lane * LOG_GRP_SIZE) +
371 		(group_slot * LOG_ENT_SIZE);
372 	/* split the 16B write into atomic, durable halves */
373 	ret = arena_write_bytes(arena, ns_off, src, log_half, flags);
374 	if (ret)
375 		return ret;
376 
377 	ns_off += log_half;
378 	src += log_half;
379 	return arena_write_bytes(arena, ns_off, src, log_half, flags);
380 }
381 
382 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub,
383 			struct log_entry *ent)
384 {
385 	int ret;
386 
387 	ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC);
388 	if (ret)
389 		return ret;
390 
391 	/* prepare the next free entry */
392 	arena->freelist[lane].sub = 1 - arena->freelist[lane].sub;
393 	if (++(arena->freelist[lane].seq) == 4)
394 		arena->freelist[lane].seq = 1;
395 	if (ent_e_flag(le32_to_cpu(ent->old_map)))
396 		arena->freelist[lane].has_err = 1;
397 	arena->freelist[lane].block = ent_lba(le32_to_cpu(ent->old_map));
398 
399 	return ret;
400 }
401 
402 /*
403  * This function initializes the BTT map to the initial state, which is
404  * all-zeroes, and indicates an identity mapping
405  */
406 static int btt_map_init(struct arena_info *arena)
407 {
408 	int ret = -EINVAL;
409 	void *zerobuf;
410 	size_t offset = 0;
411 	size_t chunk_size = SZ_2M;
412 	size_t mapsize = arena->logoff - arena->mapoff;
413 
414 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
415 	if (!zerobuf)
416 		return -ENOMEM;
417 
418 	/*
419 	 * mapoff should always be at least 512B  aligned. We rely on that to
420 	 * make sure rw_bytes does error clearing correctly, so make sure that
421 	 * is the case.
422 	 */
423 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512),
424 		"arena->mapoff: %#llx is unaligned\n", arena->mapoff);
425 
426 	while (mapsize) {
427 		size_t size = min(mapsize, chunk_size);
428 
429 		dev_WARN_ONCE(to_dev(arena), size < 512,
430 			"chunk size: %#zx is unaligned\n", size);
431 		ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf,
432 				size, 0);
433 		if (ret)
434 			goto free;
435 
436 		offset += size;
437 		mapsize -= size;
438 		cond_resched();
439 	}
440 
441  free:
442 	kfree(zerobuf);
443 	return ret;
444 }
445 
446 /*
447  * This function initializes the BTT log with 'fake' entries pointing
448  * to the initial reserved set of blocks as being free
449  */
450 static int btt_log_init(struct arena_info *arena)
451 {
452 	size_t logsize = arena->info2off - arena->logoff;
453 	size_t chunk_size = SZ_4K, offset = 0;
454 	struct log_entry ent;
455 	void *zerobuf;
456 	int ret;
457 	u32 i;
458 
459 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
460 	if (!zerobuf)
461 		return -ENOMEM;
462 	/*
463 	 * logoff should always be at least 512B  aligned. We rely on that to
464 	 * make sure rw_bytes does error clearing correctly, so make sure that
465 	 * is the case.
466 	 */
467 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512),
468 		"arena->logoff: %#llx is unaligned\n", arena->logoff);
469 
470 	while (logsize) {
471 		size_t size = min(logsize, chunk_size);
472 
473 		dev_WARN_ONCE(to_dev(arena), size < 512,
474 			"chunk size: %#zx is unaligned\n", size);
475 		ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf,
476 				size, 0);
477 		if (ret)
478 			goto free;
479 
480 		offset += size;
481 		logsize -= size;
482 		cond_resched();
483 	}
484 
485 	for (i = 0; i < arena->nfree; i++) {
486 		ent.lba = cpu_to_le32(i);
487 		ent.old_map = cpu_to_le32(arena->external_nlba + i);
488 		ent.new_map = cpu_to_le32(arena->external_nlba + i);
489 		ent.seq = cpu_to_le32(LOG_SEQ_INIT);
490 		ret = __btt_log_write(arena, i, 0, &ent, 0);
491 		if (ret)
492 			goto free;
493 	}
494 
495  free:
496 	kfree(zerobuf);
497 	return ret;
498 }
499 
500 static u64 to_namespace_offset(struct arena_info *arena, u64 lba)
501 {
502 	return arena->dataoff + ((u64)lba * arena->internal_lbasize);
503 }
504 
505 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane)
506 {
507 	int ret = 0;
508 
509 	if (arena->freelist[lane].has_err) {
510 		void *zero_page = page_address(ZERO_PAGE(0));
511 		u32 lba = arena->freelist[lane].block;
512 		u64 nsoff = to_namespace_offset(arena, lba);
513 		unsigned long len = arena->sector_size;
514 
515 		mutex_lock(&arena->err_lock);
516 
517 		while (len) {
518 			unsigned long chunk = min(len, PAGE_SIZE);
519 
520 			ret = arena_write_bytes(arena, nsoff, zero_page,
521 				chunk, 0);
522 			if (ret)
523 				break;
524 			len -= chunk;
525 			nsoff += chunk;
526 			if (len == 0)
527 				arena->freelist[lane].has_err = 0;
528 		}
529 		mutex_unlock(&arena->err_lock);
530 	}
531 	return ret;
532 }
533 
534 static int btt_freelist_init(struct arena_info *arena)
535 {
536 	int new, ret;
537 	struct log_entry log_new;
538 	u32 i, map_entry, log_oldmap, log_newmap;
539 
540 	arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry),
541 					GFP_KERNEL);
542 	if (!arena->freelist)
543 		return -ENOMEM;
544 
545 	for (i = 0; i < arena->nfree; i++) {
546 		new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT);
547 		if (new < 0)
548 			return new;
549 
550 		/* old and new map entries with any flags stripped out */
551 		log_oldmap = ent_lba(le32_to_cpu(log_new.old_map));
552 		log_newmap = ent_lba(le32_to_cpu(log_new.new_map));
553 
554 		/* sub points to the next one to be overwritten */
555 		arena->freelist[i].sub = 1 - new;
556 		arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq));
557 		arena->freelist[i].block = log_oldmap;
558 
559 		/*
560 		 * FIXME: if error clearing fails during init, we want to make
561 		 * the BTT read-only
562 		 */
563 		if (ent_e_flag(le32_to_cpu(log_new.old_map)) &&
564 		    !ent_normal(le32_to_cpu(log_new.old_map))) {
565 			arena->freelist[i].has_err = 1;
566 			ret = arena_clear_freelist_error(arena, i);
567 			if (ret)
568 				dev_err_ratelimited(to_dev(arena),
569 					"Unable to clear known errors\n");
570 		}
571 
572 		/* This implies a newly created or untouched flog entry */
573 		if (log_oldmap == log_newmap)
574 			continue;
575 
576 		/* Check if map recovery is needed */
577 		ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry,
578 				NULL, NULL, 0);
579 		if (ret)
580 			return ret;
581 
582 		/*
583 		 * The map_entry from btt_read_map is stripped of any flag bits,
584 		 * so use the stripped out versions from the log as well for
585 		 * testing whether recovery is needed. For restoration, use the
586 		 * 'raw' version of the log entries as that captured what we
587 		 * were going to write originally.
588 		 */
589 		if ((log_newmap != map_entry) && (log_oldmap == map_entry)) {
590 			/*
591 			 * Last transaction wrote the flog, but wasn't able
592 			 * to complete the map write. So fix up the map.
593 			 */
594 			ret = btt_map_write(arena, le32_to_cpu(log_new.lba),
595 					le32_to_cpu(log_new.new_map), 0, 0, 0);
596 			if (ret)
597 				return ret;
598 		}
599 	}
600 
601 	return 0;
602 }
603 
604 static bool ent_is_padding(struct log_entry *ent)
605 {
606 	return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0)
607 		&& (ent->seq == 0);
608 }
609 
610 /*
611  * Detecting valid log indices: We read a log group (see the comments in btt.h
612  * for a description of a 'log_group' and its 'slots'), and iterate over its
613  * four slots. We expect that a padding slot will be all-zeroes, and use this
614  * to detect a padding slot vs. an actual entry.
615  *
616  * If a log_group is in the initial state, i.e. hasn't been used since the
617  * creation of this BTT layout, it will have three of the four slots with
618  * zeroes. We skip over these log_groups for the detection of log_index. If
619  * all log_groups are in the initial state (i.e. the BTT has never been
620  * written to), it is safe to assume the 'new format' of log entries in slots
621  * (0, 1).
622  */
623 static int log_set_indices(struct arena_info *arena)
624 {
625 	bool idx_set = false, initial_state = true;
626 	int ret, log_index[2] = {-1, -1};
627 	u32 i, j, next_idx = 0;
628 	struct log_group log;
629 	u32 pad_count = 0;
630 
631 	for (i = 0; i < arena->nfree; i++) {
632 		ret = btt_log_group_read(arena, i, &log);
633 		if (ret < 0)
634 			return ret;
635 
636 		for (j = 0; j < 4; j++) {
637 			if (!idx_set) {
638 				if (ent_is_padding(&log.ent[j])) {
639 					pad_count++;
640 					continue;
641 				} else {
642 					/* Skip if index has been recorded */
643 					if ((next_idx == 1) &&
644 						(j == log_index[0]))
645 						continue;
646 					/* valid entry, record index */
647 					log_index[next_idx] = j;
648 					next_idx++;
649 				}
650 				if (next_idx == 2) {
651 					/* two valid entries found */
652 					idx_set = true;
653 				} else if (next_idx > 2) {
654 					/* too many valid indices */
655 					return -ENXIO;
656 				}
657 			} else {
658 				/*
659 				 * once the indices have been set, just verify
660 				 * that all subsequent log groups are either in
661 				 * their initial state or follow the same
662 				 * indices.
663 				 */
664 				if (j == log_index[0]) {
665 					/* entry must be 'valid' */
666 					if (ent_is_padding(&log.ent[j]))
667 						return -ENXIO;
668 				} else if (j == log_index[1]) {
669 					;
670 					/*
671 					 * log_index[1] can be padding if the
672 					 * lane never got used and it is still
673 					 * in the initial state (three 'padding'
674 					 * entries)
675 					 */
676 				} else {
677 					/* entry must be invalid (padding) */
678 					if (!ent_is_padding(&log.ent[j]))
679 						return -ENXIO;
680 				}
681 			}
682 		}
683 		/*
684 		 * If any of the log_groups have more than one valid,
685 		 * non-padding entry, then the we are no longer in the
686 		 * initial_state
687 		 */
688 		if (pad_count < 3)
689 			initial_state = false;
690 		pad_count = 0;
691 	}
692 
693 	if (!initial_state && !idx_set)
694 		return -ENXIO;
695 
696 	/*
697 	 * If all the entries in the log were in the initial state,
698 	 * assume new padding scheme
699 	 */
700 	if (initial_state)
701 		log_index[1] = 1;
702 
703 	/*
704 	 * Only allow the known permutations of log/padding indices,
705 	 * i.e. (0, 1), and (0, 2)
706 	 */
707 	if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2)))
708 		; /* known index possibilities */
709 	else {
710 		dev_err(to_dev(arena), "Found an unknown padding scheme\n");
711 		return -ENXIO;
712 	}
713 
714 	arena->log_index[0] = log_index[0];
715 	arena->log_index[1] = log_index[1];
716 	dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]);
717 	dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]);
718 	return 0;
719 }
720 
721 static int btt_rtt_init(struct arena_info *arena)
722 {
723 	arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL);
724 	if (arena->rtt == NULL)
725 		return -ENOMEM;
726 
727 	return 0;
728 }
729 
730 static int btt_maplocks_init(struct arena_info *arena)
731 {
732 	u32 i;
733 
734 	arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock),
735 				GFP_KERNEL);
736 	if (!arena->map_locks)
737 		return -ENOMEM;
738 
739 	for (i = 0; i < arena->nfree; i++)
740 		spin_lock_init(&arena->map_locks[i].lock);
741 
742 	return 0;
743 }
744 
745 static struct arena_info *alloc_arena(struct btt *btt, size_t size,
746 				size_t start, size_t arena_off)
747 {
748 	struct arena_info *arena;
749 	u64 logsize, mapsize, datasize;
750 	u64 available = size;
751 
752 	arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL);
753 	if (!arena)
754 		return NULL;
755 	arena->nd_btt = btt->nd_btt;
756 	arena->sector_size = btt->sector_size;
757 	mutex_init(&arena->err_lock);
758 
759 	if (!size)
760 		return arena;
761 
762 	arena->size = size;
763 	arena->external_lba_start = start;
764 	arena->external_lbasize = btt->lbasize;
765 	arena->internal_lbasize = roundup(arena->external_lbasize,
766 					INT_LBASIZE_ALIGNMENT);
767 	arena->nfree = BTT_DEFAULT_NFREE;
768 	arena->version_major = btt->nd_btt->version_major;
769 	arena->version_minor = btt->nd_btt->version_minor;
770 
771 	if (available % BTT_PG_SIZE)
772 		available -= (available % BTT_PG_SIZE);
773 
774 	/* Two pages are reserved for the super block and its copy */
775 	available -= 2 * BTT_PG_SIZE;
776 
777 	/* The log takes a fixed amount of space based on nfree */
778 	logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE);
779 	available -= logsize;
780 
781 	/* Calculate optimal split between map and data area */
782 	arena->internal_nlba = div_u64(available - BTT_PG_SIZE,
783 			arena->internal_lbasize + MAP_ENT_SIZE);
784 	arena->external_nlba = arena->internal_nlba - arena->nfree;
785 
786 	mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE);
787 	datasize = available - mapsize;
788 
789 	/* 'Absolute' values, relative to start of storage space */
790 	arena->infooff = arena_off;
791 	arena->dataoff = arena->infooff + BTT_PG_SIZE;
792 	arena->mapoff = arena->dataoff + datasize;
793 	arena->logoff = arena->mapoff + mapsize;
794 	arena->info2off = arena->logoff + logsize;
795 
796 	/* Default log indices are (0,1) */
797 	arena->log_index[0] = 0;
798 	arena->log_index[1] = 1;
799 	return arena;
800 }
801 
802 static void free_arenas(struct btt *btt)
803 {
804 	struct arena_info *arena, *next;
805 
806 	list_for_each_entry_safe(arena, next, &btt->arena_list, list) {
807 		list_del(&arena->list);
808 		kfree(arena->rtt);
809 		kfree(arena->map_locks);
810 		kfree(arena->freelist);
811 		debugfs_remove_recursive(arena->debugfs_dir);
812 		kfree(arena);
813 	}
814 }
815 
816 /*
817  * This function reads an existing valid btt superblock and
818  * populates the corresponding arena_info struct
819  */
820 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super,
821 				u64 arena_off)
822 {
823 	arena->internal_nlba = le32_to_cpu(super->internal_nlba);
824 	arena->internal_lbasize = le32_to_cpu(super->internal_lbasize);
825 	arena->external_nlba = le32_to_cpu(super->external_nlba);
826 	arena->external_lbasize = le32_to_cpu(super->external_lbasize);
827 	arena->nfree = le32_to_cpu(super->nfree);
828 	arena->version_major = le16_to_cpu(super->version_major);
829 	arena->version_minor = le16_to_cpu(super->version_minor);
830 
831 	arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off +
832 			le64_to_cpu(super->nextoff));
833 	arena->infooff = arena_off;
834 	arena->dataoff = arena_off + le64_to_cpu(super->dataoff);
835 	arena->mapoff = arena_off + le64_to_cpu(super->mapoff);
836 	arena->logoff = arena_off + le64_to_cpu(super->logoff);
837 	arena->info2off = arena_off + le64_to_cpu(super->info2off);
838 
839 	arena->size = (le64_to_cpu(super->nextoff) > 0)
840 		? (le64_to_cpu(super->nextoff))
841 		: (arena->info2off - arena->infooff + BTT_PG_SIZE);
842 
843 	arena->flags = le32_to_cpu(super->flags);
844 }
845 
846 static int discover_arenas(struct btt *btt)
847 {
848 	int ret = 0;
849 	struct arena_info *arena;
850 	struct btt_sb *super;
851 	size_t remaining = btt->rawsize;
852 	u64 cur_nlba = 0;
853 	size_t cur_off = 0;
854 	int num_arenas = 0;
855 
856 	super = kzalloc(sizeof(*super), GFP_KERNEL);
857 	if (!super)
858 		return -ENOMEM;
859 
860 	while (remaining) {
861 		/* Alloc memory for arena */
862 		arena = alloc_arena(btt, 0, 0, 0);
863 		if (!arena) {
864 			ret = -ENOMEM;
865 			goto out_super;
866 		}
867 
868 		arena->infooff = cur_off;
869 		ret = btt_info_read(arena, super);
870 		if (ret)
871 			goto out;
872 
873 		if (!nd_btt_arena_is_valid(btt->nd_btt, super)) {
874 			if (remaining == btt->rawsize) {
875 				btt->init_state = INIT_NOTFOUND;
876 				dev_info(to_dev(arena), "No existing arenas\n");
877 				goto out;
878 			} else {
879 				dev_err(to_dev(arena),
880 						"Found corrupted metadata!\n");
881 				ret = -ENODEV;
882 				goto out;
883 			}
884 		}
885 
886 		arena->external_lba_start = cur_nlba;
887 		parse_arena_meta(arena, super, cur_off);
888 
889 		ret = log_set_indices(arena);
890 		if (ret) {
891 			dev_err(to_dev(arena),
892 				"Unable to deduce log/padding indices\n");
893 			goto out;
894 		}
895 
896 		ret = btt_freelist_init(arena);
897 		if (ret)
898 			goto out;
899 
900 		ret = btt_rtt_init(arena);
901 		if (ret)
902 			goto out;
903 
904 		ret = btt_maplocks_init(arena);
905 		if (ret)
906 			goto out;
907 
908 		list_add_tail(&arena->list, &btt->arena_list);
909 
910 		remaining -= arena->size;
911 		cur_off += arena->size;
912 		cur_nlba += arena->external_nlba;
913 		num_arenas++;
914 
915 		if (arena->nextoff == 0)
916 			break;
917 	}
918 	btt->num_arenas = num_arenas;
919 	btt->nlba = cur_nlba;
920 	btt->init_state = INIT_READY;
921 
922 	kfree(super);
923 	return ret;
924 
925  out:
926 	kfree(arena);
927 	free_arenas(btt);
928  out_super:
929 	kfree(super);
930 	return ret;
931 }
932 
933 static int create_arenas(struct btt *btt)
934 {
935 	size_t remaining = btt->rawsize;
936 	size_t cur_off = 0;
937 
938 	while (remaining) {
939 		struct arena_info *arena;
940 		size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining);
941 
942 		remaining -= arena_size;
943 		if (arena_size < ARENA_MIN_SIZE)
944 			break;
945 
946 		arena = alloc_arena(btt, arena_size, btt->nlba, cur_off);
947 		if (!arena) {
948 			free_arenas(btt);
949 			return -ENOMEM;
950 		}
951 		btt->nlba += arena->external_nlba;
952 		if (remaining >= ARENA_MIN_SIZE)
953 			arena->nextoff = arena->size;
954 		else
955 			arena->nextoff = 0;
956 		cur_off += arena_size;
957 		list_add_tail(&arena->list, &btt->arena_list);
958 	}
959 
960 	return 0;
961 }
962 
963 /*
964  * This function completes arena initialization by writing
965  * all the metadata.
966  * It is only called for an uninitialized arena when a write
967  * to that arena occurs for the first time.
968  */
969 static int btt_arena_write_layout(struct arena_info *arena)
970 {
971 	int ret;
972 	u64 sum;
973 	struct btt_sb *super;
974 	struct nd_btt *nd_btt = arena->nd_btt;
975 	const uuid_t *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev);
976 
977 	ret = btt_map_init(arena);
978 	if (ret)
979 		return ret;
980 
981 	ret = btt_log_init(arena);
982 	if (ret)
983 		return ret;
984 
985 	super = kzalloc(sizeof(struct btt_sb), GFP_NOIO);
986 	if (!super)
987 		return -ENOMEM;
988 
989 	strncpy(super->signature, BTT_SIG, BTT_SIG_LEN);
990 	export_uuid(super->uuid, nd_btt->uuid);
991 	export_uuid(super->parent_uuid, parent_uuid);
992 	super->flags = cpu_to_le32(arena->flags);
993 	super->version_major = cpu_to_le16(arena->version_major);
994 	super->version_minor = cpu_to_le16(arena->version_minor);
995 	super->external_lbasize = cpu_to_le32(arena->external_lbasize);
996 	super->external_nlba = cpu_to_le32(arena->external_nlba);
997 	super->internal_lbasize = cpu_to_le32(arena->internal_lbasize);
998 	super->internal_nlba = cpu_to_le32(arena->internal_nlba);
999 	super->nfree = cpu_to_le32(arena->nfree);
1000 	super->infosize = cpu_to_le32(sizeof(struct btt_sb));
1001 	super->nextoff = cpu_to_le64(arena->nextoff);
1002 	/*
1003 	 * Subtract arena->infooff (arena start) so numbers are relative
1004 	 * to 'this' arena
1005 	 */
1006 	super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff);
1007 	super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff);
1008 	super->logoff = cpu_to_le64(arena->logoff - arena->infooff);
1009 	super->info2off = cpu_to_le64(arena->info2off - arena->infooff);
1010 
1011 	super->flags = 0;
1012 	sum = nd_sb_checksum((struct nd_gen_sb *) super);
1013 	super->checksum = cpu_to_le64(sum);
1014 
1015 	ret = btt_info_write(arena, super);
1016 
1017 	kfree(super);
1018 	return ret;
1019 }
1020 
1021 /*
1022  * This function completes the initialization for the BTT namespace
1023  * such that it is ready to accept IOs
1024  */
1025 static int btt_meta_init(struct btt *btt)
1026 {
1027 	int ret = 0;
1028 	struct arena_info *arena;
1029 
1030 	mutex_lock(&btt->init_lock);
1031 	list_for_each_entry(arena, &btt->arena_list, list) {
1032 		ret = btt_arena_write_layout(arena);
1033 		if (ret)
1034 			goto unlock;
1035 
1036 		ret = btt_freelist_init(arena);
1037 		if (ret)
1038 			goto unlock;
1039 
1040 		ret = btt_rtt_init(arena);
1041 		if (ret)
1042 			goto unlock;
1043 
1044 		ret = btt_maplocks_init(arena);
1045 		if (ret)
1046 			goto unlock;
1047 	}
1048 
1049 	btt->init_state = INIT_READY;
1050 
1051  unlock:
1052 	mutex_unlock(&btt->init_lock);
1053 	return ret;
1054 }
1055 
1056 static u32 btt_meta_size(struct btt *btt)
1057 {
1058 	return btt->lbasize - btt->sector_size;
1059 }
1060 
1061 /*
1062  * This function calculates the arena in which the given LBA lies
1063  * by doing a linear walk. This is acceptable since we expect only
1064  * a few arenas. If we have backing devices that get much larger,
1065  * we can construct a balanced binary tree of arenas at init time
1066  * so that this range search becomes faster.
1067  */
1068 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap,
1069 				struct arena_info **arena)
1070 {
1071 	struct arena_info *arena_list;
1072 	__u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size);
1073 
1074 	list_for_each_entry(arena_list, &btt->arena_list, list) {
1075 		if (lba < arena_list->external_nlba) {
1076 			*arena = arena_list;
1077 			*premap = lba;
1078 			return 0;
1079 		}
1080 		lba -= arena_list->external_nlba;
1081 	}
1082 
1083 	return -EIO;
1084 }
1085 
1086 /*
1087  * The following (lock_map, unlock_map) are mostly just to improve
1088  * readability, since they index into an array of locks
1089  */
1090 static void lock_map(struct arena_info *arena, u32 premap)
1091 		__acquires(&arena->map_locks[idx].lock)
1092 {
1093 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1094 
1095 	spin_lock(&arena->map_locks[idx].lock);
1096 }
1097 
1098 static void unlock_map(struct arena_info *arena, u32 premap)
1099 		__releases(&arena->map_locks[idx].lock)
1100 {
1101 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1102 
1103 	spin_unlock(&arena->map_locks[idx].lock);
1104 }
1105 
1106 static int btt_data_read(struct arena_info *arena, struct page *page,
1107 			unsigned int off, u32 lba, u32 len)
1108 {
1109 	int ret;
1110 	u64 nsoff = to_namespace_offset(arena, lba);
1111 	void *mem = kmap_atomic(page);
1112 
1113 	ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1114 	kunmap_atomic(mem);
1115 
1116 	return ret;
1117 }
1118 
1119 static int btt_data_write(struct arena_info *arena, u32 lba,
1120 			struct page *page, unsigned int off, u32 len)
1121 {
1122 	int ret;
1123 	u64 nsoff = to_namespace_offset(arena, lba);
1124 	void *mem = kmap_atomic(page);
1125 
1126 	ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1127 	kunmap_atomic(mem);
1128 
1129 	return ret;
1130 }
1131 
1132 static void zero_fill_data(struct page *page, unsigned int off, u32 len)
1133 {
1134 	void *mem = kmap_atomic(page);
1135 
1136 	memset(mem + off, 0, len);
1137 	kunmap_atomic(mem);
1138 }
1139 
1140 #ifdef CONFIG_BLK_DEV_INTEGRITY
1141 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1142 			struct arena_info *arena, u32 postmap, int rw)
1143 {
1144 	unsigned int len = btt_meta_size(btt);
1145 	u64 meta_nsoff;
1146 	int ret = 0;
1147 
1148 	if (bip == NULL)
1149 		return 0;
1150 
1151 	meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size;
1152 
1153 	while (len) {
1154 		unsigned int cur_len;
1155 		struct bio_vec bv;
1156 		void *mem;
1157 
1158 		bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1159 		/*
1160 		 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and
1161 		 * .bv_offset already adjusted for iter->bi_bvec_done, and we
1162 		 * can use those directly
1163 		 */
1164 
1165 		cur_len = min(len, bv.bv_len);
1166 		mem = bvec_kmap_local(&bv);
1167 		if (rw)
1168 			ret = arena_write_bytes(arena, meta_nsoff, mem, cur_len,
1169 					NVDIMM_IO_ATOMIC);
1170 		else
1171 			ret = arena_read_bytes(arena, meta_nsoff, mem, cur_len,
1172 					NVDIMM_IO_ATOMIC);
1173 
1174 		kunmap_local(mem);
1175 		if (ret)
1176 			return ret;
1177 
1178 		len -= cur_len;
1179 		meta_nsoff += cur_len;
1180 		if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len))
1181 			return -EIO;
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 #else /* CONFIG_BLK_DEV_INTEGRITY */
1188 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1189 			struct arena_info *arena, u32 postmap, int rw)
1190 {
1191 	return 0;
1192 }
1193 #endif
1194 
1195 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip,
1196 			struct page *page, unsigned int off, sector_t sector,
1197 			unsigned int len)
1198 {
1199 	int ret = 0;
1200 	int t_flag, e_flag;
1201 	struct arena_info *arena = NULL;
1202 	u32 lane = 0, premap, postmap;
1203 
1204 	while (len) {
1205 		u32 cur_len;
1206 
1207 		lane = nd_region_acquire_lane(btt->nd_region);
1208 
1209 		ret = lba_to_arena(btt, sector, &premap, &arena);
1210 		if (ret)
1211 			goto out_lane;
1212 
1213 		cur_len = min(btt->sector_size, len);
1214 
1215 		ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag,
1216 				NVDIMM_IO_ATOMIC);
1217 		if (ret)
1218 			goto out_lane;
1219 
1220 		/*
1221 		 * We loop to make sure that the post map LBA didn't change
1222 		 * from under us between writing the RTT and doing the actual
1223 		 * read.
1224 		 */
1225 		while (1) {
1226 			u32 new_map;
1227 			int new_t, new_e;
1228 
1229 			if (t_flag) {
1230 				zero_fill_data(page, off, cur_len);
1231 				goto out_lane;
1232 			}
1233 
1234 			if (e_flag) {
1235 				ret = -EIO;
1236 				goto out_lane;
1237 			}
1238 
1239 			arena->rtt[lane] = RTT_VALID | postmap;
1240 			/*
1241 			 * Barrier to make sure this write is not reordered
1242 			 * to do the verification map_read before the RTT store
1243 			 */
1244 			barrier();
1245 
1246 			ret = btt_map_read(arena, premap, &new_map, &new_t,
1247 						&new_e, NVDIMM_IO_ATOMIC);
1248 			if (ret)
1249 				goto out_rtt;
1250 
1251 			if ((postmap == new_map) && (t_flag == new_t) &&
1252 					(e_flag == new_e))
1253 				break;
1254 
1255 			postmap = new_map;
1256 			t_flag = new_t;
1257 			e_flag = new_e;
1258 		}
1259 
1260 		ret = btt_data_read(arena, page, off, postmap, cur_len);
1261 		if (ret) {
1262 			/* Media error - set the e_flag */
1263 			if (btt_map_write(arena, premap, postmap, 0, 1, NVDIMM_IO_ATOMIC))
1264 				dev_warn_ratelimited(to_dev(arena),
1265 					"Error persistently tracking bad blocks at %#x\n",
1266 					premap);
1267 			goto out_rtt;
1268 		}
1269 
1270 		if (bip) {
1271 			ret = btt_rw_integrity(btt, bip, arena, postmap, READ);
1272 			if (ret)
1273 				goto out_rtt;
1274 		}
1275 
1276 		arena->rtt[lane] = RTT_INVALID;
1277 		nd_region_release_lane(btt->nd_region, lane);
1278 
1279 		len -= cur_len;
1280 		off += cur_len;
1281 		sector += btt->sector_size >> SECTOR_SHIFT;
1282 	}
1283 
1284 	return 0;
1285 
1286  out_rtt:
1287 	arena->rtt[lane] = RTT_INVALID;
1288  out_lane:
1289 	nd_region_release_lane(btt->nd_region, lane);
1290 	return ret;
1291 }
1292 
1293 /*
1294  * Normally, arena_{read,write}_bytes will take care of the initial offset
1295  * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem,
1296  * we need the final, raw namespace offset here
1297  */
1298 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena,
1299 		u32 postmap)
1300 {
1301 	u64 nsoff = adjust_initial_offset(arena->nd_btt,
1302 			to_namespace_offset(arena, postmap));
1303 	sector_t phys_sector = nsoff >> 9;
1304 
1305 	return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize);
1306 }
1307 
1308 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip,
1309 			sector_t sector, struct page *page, unsigned int off,
1310 			unsigned int len)
1311 {
1312 	int ret = 0;
1313 	struct arena_info *arena = NULL;
1314 	u32 premap = 0, old_postmap, new_postmap, lane = 0, i;
1315 	struct log_entry log;
1316 	int sub;
1317 
1318 	while (len) {
1319 		u32 cur_len;
1320 		int e_flag;
1321 
1322  retry:
1323 		lane = nd_region_acquire_lane(btt->nd_region);
1324 
1325 		ret = lba_to_arena(btt, sector, &premap, &arena);
1326 		if (ret)
1327 			goto out_lane;
1328 		cur_len = min(btt->sector_size, len);
1329 
1330 		if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) {
1331 			ret = -EIO;
1332 			goto out_lane;
1333 		}
1334 
1335 		if (btt_is_badblock(btt, arena, arena->freelist[lane].block))
1336 			arena->freelist[lane].has_err = 1;
1337 
1338 		if (mutex_is_locked(&arena->err_lock)
1339 				|| arena->freelist[lane].has_err) {
1340 			nd_region_release_lane(btt->nd_region, lane);
1341 
1342 			ret = arena_clear_freelist_error(arena, lane);
1343 			if (ret)
1344 				return ret;
1345 
1346 			/* OK to acquire a different lane/free block */
1347 			goto retry;
1348 		}
1349 
1350 		new_postmap = arena->freelist[lane].block;
1351 
1352 		/* Wait if the new block is being read from */
1353 		for (i = 0; i < arena->nfree; i++)
1354 			while (arena->rtt[i] == (RTT_VALID | new_postmap))
1355 				cpu_relax();
1356 
1357 
1358 		if (new_postmap >= arena->internal_nlba) {
1359 			ret = -EIO;
1360 			goto out_lane;
1361 		}
1362 
1363 		ret = btt_data_write(arena, new_postmap, page, off, cur_len);
1364 		if (ret)
1365 			goto out_lane;
1366 
1367 		if (bip) {
1368 			ret = btt_rw_integrity(btt, bip, arena, new_postmap,
1369 						WRITE);
1370 			if (ret)
1371 				goto out_lane;
1372 		}
1373 
1374 		lock_map(arena, premap);
1375 		ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag,
1376 				NVDIMM_IO_ATOMIC);
1377 		if (ret)
1378 			goto out_map;
1379 		if (old_postmap >= arena->internal_nlba) {
1380 			ret = -EIO;
1381 			goto out_map;
1382 		}
1383 		if (e_flag)
1384 			set_e_flag(old_postmap);
1385 
1386 		log.lba = cpu_to_le32(premap);
1387 		log.old_map = cpu_to_le32(old_postmap);
1388 		log.new_map = cpu_to_le32(new_postmap);
1389 		log.seq = cpu_to_le32(arena->freelist[lane].seq);
1390 		sub = arena->freelist[lane].sub;
1391 		ret = btt_flog_write(arena, lane, sub, &log);
1392 		if (ret)
1393 			goto out_map;
1394 
1395 		ret = btt_map_write(arena, premap, new_postmap, 0, 0,
1396 			NVDIMM_IO_ATOMIC);
1397 		if (ret)
1398 			goto out_map;
1399 
1400 		unlock_map(arena, premap);
1401 		nd_region_release_lane(btt->nd_region, lane);
1402 
1403 		if (e_flag) {
1404 			ret = arena_clear_freelist_error(arena, lane);
1405 			if (ret)
1406 				return ret;
1407 		}
1408 
1409 		len -= cur_len;
1410 		off += cur_len;
1411 		sector += btt->sector_size >> SECTOR_SHIFT;
1412 	}
1413 
1414 	return 0;
1415 
1416  out_map:
1417 	unlock_map(arena, premap);
1418  out_lane:
1419 	nd_region_release_lane(btt->nd_region, lane);
1420 	return ret;
1421 }
1422 
1423 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip,
1424 			struct page *page, unsigned int len, unsigned int off,
1425 			enum req_op op, sector_t sector)
1426 {
1427 	int ret;
1428 
1429 	if (!op_is_write(op)) {
1430 		ret = btt_read_pg(btt, bip, page, off, sector, len);
1431 		flush_dcache_page(page);
1432 	} else {
1433 		flush_dcache_page(page);
1434 		ret = btt_write_pg(btt, bip, sector, page, off, len);
1435 	}
1436 
1437 	return ret;
1438 }
1439 
1440 static void btt_submit_bio(struct bio *bio)
1441 {
1442 	struct bio_integrity_payload *bip = bio_integrity(bio);
1443 	struct btt *btt = bio->bi_bdev->bd_disk->private_data;
1444 	struct bvec_iter iter;
1445 	unsigned long start;
1446 	struct bio_vec bvec;
1447 	int err = 0;
1448 	bool do_acct;
1449 
1450 	if (!bio_integrity_prep(bio))
1451 		return;
1452 
1453 	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
1454 	if (do_acct)
1455 		start = bio_start_io_acct(bio);
1456 	bio_for_each_segment(bvec, bio, iter) {
1457 		unsigned int len = bvec.bv_len;
1458 
1459 		if (len > PAGE_SIZE || len < btt->sector_size ||
1460 				len % btt->sector_size) {
1461 			dev_err_ratelimited(&btt->nd_btt->dev,
1462 				"unaligned bio segment (len: %d)\n", len);
1463 			bio->bi_status = BLK_STS_IOERR;
1464 			break;
1465 		}
1466 
1467 		err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset,
1468 				  bio_op(bio), iter.bi_sector);
1469 		if (err) {
1470 			dev_err(&btt->nd_btt->dev,
1471 					"io error in %s sector %lld, len %d,\n",
1472 					(op_is_write(bio_op(bio))) ? "WRITE" :
1473 					"READ",
1474 					(unsigned long long) iter.bi_sector, len);
1475 			bio->bi_status = errno_to_blk_status(err);
1476 			break;
1477 		}
1478 	}
1479 	if (do_acct)
1480 		bio_end_io_acct(bio, start);
1481 
1482 	bio_endio(bio);
1483 }
1484 
1485 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo)
1486 {
1487 	/* some standard values */
1488 	geo->heads = 1 << 6;
1489 	geo->sectors = 1 << 5;
1490 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1491 	return 0;
1492 }
1493 
1494 static const struct block_device_operations btt_fops = {
1495 	.owner =		THIS_MODULE,
1496 	.submit_bio =		btt_submit_bio,
1497 	.getgeo =		btt_getgeo,
1498 };
1499 
1500 static int btt_blk_init(struct btt *btt)
1501 {
1502 	struct nd_btt *nd_btt = btt->nd_btt;
1503 	struct nd_namespace_common *ndns = nd_btt->ndns;
1504 	int rc = -ENOMEM;
1505 
1506 	btt->btt_disk = blk_alloc_disk(NUMA_NO_NODE);
1507 	if (!btt->btt_disk)
1508 		return -ENOMEM;
1509 
1510 	nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name);
1511 	btt->btt_disk->first_minor = 0;
1512 	btt->btt_disk->fops = &btt_fops;
1513 	btt->btt_disk->private_data = btt;
1514 
1515 	blk_queue_logical_block_size(btt->btt_disk->queue, btt->sector_size);
1516 	blk_queue_max_hw_sectors(btt->btt_disk->queue, UINT_MAX);
1517 	blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_disk->queue);
1518 	blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, btt->btt_disk->queue);
1519 
1520 	if (btt_meta_size(btt)) {
1521 		rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt));
1522 		if (rc)
1523 			goto out_cleanup_disk;
1524 	}
1525 
1526 	set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9);
1527 	rc = device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL);
1528 	if (rc)
1529 		goto out_cleanup_disk;
1530 
1531 	btt->nd_btt->size = btt->nlba * (u64)btt->sector_size;
1532 	nvdimm_check_and_set_ro(btt->btt_disk);
1533 
1534 	return 0;
1535 
1536 out_cleanup_disk:
1537 	put_disk(btt->btt_disk);
1538 	return rc;
1539 }
1540 
1541 static void btt_blk_cleanup(struct btt *btt)
1542 {
1543 	del_gendisk(btt->btt_disk);
1544 	put_disk(btt->btt_disk);
1545 }
1546 
1547 /**
1548  * btt_init - initialize a block translation table for the given device
1549  * @nd_btt:	device with BTT geometry and backing device info
1550  * @rawsize:	raw size in bytes of the backing device
1551  * @lbasize:	lba size of the backing device
1552  * @uuid:	A uuid for the backing device - this is stored on media
1553  * @maxlane:	maximum number of parallel requests the device can handle
1554  *
1555  * Initialize a Block Translation Table on a backing device to provide
1556  * single sector power fail atomicity.
1557  *
1558  * Context:
1559  * Might sleep.
1560  *
1561  * Returns:
1562  * Pointer to a new struct btt on success, NULL on failure.
1563  */
1564 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize,
1565 			    u32 lbasize, uuid_t *uuid,
1566 			    struct nd_region *nd_region)
1567 {
1568 	int ret;
1569 	struct btt *btt;
1570 	struct nd_namespace_io *nsio;
1571 	struct device *dev = &nd_btt->dev;
1572 
1573 	btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL);
1574 	if (!btt)
1575 		return NULL;
1576 
1577 	btt->nd_btt = nd_btt;
1578 	btt->rawsize = rawsize;
1579 	btt->lbasize = lbasize;
1580 	btt->sector_size = ((lbasize >= 4096) ? 4096 : 512);
1581 	INIT_LIST_HEAD(&btt->arena_list);
1582 	mutex_init(&btt->init_lock);
1583 	btt->nd_region = nd_region;
1584 	nsio = to_nd_namespace_io(&nd_btt->ndns->dev);
1585 	btt->phys_bb = &nsio->bb;
1586 
1587 	ret = discover_arenas(btt);
1588 	if (ret) {
1589 		dev_err(dev, "init: error in arena_discover: %d\n", ret);
1590 		return NULL;
1591 	}
1592 
1593 	if (btt->init_state != INIT_READY && nd_region->ro) {
1594 		dev_warn(dev, "%s is read-only, unable to init btt metadata\n",
1595 				dev_name(&nd_region->dev));
1596 		return NULL;
1597 	} else if (btt->init_state != INIT_READY) {
1598 		btt->num_arenas = (rawsize / ARENA_MAX_SIZE) +
1599 			((rawsize % ARENA_MAX_SIZE) ? 1 : 0);
1600 		dev_dbg(dev, "init: %d arenas for %llu rawsize\n",
1601 				btt->num_arenas, rawsize);
1602 
1603 		ret = create_arenas(btt);
1604 		if (ret) {
1605 			dev_info(dev, "init: create_arenas: %d\n", ret);
1606 			return NULL;
1607 		}
1608 
1609 		ret = btt_meta_init(btt);
1610 		if (ret) {
1611 			dev_err(dev, "init: error in meta_init: %d\n", ret);
1612 			return NULL;
1613 		}
1614 	}
1615 
1616 	ret = btt_blk_init(btt);
1617 	if (ret) {
1618 		dev_err(dev, "init: error in blk_init: %d\n", ret);
1619 		return NULL;
1620 	}
1621 
1622 	btt_debugfs_init(btt);
1623 
1624 	return btt;
1625 }
1626 
1627 /**
1628  * btt_fini - de-initialize a BTT
1629  * @btt:	the BTT handle that was generated by btt_init
1630  *
1631  * De-initialize a Block Translation Table on device removal
1632  *
1633  * Context:
1634  * Might sleep.
1635  */
1636 static void btt_fini(struct btt *btt)
1637 {
1638 	if (btt) {
1639 		btt_blk_cleanup(btt);
1640 		free_arenas(btt);
1641 		debugfs_remove_recursive(btt->debugfs_dir);
1642 	}
1643 }
1644 
1645 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns)
1646 {
1647 	struct nd_btt *nd_btt = to_nd_btt(ndns->claim);
1648 	struct nd_region *nd_region;
1649 	struct btt_sb *btt_sb;
1650 	struct btt *btt;
1651 	size_t size, rawsize;
1652 	int rc;
1653 
1654 	if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) {
1655 		dev_dbg(&nd_btt->dev, "incomplete btt configuration\n");
1656 		return -ENODEV;
1657 	}
1658 
1659 	btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL);
1660 	if (!btt_sb)
1661 		return -ENOMEM;
1662 
1663 	size = nvdimm_namespace_capacity(ndns);
1664 	rc = devm_namespace_enable(&nd_btt->dev, ndns, size);
1665 	if (rc)
1666 		return rc;
1667 
1668 	/*
1669 	 * If this returns < 0, that is ok as it just means there wasn't
1670 	 * an existing BTT, and we're creating a new one. We still need to
1671 	 * call this as we need the version dependent fields in nd_btt to be
1672 	 * set correctly based on the holder class
1673 	 */
1674 	nd_btt_version(nd_btt, ndns, btt_sb);
1675 
1676 	rawsize = size - nd_btt->initial_offset;
1677 	if (rawsize < ARENA_MIN_SIZE) {
1678 		dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n",
1679 				dev_name(&ndns->dev),
1680 				ARENA_MIN_SIZE + nd_btt->initial_offset);
1681 		return -ENXIO;
1682 	}
1683 	nd_region = to_nd_region(nd_btt->dev.parent);
1684 	btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid,
1685 		       nd_region);
1686 	if (!btt)
1687 		return -ENOMEM;
1688 	nd_btt->btt = btt;
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(nvdimm_namespace_attach_btt);
1693 
1694 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt)
1695 {
1696 	struct btt *btt = nd_btt->btt;
1697 
1698 	btt_fini(btt);
1699 	nd_btt->btt = NULL;
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL(nvdimm_namespace_detach_btt);
1704 
1705 static int __init nd_btt_init(void)
1706 {
1707 	int rc = 0;
1708 
1709 	debugfs_root = debugfs_create_dir("btt", NULL);
1710 	if (IS_ERR_OR_NULL(debugfs_root))
1711 		rc = -ENXIO;
1712 
1713 	return rc;
1714 }
1715 
1716 static void __exit nd_btt_exit(void)
1717 {
1718 	debugfs_remove_recursive(debugfs_root);
1719 }
1720 
1721 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT);
1722 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>");
1723 MODULE_LICENSE("GPL v2");
1724 module_init(nd_btt_init);
1725 module_exit(nd_btt_exit);
1726