xref: /openbmc/linux/drivers/nvdimm/btt.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 /*
2  * Block Translation Table
3  * Copyright (c) 2014-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #include <linux/highmem.h>
15 #include <linux/debugfs.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/mutex.h>
20 #include <linux/hdreg.h>
21 #include <linux/genhd.h>
22 #include <linux/sizes.h>
23 #include <linux/ndctl.h>
24 #include <linux/fs.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include "btt.h"
28 #include "nd.h"
29 
30 enum log_ent_request {
31 	LOG_NEW_ENT = 0,
32 	LOG_OLD_ENT
33 };
34 
35 static struct device *to_dev(struct arena_info *arena)
36 {
37 	return &arena->nd_btt->dev;
38 }
39 
40 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset)
41 {
42 	return offset + nd_btt->initial_offset;
43 }
44 
45 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset,
46 		void *buf, size_t n, unsigned long flags)
47 {
48 	struct nd_btt *nd_btt = arena->nd_btt;
49 	struct nd_namespace_common *ndns = nd_btt->ndns;
50 
51 	/* arena offsets may be shifted from the base of the device */
52 	offset = adjust_initial_offset(nd_btt, offset);
53 	return nvdimm_read_bytes(ndns, offset, buf, n, flags);
54 }
55 
56 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset,
57 		void *buf, size_t n, unsigned long flags)
58 {
59 	struct nd_btt *nd_btt = arena->nd_btt;
60 	struct nd_namespace_common *ndns = nd_btt->ndns;
61 
62 	/* arena offsets may be shifted from the base of the device */
63 	offset = adjust_initial_offset(nd_btt, offset);
64 	return nvdimm_write_bytes(ndns, offset, buf, n, flags);
65 }
66 
67 static int btt_info_write(struct arena_info *arena, struct btt_sb *super)
68 {
69 	int ret;
70 
71 	/*
72 	 * infooff and info2off should always be at least 512B aligned.
73 	 * We rely on that to make sure rw_bytes does error clearing
74 	 * correctly, so make sure that is the case.
75 	 */
76 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512),
77 		"arena->infooff: %#llx is unaligned\n", arena->infooff);
78 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512),
79 		"arena->info2off: %#llx is unaligned\n", arena->info2off);
80 
81 	ret = arena_write_bytes(arena, arena->info2off, super,
82 			sizeof(struct btt_sb), 0);
83 	if (ret)
84 		return ret;
85 
86 	return arena_write_bytes(arena, arena->infooff, super,
87 			sizeof(struct btt_sb), 0);
88 }
89 
90 static int btt_info_read(struct arena_info *arena, struct btt_sb *super)
91 {
92 	return arena_read_bytes(arena, arena->infooff, super,
93 			sizeof(struct btt_sb), 0);
94 }
95 
96 /*
97  * 'raw' version of btt_map write
98  * Assumptions:
99  *   mapping is in little-endian
100  *   mapping contains 'E' and 'Z' flags as desired
101  */
102 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping,
103 		unsigned long flags)
104 {
105 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
106 
107 	if (unlikely(lba >= arena->external_nlba))
108 		dev_err_ratelimited(to_dev(arena),
109 			"%s: lba %#x out of range (max: %#x)\n",
110 			__func__, lba, arena->external_nlba);
111 	return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags);
112 }
113 
114 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping,
115 			u32 z_flag, u32 e_flag, unsigned long rwb_flags)
116 {
117 	u32 ze;
118 	__le32 mapping_le;
119 
120 	/*
121 	 * This 'mapping' is supposed to be just the LBA mapping, without
122 	 * any flags set, so strip the flag bits.
123 	 */
124 	mapping = ent_lba(mapping);
125 
126 	ze = (z_flag << 1) + e_flag;
127 	switch (ze) {
128 	case 0:
129 		/*
130 		 * We want to set neither of the Z or E flags, and
131 		 * in the actual layout, this means setting the bit
132 		 * positions of both to '1' to indicate a 'normal'
133 		 * map entry
134 		 */
135 		mapping |= MAP_ENT_NORMAL;
136 		break;
137 	case 1:
138 		mapping |= (1 << MAP_ERR_SHIFT);
139 		break;
140 	case 2:
141 		mapping |= (1 << MAP_TRIM_SHIFT);
142 		break;
143 	default:
144 		/*
145 		 * The case where Z and E are both sent in as '1' could be
146 		 * construed as a valid 'normal' case, but we decide not to,
147 		 * to avoid confusion
148 		 */
149 		dev_err_ratelimited(to_dev(arena),
150 			"Invalid use of Z and E flags\n");
151 		return -EIO;
152 	}
153 
154 	mapping_le = cpu_to_le32(mapping);
155 	return __btt_map_write(arena, lba, mapping_le, rwb_flags);
156 }
157 
158 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping,
159 			int *trim, int *error, unsigned long rwb_flags)
160 {
161 	int ret;
162 	__le32 in;
163 	u32 raw_mapping, postmap, ze, z_flag, e_flag;
164 	u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE);
165 
166 	if (unlikely(lba >= arena->external_nlba))
167 		dev_err_ratelimited(to_dev(arena),
168 			"%s: lba %#x out of range (max: %#x)\n",
169 			__func__, lba, arena->external_nlba);
170 
171 	ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags);
172 	if (ret)
173 		return ret;
174 
175 	raw_mapping = le32_to_cpu(in);
176 
177 	z_flag = ent_z_flag(raw_mapping);
178 	e_flag = ent_e_flag(raw_mapping);
179 	ze = (z_flag << 1) + e_flag;
180 	postmap = ent_lba(raw_mapping);
181 
182 	/* Reuse the {z,e}_flag variables for *trim and *error */
183 	z_flag = 0;
184 	e_flag = 0;
185 
186 	switch (ze) {
187 	case 0:
188 		/* Initial state. Return postmap = premap */
189 		*mapping = lba;
190 		break;
191 	case 1:
192 		*mapping = postmap;
193 		e_flag = 1;
194 		break;
195 	case 2:
196 		*mapping = postmap;
197 		z_flag = 1;
198 		break;
199 	case 3:
200 		*mapping = postmap;
201 		break;
202 	default:
203 		return -EIO;
204 	}
205 
206 	if (trim)
207 		*trim = z_flag;
208 	if (error)
209 		*error = e_flag;
210 
211 	return ret;
212 }
213 
214 static int btt_log_group_read(struct arena_info *arena, u32 lane,
215 			struct log_group *log)
216 {
217 	return arena_read_bytes(arena,
218 			arena->logoff + (lane * LOG_GRP_SIZE), log,
219 			LOG_GRP_SIZE, 0);
220 }
221 
222 static struct dentry *debugfs_root;
223 
224 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent,
225 				int idx)
226 {
227 	char dirname[32];
228 	struct dentry *d;
229 
230 	/* If for some reason, parent bttN was not created, exit */
231 	if (!parent)
232 		return;
233 
234 	snprintf(dirname, 32, "arena%d", idx);
235 	d = debugfs_create_dir(dirname, parent);
236 	if (IS_ERR_OR_NULL(d))
237 		return;
238 	a->debugfs_dir = d;
239 
240 	debugfs_create_x64("size", S_IRUGO, d, &a->size);
241 	debugfs_create_x64("external_lba_start", S_IRUGO, d,
242 				&a->external_lba_start);
243 	debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba);
244 	debugfs_create_u32("internal_lbasize", S_IRUGO, d,
245 				&a->internal_lbasize);
246 	debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba);
247 	debugfs_create_u32("external_lbasize", S_IRUGO, d,
248 				&a->external_lbasize);
249 	debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree);
250 	debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major);
251 	debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor);
252 	debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff);
253 	debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff);
254 	debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff);
255 	debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff);
256 	debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff);
257 	debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off);
258 	debugfs_create_x32("flags", S_IRUGO, d, &a->flags);
259 	debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]);
260 	debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]);
261 }
262 
263 static void btt_debugfs_init(struct btt *btt)
264 {
265 	int i = 0;
266 	struct arena_info *arena;
267 
268 	btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev),
269 						debugfs_root);
270 	if (IS_ERR_OR_NULL(btt->debugfs_dir))
271 		return;
272 
273 	list_for_each_entry(arena, &btt->arena_list, list) {
274 		arena_debugfs_init(arena, btt->debugfs_dir, i);
275 		i++;
276 	}
277 }
278 
279 static u32 log_seq(struct log_group *log, int log_idx)
280 {
281 	return le32_to_cpu(log->ent[log_idx].seq);
282 }
283 
284 /*
285  * This function accepts two log entries, and uses the
286  * sequence number to find the 'older' entry.
287  * It also updates the sequence number in this old entry to
288  * make it the 'new' one if the mark_flag is set.
289  * Finally, it returns which of the entries was the older one.
290  *
291  * TODO The logic feels a bit kludge-y. make it better..
292  */
293 static int btt_log_get_old(struct arena_info *a, struct log_group *log)
294 {
295 	int idx0 = a->log_index[0];
296 	int idx1 = a->log_index[1];
297 	int old;
298 
299 	/*
300 	 * the first ever time this is seen, the entry goes into [0]
301 	 * the next time, the following logic works out to put this
302 	 * (next) entry into [1]
303 	 */
304 	if (log_seq(log, idx0) == 0) {
305 		log->ent[idx0].seq = cpu_to_le32(1);
306 		return 0;
307 	}
308 
309 	if (log_seq(log, idx0) == log_seq(log, idx1))
310 		return -EINVAL;
311 	if (log_seq(log, idx0) + log_seq(log, idx1) > 5)
312 		return -EINVAL;
313 
314 	if (log_seq(log, idx0) < log_seq(log, idx1)) {
315 		if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1)
316 			old = 0;
317 		else
318 			old = 1;
319 	} else {
320 		if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1)
321 			old = 1;
322 		else
323 			old = 0;
324 	}
325 
326 	return old;
327 }
328 
329 /*
330  * This function copies the desired (old/new) log entry into ent if
331  * it is not NULL. It returns the sub-slot number (0 or 1)
332  * where the desired log entry was found. Negative return values
333  * indicate errors.
334  */
335 static int btt_log_read(struct arena_info *arena, u32 lane,
336 			struct log_entry *ent, int old_flag)
337 {
338 	int ret;
339 	int old_ent, ret_ent;
340 	struct log_group log;
341 
342 	ret = btt_log_group_read(arena, lane, &log);
343 	if (ret)
344 		return -EIO;
345 
346 	old_ent = btt_log_get_old(arena, &log);
347 	if (old_ent < 0 || old_ent > 1) {
348 		dev_err(to_dev(arena),
349 				"log corruption (%d): lane %d seq [%d, %d]\n",
350 				old_ent, lane, log.ent[arena->log_index[0]].seq,
351 				log.ent[arena->log_index[1]].seq);
352 		/* TODO set error state? */
353 		return -EIO;
354 	}
355 
356 	ret_ent = (old_flag ? old_ent : (1 - old_ent));
357 
358 	if (ent != NULL)
359 		memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE);
360 
361 	return ret_ent;
362 }
363 
364 /*
365  * This function commits a log entry to media
366  * It does _not_ prepare the freelist entry for the next write
367  * btt_flog_write is the wrapper for updating the freelist elements
368  */
369 static int __btt_log_write(struct arena_info *arena, u32 lane,
370 			u32 sub, struct log_entry *ent, unsigned long flags)
371 {
372 	int ret;
373 	u32 group_slot = arena->log_index[sub];
374 	unsigned int log_half = LOG_ENT_SIZE / 2;
375 	void *src = ent;
376 	u64 ns_off;
377 
378 	ns_off = arena->logoff + (lane * LOG_GRP_SIZE) +
379 		(group_slot * LOG_ENT_SIZE);
380 	/* split the 16B write into atomic, durable halves */
381 	ret = arena_write_bytes(arena, ns_off, src, log_half, flags);
382 	if (ret)
383 		return ret;
384 
385 	ns_off += log_half;
386 	src += log_half;
387 	return arena_write_bytes(arena, ns_off, src, log_half, flags);
388 }
389 
390 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub,
391 			struct log_entry *ent)
392 {
393 	int ret;
394 
395 	ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC);
396 	if (ret)
397 		return ret;
398 
399 	/* prepare the next free entry */
400 	arena->freelist[lane].sub = 1 - arena->freelist[lane].sub;
401 	if (++(arena->freelist[lane].seq) == 4)
402 		arena->freelist[lane].seq = 1;
403 	if (ent_e_flag(ent->old_map))
404 		arena->freelist[lane].has_err = 1;
405 	arena->freelist[lane].block = le32_to_cpu(ent_lba(ent->old_map));
406 
407 	return ret;
408 }
409 
410 /*
411  * This function initializes the BTT map to the initial state, which is
412  * all-zeroes, and indicates an identity mapping
413  */
414 static int btt_map_init(struct arena_info *arena)
415 {
416 	int ret = -EINVAL;
417 	void *zerobuf;
418 	size_t offset = 0;
419 	size_t chunk_size = SZ_2M;
420 	size_t mapsize = arena->logoff - arena->mapoff;
421 
422 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
423 	if (!zerobuf)
424 		return -ENOMEM;
425 
426 	/*
427 	 * mapoff should always be at least 512B  aligned. We rely on that to
428 	 * make sure rw_bytes does error clearing correctly, so make sure that
429 	 * is the case.
430 	 */
431 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512),
432 		"arena->mapoff: %#llx is unaligned\n", arena->mapoff);
433 
434 	while (mapsize) {
435 		size_t size = min(mapsize, chunk_size);
436 
437 		dev_WARN_ONCE(to_dev(arena), size < 512,
438 			"chunk size: %#zx is unaligned\n", size);
439 		ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf,
440 				size, 0);
441 		if (ret)
442 			goto free;
443 
444 		offset += size;
445 		mapsize -= size;
446 		cond_resched();
447 	}
448 
449  free:
450 	kfree(zerobuf);
451 	return ret;
452 }
453 
454 /*
455  * This function initializes the BTT log with 'fake' entries pointing
456  * to the initial reserved set of blocks as being free
457  */
458 static int btt_log_init(struct arena_info *arena)
459 {
460 	size_t logsize = arena->info2off - arena->logoff;
461 	size_t chunk_size = SZ_4K, offset = 0;
462 	struct log_entry ent;
463 	void *zerobuf;
464 	int ret;
465 	u32 i;
466 
467 	zerobuf = kzalloc(chunk_size, GFP_KERNEL);
468 	if (!zerobuf)
469 		return -ENOMEM;
470 	/*
471 	 * logoff should always be at least 512B  aligned. We rely on that to
472 	 * make sure rw_bytes does error clearing correctly, so make sure that
473 	 * is the case.
474 	 */
475 	dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512),
476 		"arena->logoff: %#llx is unaligned\n", arena->logoff);
477 
478 	while (logsize) {
479 		size_t size = min(logsize, chunk_size);
480 
481 		dev_WARN_ONCE(to_dev(arena), size < 512,
482 			"chunk size: %#zx is unaligned\n", size);
483 		ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf,
484 				size, 0);
485 		if (ret)
486 			goto free;
487 
488 		offset += size;
489 		logsize -= size;
490 		cond_resched();
491 	}
492 
493 	for (i = 0; i < arena->nfree; i++) {
494 		ent.lba = cpu_to_le32(i);
495 		ent.old_map = cpu_to_le32(arena->external_nlba + i);
496 		ent.new_map = cpu_to_le32(arena->external_nlba + i);
497 		ent.seq = cpu_to_le32(LOG_SEQ_INIT);
498 		ret = __btt_log_write(arena, i, 0, &ent, 0);
499 		if (ret)
500 			goto free;
501 	}
502 
503  free:
504 	kfree(zerobuf);
505 	return ret;
506 }
507 
508 static u64 to_namespace_offset(struct arena_info *arena, u64 lba)
509 {
510 	return arena->dataoff + ((u64)lba * arena->internal_lbasize);
511 }
512 
513 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane)
514 {
515 	int ret = 0;
516 
517 	if (arena->freelist[lane].has_err) {
518 		void *zero_page = page_address(ZERO_PAGE(0));
519 		u32 lba = arena->freelist[lane].block;
520 		u64 nsoff = to_namespace_offset(arena, lba);
521 		unsigned long len = arena->sector_size;
522 
523 		mutex_lock(&arena->err_lock);
524 
525 		while (len) {
526 			unsigned long chunk = min(len, PAGE_SIZE);
527 
528 			ret = arena_write_bytes(arena, nsoff, zero_page,
529 				chunk, 0);
530 			if (ret)
531 				break;
532 			len -= chunk;
533 			nsoff += chunk;
534 			if (len == 0)
535 				arena->freelist[lane].has_err = 0;
536 		}
537 		mutex_unlock(&arena->err_lock);
538 	}
539 	return ret;
540 }
541 
542 static int btt_freelist_init(struct arena_info *arena)
543 {
544 	int new, ret;
545 	struct log_entry log_new;
546 	u32 i, map_entry, log_oldmap, log_newmap;
547 
548 	arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry),
549 					GFP_KERNEL);
550 	if (!arena->freelist)
551 		return -ENOMEM;
552 
553 	for (i = 0; i < arena->nfree; i++) {
554 		new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT);
555 		if (new < 0)
556 			return new;
557 
558 		/* old and new map entries with any flags stripped out */
559 		log_oldmap = ent_lba(le32_to_cpu(log_new.old_map));
560 		log_newmap = ent_lba(le32_to_cpu(log_new.new_map));
561 
562 		/* sub points to the next one to be overwritten */
563 		arena->freelist[i].sub = 1 - new;
564 		arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq));
565 		arena->freelist[i].block = log_oldmap;
566 
567 		/*
568 		 * FIXME: if error clearing fails during init, we want to make
569 		 * the BTT read-only
570 		 */
571 		if (ent_e_flag(log_new.old_map) &&
572 				!ent_normal(log_new.old_map)) {
573 			arena->freelist[i].has_err = 1;
574 			ret = arena_clear_freelist_error(arena, i);
575 			if (ret)
576 				dev_err_ratelimited(to_dev(arena),
577 					"Unable to clear known errors\n");
578 		}
579 
580 		/* This implies a newly created or untouched flog entry */
581 		if (log_oldmap == log_newmap)
582 			continue;
583 
584 		/* Check if map recovery is needed */
585 		ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry,
586 				NULL, NULL, 0);
587 		if (ret)
588 			return ret;
589 
590 		/*
591 		 * The map_entry from btt_read_map is stripped of any flag bits,
592 		 * so use the stripped out versions from the log as well for
593 		 * testing whether recovery is needed. For restoration, use the
594 		 * 'raw' version of the log entries as that captured what we
595 		 * were going to write originally.
596 		 */
597 		if ((log_newmap != map_entry) && (log_oldmap == map_entry)) {
598 			/*
599 			 * Last transaction wrote the flog, but wasn't able
600 			 * to complete the map write. So fix up the map.
601 			 */
602 			ret = btt_map_write(arena, le32_to_cpu(log_new.lba),
603 					le32_to_cpu(log_new.new_map), 0, 0, 0);
604 			if (ret)
605 				return ret;
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 static bool ent_is_padding(struct log_entry *ent)
613 {
614 	return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0)
615 		&& (ent->seq == 0);
616 }
617 
618 /*
619  * Detecting valid log indices: We read a log group (see the comments in btt.h
620  * for a description of a 'log_group' and its 'slots'), and iterate over its
621  * four slots. We expect that a padding slot will be all-zeroes, and use this
622  * to detect a padding slot vs. an actual entry.
623  *
624  * If a log_group is in the initial state, i.e. hasn't been used since the
625  * creation of this BTT layout, it will have three of the four slots with
626  * zeroes. We skip over these log_groups for the detection of log_index. If
627  * all log_groups are in the initial state (i.e. the BTT has never been
628  * written to), it is safe to assume the 'new format' of log entries in slots
629  * (0, 1).
630  */
631 static int log_set_indices(struct arena_info *arena)
632 {
633 	bool idx_set = false, initial_state = true;
634 	int ret, log_index[2] = {-1, -1};
635 	u32 i, j, next_idx = 0;
636 	struct log_group log;
637 	u32 pad_count = 0;
638 
639 	for (i = 0; i < arena->nfree; i++) {
640 		ret = btt_log_group_read(arena, i, &log);
641 		if (ret < 0)
642 			return ret;
643 
644 		for (j = 0; j < 4; j++) {
645 			if (!idx_set) {
646 				if (ent_is_padding(&log.ent[j])) {
647 					pad_count++;
648 					continue;
649 				} else {
650 					/* Skip if index has been recorded */
651 					if ((next_idx == 1) &&
652 						(j == log_index[0]))
653 						continue;
654 					/* valid entry, record index */
655 					log_index[next_idx] = j;
656 					next_idx++;
657 				}
658 				if (next_idx == 2) {
659 					/* two valid entries found */
660 					idx_set = true;
661 				} else if (next_idx > 2) {
662 					/* too many valid indices */
663 					return -ENXIO;
664 				}
665 			} else {
666 				/*
667 				 * once the indices have been set, just verify
668 				 * that all subsequent log groups are either in
669 				 * their initial state or follow the same
670 				 * indices.
671 				 */
672 				if (j == log_index[0]) {
673 					/* entry must be 'valid' */
674 					if (ent_is_padding(&log.ent[j]))
675 						return -ENXIO;
676 				} else if (j == log_index[1]) {
677 					;
678 					/*
679 					 * log_index[1] can be padding if the
680 					 * lane never got used and it is still
681 					 * in the initial state (three 'padding'
682 					 * entries)
683 					 */
684 				} else {
685 					/* entry must be invalid (padding) */
686 					if (!ent_is_padding(&log.ent[j]))
687 						return -ENXIO;
688 				}
689 			}
690 		}
691 		/*
692 		 * If any of the log_groups have more than one valid,
693 		 * non-padding entry, then the we are no longer in the
694 		 * initial_state
695 		 */
696 		if (pad_count < 3)
697 			initial_state = false;
698 		pad_count = 0;
699 	}
700 
701 	if (!initial_state && !idx_set)
702 		return -ENXIO;
703 
704 	/*
705 	 * If all the entries in the log were in the initial state,
706 	 * assume new padding scheme
707 	 */
708 	if (initial_state)
709 		log_index[1] = 1;
710 
711 	/*
712 	 * Only allow the known permutations of log/padding indices,
713 	 * i.e. (0, 1), and (0, 2)
714 	 */
715 	if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2)))
716 		; /* known index possibilities */
717 	else {
718 		dev_err(to_dev(arena), "Found an unknown padding scheme\n");
719 		return -ENXIO;
720 	}
721 
722 	arena->log_index[0] = log_index[0];
723 	arena->log_index[1] = log_index[1];
724 	dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]);
725 	dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]);
726 	return 0;
727 }
728 
729 static int btt_rtt_init(struct arena_info *arena)
730 {
731 	arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL);
732 	if (arena->rtt == NULL)
733 		return -ENOMEM;
734 
735 	return 0;
736 }
737 
738 static int btt_maplocks_init(struct arena_info *arena)
739 {
740 	u32 i;
741 
742 	arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock),
743 				GFP_KERNEL);
744 	if (!arena->map_locks)
745 		return -ENOMEM;
746 
747 	for (i = 0; i < arena->nfree; i++)
748 		spin_lock_init(&arena->map_locks[i].lock);
749 
750 	return 0;
751 }
752 
753 static struct arena_info *alloc_arena(struct btt *btt, size_t size,
754 				size_t start, size_t arena_off)
755 {
756 	struct arena_info *arena;
757 	u64 logsize, mapsize, datasize;
758 	u64 available = size;
759 
760 	arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL);
761 	if (!arena)
762 		return NULL;
763 	arena->nd_btt = btt->nd_btt;
764 	arena->sector_size = btt->sector_size;
765 	mutex_init(&arena->err_lock);
766 
767 	if (!size)
768 		return arena;
769 
770 	arena->size = size;
771 	arena->external_lba_start = start;
772 	arena->external_lbasize = btt->lbasize;
773 	arena->internal_lbasize = roundup(arena->external_lbasize,
774 					INT_LBASIZE_ALIGNMENT);
775 	arena->nfree = BTT_DEFAULT_NFREE;
776 	arena->version_major = btt->nd_btt->version_major;
777 	arena->version_minor = btt->nd_btt->version_minor;
778 
779 	if (available % BTT_PG_SIZE)
780 		available -= (available % BTT_PG_SIZE);
781 
782 	/* Two pages are reserved for the super block and its copy */
783 	available -= 2 * BTT_PG_SIZE;
784 
785 	/* The log takes a fixed amount of space based on nfree */
786 	logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE);
787 	available -= logsize;
788 
789 	/* Calculate optimal split between map and data area */
790 	arena->internal_nlba = div_u64(available - BTT_PG_SIZE,
791 			arena->internal_lbasize + MAP_ENT_SIZE);
792 	arena->external_nlba = arena->internal_nlba - arena->nfree;
793 
794 	mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE);
795 	datasize = available - mapsize;
796 
797 	/* 'Absolute' values, relative to start of storage space */
798 	arena->infooff = arena_off;
799 	arena->dataoff = arena->infooff + BTT_PG_SIZE;
800 	arena->mapoff = arena->dataoff + datasize;
801 	arena->logoff = arena->mapoff + mapsize;
802 	arena->info2off = arena->logoff + logsize;
803 
804 	/* Default log indices are (0,1) */
805 	arena->log_index[0] = 0;
806 	arena->log_index[1] = 1;
807 	return arena;
808 }
809 
810 static void free_arenas(struct btt *btt)
811 {
812 	struct arena_info *arena, *next;
813 
814 	list_for_each_entry_safe(arena, next, &btt->arena_list, list) {
815 		list_del(&arena->list);
816 		kfree(arena->rtt);
817 		kfree(arena->map_locks);
818 		kfree(arena->freelist);
819 		debugfs_remove_recursive(arena->debugfs_dir);
820 		kfree(arena);
821 	}
822 }
823 
824 /*
825  * This function reads an existing valid btt superblock and
826  * populates the corresponding arena_info struct
827  */
828 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super,
829 				u64 arena_off)
830 {
831 	arena->internal_nlba = le32_to_cpu(super->internal_nlba);
832 	arena->internal_lbasize = le32_to_cpu(super->internal_lbasize);
833 	arena->external_nlba = le32_to_cpu(super->external_nlba);
834 	arena->external_lbasize = le32_to_cpu(super->external_lbasize);
835 	arena->nfree = le32_to_cpu(super->nfree);
836 	arena->version_major = le16_to_cpu(super->version_major);
837 	arena->version_minor = le16_to_cpu(super->version_minor);
838 
839 	arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off +
840 			le64_to_cpu(super->nextoff));
841 	arena->infooff = arena_off;
842 	arena->dataoff = arena_off + le64_to_cpu(super->dataoff);
843 	arena->mapoff = arena_off + le64_to_cpu(super->mapoff);
844 	arena->logoff = arena_off + le64_to_cpu(super->logoff);
845 	arena->info2off = arena_off + le64_to_cpu(super->info2off);
846 
847 	arena->size = (le64_to_cpu(super->nextoff) > 0)
848 		? (le64_to_cpu(super->nextoff))
849 		: (arena->info2off - arena->infooff + BTT_PG_SIZE);
850 
851 	arena->flags = le32_to_cpu(super->flags);
852 }
853 
854 static int discover_arenas(struct btt *btt)
855 {
856 	int ret = 0;
857 	struct arena_info *arena;
858 	struct btt_sb *super;
859 	size_t remaining = btt->rawsize;
860 	u64 cur_nlba = 0;
861 	size_t cur_off = 0;
862 	int num_arenas = 0;
863 
864 	super = kzalloc(sizeof(*super), GFP_KERNEL);
865 	if (!super)
866 		return -ENOMEM;
867 
868 	while (remaining) {
869 		/* Alloc memory for arena */
870 		arena = alloc_arena(btt, 0, 0, 0);
871 		if (!arena) {
872 			ret = -ENOMEM;
873 			goto out_super;
874 		}
875 
876 		arena->infooff = cur_off;
877 		ret = btt_info_read(arena, super);
878 		if (ret)
879 			goto out;
880 
881 		if (!nd_btt_arena_is_valid(btt->nd_btt, super)) {
882 			if (remaining == btt->rawsize) {
883 				btt->init_state = INIT_NOTFOUND;
884 				dev_info(to_dev(arena), "No existing arenas\n");
885 				goto out;
886 			} else {
887 				dev_err(to_dev(arena),
888 						"Found corrupted metadata!\n");
889 				ret = -ENODEV;
890 				goto out;
891 			}
892 		}
893 
894 		arena->external_lba_start = cur_nlba;
895 		parse_arena_meta(arena, super, cur_off);
896 
897 		ret = log_set_indices(arena);
898 		if (ret) {
899 			dev_err(to_dev(arena),
900 				"Unable to deduce log/padding indices\n");
901 			goto out;
902 		}
903 
904 		ret = btt_freelist_init(arena);
905 		if (ret)
906 			goto out;
907 
908 		ret = btt_rtt_init(arena);
909 		if (ret)
910 			goto out;
911 
912 		ret = btt_maplocks_init(arena);
913 		if (ret)
914 			goto out;
915 
916 		list_add_tail(&arena->list, &btt->arena_list);
917 
918 		remaining -= arena->size;
919 		cur_off += arena->size;
920 		cur_nlba += arena->external_nlba;
921 		num_arenas++;
922 
923 		if (arena->nextoff == 0)
924 			break;
925 	}
926 	btt->num_arenas = num_arenas;
927 	btt->nlba = cur_nlba;
928 	btt->init_state = INIT_READY;
929 
930 	kfree(super);
931 	return ret;
932 
933  out:
934 	kfree(arena);
935 	free_arenas(btt);
936  out_super:
937 	kfree(super);
938 	return ret;
939 }
940 
941 static int create_arenas(struct btt *btt)
942 {
943 	size_t remaining = btt->rawsize;
944 	size_t cur_off = 0;
945 
946 	while (remaining) {
947 		struct arena_info *arena;
948 		size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining);
949 
950 		remaining -= arena_size;
951 		if (arena_size < ARENA_MIN_SIZE)
952 			break;
953 
954 		arena = alloc_arena(btt, arena_size, btt->nlba, cur_off);
955 		if (!arena) {
956 			free_arenas(btt);
957 			return -ENOMEM;
958 		}
959 		btt->nlba += arena->external_nlba;
960 		if (remaining >= ARENA_MIN_SIZE)
961 			arena->nextoff = arena->size;
962 		else
963 			arena->nextoff = 0;
964 		cur_off += arena_size;
965 		list_add_tail(&arena->list, &btt->arena_list);
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * This function completes arena initialization by writing
973  * all the metadata.
974  * It is only called for an uninitialized arena when a write
975  * to that arena occurs for the first time.
976  */
977 static int btt_arena_write_layout(struct arena_info *arena)
978 {
979 	int ret;
980 	u64 sum;
981 	struct btt_sb *super;
982 	struct nd_btt *nd_btt = arena->nd_btt;
983 	const u8 *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev);
984 
985 	ret = btt_map_init(arena);
986 	if (ret)
987 		return ret;
988 
989 	ret = btt_log_init(arena);
990 	if (ret)
991 		return ret;
992 
993 	super = kzalloc(sizeof(struct btt_sb), GFP_NOIO);
994 	if (!super)
995 		return -ENOMEM;
996 
997 	strncpy(super->signature, BTT_SIG, BTT_SIG_LEN);
998 	memcpy(super->uuid, nd_btt->uuid, 16);
999 	memcpy(super->parent_uuid, parent_uuid, 16);
1000 	super->flags = cpu_to_le32(arena->flags);
1001 	super->version_major = cpu_to_le16(arena->version_major);
1002 	super->version_minor = cpu_to_le16(arena->version_minor);
1003 	super->external_lbasize = cpu_to_le32(arena->external_lbasize);
1004 	super->external_nlba = cpu_to_le32(arena->external_nlba);
1005 	super->internal_lbasize = cpu_to_le32(arena->internal_lbasize);
1006 	super->internal_nlba = cpu_to_le32(arena->internal_nlba);
1007 	super->nfree = cpu_to_le32(arena->nfree);
1008 	super->infosize = cpu_to_le32(sizeof(struct btt_sb));
1009 	super->nextoff = cpu_to_le64(arena->nextoff);
1010 	/*
1011 	 * Subtract arena->infooff (arena start) so numbers are relative
1012 	 * to 'this' arena
1013 	 */
1014 	super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff);
1015 	super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff);
1016 	super->logoff = cpu_to_le64(arena->logoff - arena->infooff);
1017 	super->info2off = cpu_to_le64(arena->info2off - arena->infooff);
1018 
1019 	super->flags = 0;
1020 	sum = nd_sb_checksum((struct nd_gen_sb *) super);
1021 	super->checksum = cpu_to_le64(sum);
1022 
1023 	ret = btt_info_write(arena, super);
1024 
1025 	kfree(super);
1026 	return ret;
1027 }
1028 
1029 /*
1030  * This function completes the initialization for the BTT namespace
1031  * such that it is ready to accept IOs
1032  */
1033 static int btt_meta_init(struct btt *btt)
1034 {
1035 	int ret = 0;
1036 	struct arena_info *arena;
1037 
1038 	mutex_lock(&btt->init_lock);
1039 	list_for_each_entry(arena, &btt->arena_list, list) {
1040 		ret = btt_arena_write_layout(arena);
1041 		if (ret)
1042 			goto unlock;
1043 
1044 		ret = btt_freelist_init(arena);
1045 		if (ret)
1046 			goto unlock;
1047 
1048 		ret = btt_rtt_init(arena);
1049 		if (ret)
1050 			goto unlock;
1051 
1052 		ret = btt_maplocks_init(arena);
1053 		if (ret)
1054 			goto unlock;
1055 	}
1056 
1057 	btt->init_state = INIT_READY;
1058 
1059  unlock:
1060 	mutex_unlock(&btt->init_lock);
1061 	return ret;
1062 }
1063 
1064 static u32 btt_meta_size(struct btt *btt)
1065 {
1066 	return btt->lbasize - btt->sector_size;
1067 }
1068 
1069 /*
1070  * This function calculates the arena in which the given LBA lies
1071  * by doing a linear walk. This is acceptable since we expect only
1072  * a few arenas. If we have backing devices that get much larger,
1073  * we can construct a balanced binary tree of arenas at init time
1074  * so that this range search becomes faster.
1075  */
1076 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap,
1077 				struct arena_info **arena)
1078 {
1079 	struct arena_info *arena_list;
1080 	__u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size);
1081 
1082 	list_for_each_entry(arena_list, &btt->arena_list, list) {
1083 		if (lba < arena_list->external_nlba) {
1084 			*arena = arena_list;
1085 			*premap = lba;
1086 			return 0;
1087 		}
1088 		lba -= arena_list->external_nlba;
1089 	}
1090 
1091 	return -EIO;
1092 }
1093 
1094 /*
1095  * The following (lock_map, unlock_map) are mostly just to improve
1096  * readability, since they index into an array of locks
1097  */
1098 static void lock_map(struct arena_info *arena, u32 premap)
1099 		__acquires(&arena->map_locks[idx].lock)
1100 {
1101 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1102 
1103 	spin_lock(&arena->map_locks[idx].lock);
1104 }
1105 
1106 static void unlock_map(struct arena_info *arena, u32 premap)
1107 		__releases(&arena->map_locks[idx].lock)
1108 {
1109 	u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree;
1110 
1111 	spin_unlock(&arena->map_locks[idx].lock);
1112 }
1113 
1114 static int btt_data_read(struct arena_info *arena, struct page *page,
1115 			unsigned int off, u32 lba, u32 len)
1116 {
1117 	int ret;
1118 	u64 nsoff = to_namespace_offset(arena, lba);
1119 	void *mem = kmap_atomic(page);
1120 
1121 	ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1122 	kunmap_atomic(mem);
1123 
1124 	return ret;
1125 }
1126 
1127 static int btt_data_write(struct arena_info *arena, u32 lba,
1128 			struct page *page, unsigned int off, u32 len)
1129 {
1130 	int ret;
1131 	u64 nsoff = to_namespace_offset(arena, lba);
1132 	void *mem = kmap_atomic(page);
1133 
1134 	ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC);
1135 	kunmap_atomic(mem);
1136 
1137 	return ret;
1138 }
1139 
1140 static void zero_fill_data(struct page *page, unsigned int off, u32 len)
1141 {
1142 	void *mem = kmap_atomic(page);
1143 
1144 	memset(mem + off, 0, len);
1145 	kunmap_atomic(mem);
1146 }
1147 
1148 #ifdef CONFIG_BLK_DEV_INTEGRITY
1149 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1150 			struct arena_info *arena, u32 postmap, int rw)
1151 {
1152 	unsigned int len = btt_meta_size(btt);
1153 	u64 meta_nsoff;
1154 	int ret = 0;
1155 
1156 	if (bip == NULL)
1157 		return 0;
1158 
1159 	meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size;
1160 
1161 	while (len) {
1162 		unsigned int cur_len;
1163 		struct bio_vec bv;
1164 		void *mem;
1165 
1166 		bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1167 		/*
1168 		 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and
1169 		 * .bv_offset already adjusted for iter->bi_bvec_done, and we
1170 		 * can use those directly
1171 		 */
1172 
1173 		cur_len = min(len, bv.bv_len);
1174 		mem = kmap_atomic(bv.bv_page);
1175 		if (rw)
1176 			ret = arena_write_bytes(arena, meta_nsoff,
1177 					mem + bv.bv_offset, cur_len,
1178 					NVDIMM_IO_ATOMIC);
1179 		else
1180 			ret = arena_read_bytes(arena, meta_nsoff,
1181 					mem + bv.bv_offset, cur_len,
1182 					NVDIMM_IO_ATOMIC);
1183 
1184 		kunmap_atomic(mem);
1185 		if (ret)
1186 			return ret;
1187 
1188 		len -= cur_len;
1189 		meta_nsoff += cur_len;
1190 		if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len))
1191 			return -EIO;
1192 	}
1193 
1194 	return ret;
1195 }
1196 
1197 #else /* CONFIG_BLK_DEV_INTEGRITY */
1198 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip,
1199 			struct arena_info *arena, u32 postmap, int rw)
1200 {
1201 	return 0;
1202 }
1203 #endif
1204 
1205 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip,
1206 			struct page *page, unsigned int off, sector_t sector,
1207 			unsigned int len)
1208 {
1209 	int ret = 0;
1210 	int t_flag, e_flag;
1211 	struct arena_info *arena = NULL;
1212 	u32 lane = 0, premap, postmap;
1213 
1214 	while (len) {
1215 		u32 cur_len;
1216 
1217 		lane = nd_region_acquire_lane(btt->nd_region);
1218 
1219 		ret = lba_to_arena(btt, sector, &premap, &arena);
1220 		if (ret)
1221 			goto out_lane;
1222 
1223 		cur_len = min(btt->sector_size, len);
1224 
1225 		ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag,
1226 				NVDIMM_IO_ATOMIC);
1227 		if (ret)
1228 			goto out_lane;
1229 
1230 		/*
1231 		 * We loop to make sure that the post map LBA didn't change
1232 		 * from under us between writing the RTT and doing the actual
1233 		 * read.
1234 		 */
1235 		while (1) {
1236 			u32 new_map;
1237 			int new_t, new_e;
1238 
1239 			if (t_flag) {
1240 				zero_fill_data(page, off, cur_len);
1241 				goto out_lane;
1242 			}
1243 
1244 			if (e_flag) {
1245 				ret = -EIO;
1246 				goto out_lane;
1247 			}
1248 
1249 			arena->rtt[lane] = RTT_VALID | postmap;
1250 			/*
1251 			 * Barrier to make sure this write is not reordered
1252 			 * to do the verification map_read before the RTT store
1253 			 */
1254 			barrier();
1255 
1256 			ret = btt_map_read(arena, premap, &new_map, &new_t,
1257 						&new_e, NVDIMM_IO_ATOMIC);
1258 			if (ret)
1259 				goto out_rtt;
1260 
1261 			if ((postmap == new_map) && (t_flag == new_t) &&
1262 					(e_flag == new_e))
1263 				break;
1264 
1265 			postmap = new_map;
1266 			t_flag = new_t;
1267 			e_flag = new_e;
1268 		}
1269 
1270 		ret = btt_data_read(arena, page, off, postmap, cur_len);
1271 		if (ret) {
1272 			int rc;
1273 
1274 			/* Media error - set the e_flag */
1275 			rc = btt_map_write(arena, premap, postmap, 0, 1,
1276 				NVDIMM_IO_ATOMIC);
1277 			goto out_rtt;
1278 		}
1279 
1280 		if (bip) {
1281 			ret = btt_rw_integrity(btt, bip, arena, postmap, READ);
1282 			if (ret)
1283 				goto out_rtt;
1284 		}
1285 
1286 		arena->rtt[lane] = RTT_INVALID;
1287 		nd_region_release_lane(btt->nd_region, lane);
1288 
1289 		len -= cur_len;
1290 		off += cur_len;
1291 		sector += btt->sector_size >> SECTOR_SHIFT;
1292 	}
1293 
1294 	return 0;
1295 
1296  out_rtt:
1297 	arena->rtt[lane] = RTT_INVALID;
1298  out_lane:
1299 	nd_region_release_lane(btt->nd_region, lane);
1300 	return ret;
1301 }
1302 
1303 /*
1304  * Normally, arena_{read,write}_bytes will take care of the initial offset
1305  * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem,
1306  * we need the final, raw namespace offset here
1307  */
1308 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena,
1309 		u32 postmap)
1310 {
1311 	u64 nsoff = adjust_initial_offset(arena->nd_btt,
1312 			to_namespace_offset(arena, postmap));
1313 	sector_t phys_sector = nsoff >> 9;
1314 
1315 	return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize);
1316 }
1317 
1318 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip,
1319 			sector_t sector, struct page *page, unsigned int off,
1320 			unsigned int len)
1321 {
1322 	int ret = 0;
1323 	struct arena_info *arena = NULL;
1324 	u32 premap = 0, old_postmap, new_postmap, lane = 0, i;
1325 	struct log_entry log;
1326 	int sub;
1327 
1328 	while (len) {
1329 		u32 cur_len;
1330 		int e_flag;
1331 
1332  retry:
1333 		lane = nd_region_acquire_lane(btt->nd_region);
1334 
1335 		ret = lba_to_arena(btt, sector, &premap, &arena);
1336 		if (ret)
1337 			goto out_lane;
1338 		cur_len = min(btt->sector_size, len);
1339 
1340 		if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) {
1341 			ret = -EIO;
1342 			goto out_lane;
1343 		}
1344 
1345 		if (btt_is_badblock(btt, arena, arena->freelist[lane].block))
1346 			arena->freelist[lane].has_err = 1;
1347 
1348 		if (mutex_is_locked(&arena->err_lock)
1349 				|| arena->freelist[lane].has_err) {
1350 			nd_region_release_lane(btt->nd_region, lane);
1351 
1352 			ret = arena_clear_freelist_error(arena, lane);
1353 			if (ret)
1354 				return ret;
1355 
1356 			/* OK to acquire a different lane/free block */
1357 			goto retry;
1358 		}
1359 
1360 		new_postmap = arena->freelist[lane].block;
1361 
1362 		/* Wait if the new block is being read from */
1363 		for (i = 0; i < arena->nfree; i++)
1364 			while (arena->rtt[i] == (RTT_VALID | new_postmap))
1365 				cpu_relax();
1366 
1367 
1368 		if (new_postmap >= arena->internal_nlba) {
1369 			ret = -EIO;
1370 			goto out_lane;
1371 		}
1372 
1373 		ret = btt_data_write(arena, new_postmap, page, off, cur_len);
1374 		if (ret)
1375 			goto out_lane;
1376 
1377 		if (bip) {
1378 			ret = btt_rw_integrity(btt, bip, arena, new_postmap,
1379 						WRITE);
1380 			if (ret)
1381 				goto out_lane;
1382 		}
1383 
1384 		lock_map(arena, premap);
1385 		ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag,
1386 				NVDIMM_IO_ATOMIC);
1387 		if (ret)
1388 			goto out_map;
1389 		if (old_postmap >= arena->internal_nlba) {
1390 			ret = -EIO;
1391 			goto out_map;
1392 		}
1393 		if (e_flag)
1394 			set_e_flag(old_postmap);
1395 
1396 		log.lba = cpu_to_le32(premap);
1397 		log.old_map = cpu_to_le32(old_postmap);
1398 		log.new_map = cpu_to_le32(new_postmap);
1399 		log.seq = cpu_to_le32(arena->freelist[lane].seq);
1400 		sub = arena->freelist[lane].sub;
1401 		ret = btt_flog_write(arena, lane, sub, &log);
1402 		if (ret)
1403 			goto out_map;
1404 
1405 		ret = btt_map_write(arena, premap, new_postmap, 0, 0,
1406 			NVDIMM_IO_ATOMIC);
1407 		if (ret)
1408 			goto out_map;
1409 
1410 		unlock_map(arena, premap);
1411 		nd_region_release_lane(btt->nd_region, lane);
1412 
1413 		if (e_flag) {
1414 			ret = arena_clear_freelist_error(arena, lane);
1415 			if (ret)
1416 				return ret;
1417 		}
1418 
1419 		len -= cur_len;
1420 		off += cur_len;
1421 		sector += btt->sector_size >> SECTOR_SHIFT;
1422 	}
1423 
1424 	return 0;
1425 
1426  out_map:
1427 	unlock_map(arena, premap);
1428  out_lane:
1429 	nd_region_release_lane(btt->nd_region, lane);
1430 	return ret;
1431 }
1432 
1433 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip,
1434 			struct page *page, unsigned int len, unsigned int off,
1435 			unsigned int op, sector_t sector)
1436 {
1437 	int ret;
1438 
1439 	if (!op_is_write(op)) {
1440 		ret = btt_read_pg(btt, bip, page, off, sector, len);
1441 		flush_dcache_page(page);
1442 	} else {
1443 		flush_dcache_page(page);
1444 		ret = btt_write_pg(btt, bip, sector, page, off, len);
1445 	}
1446 
1447 	return ret;
1448 }
1449 
1450 static blk_qc_t btt_make_request(struct request_queue *q, struct bio *bio)
1451 {
1452 	struct bio_integrity_payload *bip = bio_integrity(bio);
1453 	struct btt *btt = q->queuedata;
1454 	struct bvec_iter iter;
1455 	unsigned long start;
1456 	struct bio_vec bvec;
1457 	int err = 0;
1458 	bool do_acct;
1459 
1460 	if (!bio_integrity_prep(bio))
1461 		return BLK_QC_T_NONE;
1462 
1463 	do_acct = nd_iostat_start(bio, &start);
1464 	bio_for_each_segment(bvec, bio, iter) {
1465 		unsigned int len = bvec.bv_len;
1466 
1467 		if (len > PAGE_SIZE || len < btt->sector_size ||
1468 				len % btt->sector_size) {
1469 			dev_err_ratelimited(&btt->nd_btt->dev,
1470 				"unaligned bio segment (len: %d)\n", len);
1471 			bio->bi_status = BLK_STS_IOERR;
1472 			break;
1473 		}
1474 
1475 		err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset,
1476 				  bio_op(bio), iter.bi_sector);
1477 		if (err) {
1478 			dev_err(&btt->nd_btt->dev,
1479 					"io error in %s sector %lld, len %d,\n",
1480 					(op_is_write(bio_op(bio))) ? "WRITE" :
1481 					"READ",
1482 					(unsigned long long) iter.bi_sector, len);
1483 			bio->bi_status = errno_to_blk_status(err);
1484 			break;
1485 		}
1486 	}
1487 	if (do_acct)
1488 		nd_iostat_end(bio, start);
1489 
1490 	bio_endio(bio);
1491 	return BLK_QC_T_NONE;
1492 }
1493 
1494 static int btt_rw_page(struct block_device *bdev, sector_t sector,
1495 		struct page *page, unsigned int op)
1496 {
1497 	struct btt *btt = bdev->bd_disk->private_data;
1498 	int rc;
1499 	unsigned int len;
1500 
1501 	len = hpage_nr_pages(page) * PAGE_SIZE;
1502 	rc = btt_do_bvec(btt, NULL, page, len, 0, op, sector);
1503 	if (rc == 0)
1504 		page_endio(page, op_is_write(op), 0);
1505 
1506 	return rc;
1507 }
1508 
1509 
1510 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo)
1511 {
1512 	/* some standard values */
1513 	geo->heads = 1 << 6;
1514 	geo->sectors = 1 << 5;
1515 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1516 	return 0;
1517 }
1518 
1519 static const struct block_device_operations btt_fops = {
1520 	.owner =		THIS_MODULE,
1521 	.rw_page =		btt_rw_page,
1522 	.getgeo =		btt_getgeo,
1523 	.revalidate_disk =	nvdimm_revalidate_disk,
1524 };
1525 
1526 static int btt_blk_init(struct btt *btt)
1527 {
1528 	struct nd_btt *nd_btt = btt->nd_btt;
1529 	struct nd_namespace_common *ndns = nd_btt->ndns;
1530 
1531 	/* create a new disk and request queue for btt */
1532 	btt->btt_queue = blk_alloc_queue(GFP_KERNEL);
1533 	if (!btt->btt_queue)
1534 		return -ENOMEM;
1535 
1536 	btt->btt_disk = alloc_disk(0);
1537 	if (!btt->btt_disk) {
1538 		blk_cleanup_queue(btt->btt_queue);
1539 		return -ENOMEM;
1540 	}
1541 
1542 	nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name);
1543 	btt->btt_disk->first_minor = 0;
1544 	btt->btt_disk->fops = &btt_fops;
1545 	btt->btt_disk->private_data = btt;
1546 	btt->btt_disk->queue = btt->btt_queue;
1547 	btt->btt_disk->flags = GENHD_FL_EXT_DEVT;
1548 	btt->btt_disk->queue->backing_dev_info->capabilities |=
1549 			BDI_CAP_SYNCHRONOUS_IO;
1550 
1551 	blk_queue_make_request(btt->btt_queue, btt_make_request);
1552 	blk_queue_logical_block_size(btt->btt_queue, btt->sector_size);
1553 	blk_queue_max_hw_sectors(btt->btt_queue, UINT_MAX);
1554 	blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_queue);
1555 	btt->btt_queue->queuedata = btt;
1556 
1557 	if (btt_meta_size(btt)) {
1558 		int rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt));
1559 
1560 		if (rc) {
1561 			del_gendisk(btt->btt_disk);
1562 			put_disk(btt->btt_disk);
1563 			blk_cleanup_queue(btt->btt_queue);
1564 			return rc;
1565 		}
1566 	}
1567 	set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9);
1568 	device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL);
1569 	btt->nd_btt->size = btt->nlba * (u64)btt->sector_size;
1570 	revalidate_disk(btt->btt_disk);
1571 
1572 	return 0;
1573 }
1574 
1575 static void btt_blk_cleanup(struct btt *btt)
1576 {
1577 	del_gendisk(btt->btt_disk);
1578 	put_disk(btt->btt_disk);
1579 	blk_cleanup_queue(btt->btt_queue);
1580 }
1581 
1582 /**
1583  * btt_init - initialize a block translation table for the given device
1584  * @nd_btt:	device with BTT geometry and backing device info
1585  * @rawsize:	raw size in bytes of the backing device
1586  * @lbasize:	lba size of the backing device
1587  * @uuid:	A uuid for the backing device - this is stored on media
1588  * @maxlane:	maximum number of parallel requests the device can handle
1589  *
1590  * Initialize a Block Translation Table on a backing device to provide
1591  * single sector power fail atomicity.
1592  *
1593  * Context:
1594  * Might sleep.
1595  *
1596  * Returns:
1597  * Pointer to a new struct btt on success, NULL on failure.
1598  */
1599 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize,
1600 		u32 lbasize, u8 *uuid, struct nd_region *nd_region)
1601 {
1602 	int ret;
1603 	struct btt *btt;
1604 	struct nd_namespace_io *nsio;
1605 	struct device *dev = &nd_btt->dev;
1606 
1607 	btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL);
1608 	if (!btt)
1609 		return NULL;
1610 
1611 	btt->nd_btt = nd_btt;
1612 	btt->rawsize = rawsize;
1613 	btt->lbasize = lbasize;
1614 	btt->sector_size = ((lbasize >= 4096) ? 4096 : 512);
1615 	INIT_LIST_HEAD(&btt->arena_list);
1616 	mutex_init(&btt->init_lock);
1617 	btt->nd_region = nd_region;
1618 	nsio = to_nd_namespace_io(&nd_btt->ndns->dev);
1619 	btt->phys_bb = &nsio->bb;
1620 
1621 	ret = discover_arenas(btt);
1622 	if (ret) {
1623 		dev_err(dev, "init: error in arena_discover: %d\n", ret);
1624 		return NULL;
1625 	}
1626 
1627 	if (btt->init_state != INIT_READY && nd_region->ro) {
1628 		dev_warn(dev, "%s is read-only, unable to init btt metadata\n",
1629 				dev_name(&nd_region->dev));
1630 		return NULL;
1631 	} else if (btt->init_state != INIT_READY) {
1632 		btt->num_arenas = (rawsize / ARENA_MAX_SIZE) +
1633 			((rawsize % ARENA_MAX_SIZE) ? 1 : 0);
1634 		dev_dbg(dev, "init: %d arenas for %llu rawsize\n",
1635 				btt->num_arenas, rawsize);
1636 
1637 		ret = create_arenas(btt);
1638 		if (ret) {
1639 			dev_info(dev, "init: create_arenas: %d\n", ret);
1640 			return NULL;
1641 		}
1642 
1643 		ret = btt_meta_init(btt);
1644 		if (ret) {
1645 			dev_err(dev, "init: error in meta_init: %d\n", ret);
1646 			return NULL;
1647 		}
1648 	}
1649 
1650 	ret = btt_blk_init(btt);
1651 	if (ret) {
1652 		dev_err(dev, "init: error in blk_init: %d\n", ret);
1653 		return NULL;
1654 	}
1655 
1656 	btt_debugfs_init(btt);
1657 
1658 	return btt;
1659 }
1660 
1661 /**
1662  * btt_fini - de-initialize a BTT
1663  * @btt:	the BTT handle that was generated by btt_init
1664  *
1665  * De-initialize a Block Translation Table on device removal
1666  *
1667  * Context:
1668  * Might sleep.
1669  */
1670 static void btt_fini(struct btt *btt)
1671 {
1672 	if (btt) {
1673 		btt_blk_cleanup(btt);
1674 		free_arenas(btt);
1675 		debugfs_remove_recursive(btt->debugfs_dir);
1676 	}
1677 }
1678 
1679 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns)
1680 {
1681 	struct nd_btt *nd_btt = to_nd_btt(ndns->claim);
1682 	struct nd_region *nd_region;
1683 	struct btt_sb *btt_sb;
1684 	struct btt *btt;
1685 	size_t rawsize;
1686 
1687 	if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) {
1688 		dev_dbg(&nd_btt->dev, "incomplete btt configuration\n");
1689 		return -ENODEV;
1690 	}
1691 
1692 	btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL);
1693 	if (!btt_sb)
1694 		return -ENOMEM;
1695 
1696 	/*
1697 	 * If this returns < 0, that is ok as it just means there wasn't
1698 	 * an existing BTT, and we're creating a new one. We still need to
1699 	 * call this as we need the version dependent fields in nd_btt to be
1700 	 * set correctly based on the holder class
1701 	 */
1702 	nd_btt_version(nd_btt, ndns, btt_sb);
1703 
1704 	rawsize = nvdimm_namespace_capacity(ndns) - nd_btt->initial_offset;
1705 	if (rawsize < ARENA_MIN_SIZE) {
1706 		dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n",
1707 				dev_name(&ndns->dev),
1708 				ARENA_MIN_SIZE + nd_btt->initial_offset);
1709 		return -ENXIO;
1710 	}
1711 	nd_region = to_nd_region(nd_btt->dev.parent);
1712 	btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid,
1713 			nd_region);
1714 	if (!btt)
1715 		return -ENOMEM;
1716 	nd_btt->btt = btt;
1717 
1718 	return 0;
1719 }
1720 EXPORT_SYMBOL(nvdimm_namespace_attach_btt);
1721 
1722 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt)
1723 {
1724 	struct btt *btt = nd_btt->btt;
1725 
1726 	btt_fini(btt);
1727 	nd_btt->btt = NULL;
1728 
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL(nvdimm_namespace_detach_btt);
1732 
1733 static int __init nd_btt_init(void)
1734 {
1735 	int rc = 0;
1736 
1737 	debugfs_root = debugfs_create_dir("btt", NULL);
1738 	if (IS_ERR_OR_NULL(debugfs_root))
1739 		rc = -ENXIO;
1740 
1741 	return rc;
1742 }
1743 
1744 static void __exit nd_btt_exit(void)
1745 {
1746 	debugfs_remove_recursive(debugfs_root);
1747 }
1748 
1749 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT);
1750 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>");
1751 MODULE_LICENSE("GPL v2");
1752 module_init(nd_btt_init);
1753 module_exit(nd_btt_exit);
1754