1 /* 2 * Block Translation Table 3 * Copyright (c) 2014-2015, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #include <linux/highmem.h> 15 #include <linux/debugfs.h> 16 #include <linux/blkdev.h> 17 #include <linux/module.h> 18 #include <linux/device.h> 19 #include <linux/mutex.h> 20 #include <linux/hdreg.h> 21 #include <linux/genhd.h> 22 #include <linux/sizes.h> 23 #include <linux/ndctl.h> 24 #include <linux/fs.h> 25 #include <linux/nd.h> 26 #include <linux/backing-dev.h> 27 #include "btt.h" 28 #include "nd.h" 29 30 enum log_ent_request { 31 LOG_NEW_ENT = 0, 32 LOG_OLD_ENT 33 }; 34 35 static struct device *to_dev(struct arena_info *arena) 36 { 37 return &arena->nd_btt->dev; 38 } 39 40 static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset) 41 { 42 return offset + nd_btt->initial_offset; 43 } 44 45 static int arena_read_bytes(struct arena_info *arena, resource_size_t offset, 46 void *buf, size_t n, unsigned long flags) 47 { 48 struct nd_btt *nd_btt = arena->nd_btt; 49 struct nd_namespace_common *ndns = nd_btt->ndns; 50 51 /* arena offsets may be shifted from the base of the device */ 52 offset = adjust_initial_offset(nd_btt, offset); 53 return nvdimm_read_bytes(ndns, offset, buf, n, flags); 54 } 55 56 static int arena_write_bytes(struct arena_info *arena, resource_size_t offset, 57 void *buf, size_t n, unsigned long flags) 58 { 59 struct nd_btt *nd_btt = arena->nd_btt; 60 struct nd_namespace_common *ndns = nd_btt->ndns; 61 62 /* arena offsets may be shifted from the base of the device */ 63 offset = adjust_initial_offset(nd_btt, offset); 64 return nvdimm_write_bytes(ndns, offset, buf, n, flags); 65 } 66 67 static int btt_info_write(struct arena_info *arena, struct btt_sb *super) 68 { 69 int ret; 70 71 /* 72 * infooff and info2off should always be at least 512B aligned. 73 * We rely on that to make sure rw_bytes does error clearing 74 * correctly, so make sure that is the case. 75 */ 76 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512), 77 "arena->infooff: %#llx is unaligned\n", arena->infooff); 78 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512), 79 "arena->info2off: %#llx is unaligned\n", arena->info2off); 80 81 ret = arena_write_bytes(arena, arena->info2off, super, 82 sizeof(struct btt_sb), 0); 83 if (ret) 84 return ret; 85 86 return arena_write_bytes(arena, arena->infooff, super, 87 sizeof(struct btt_sb), 0); 88 } 89 90 static int btt_info_read(struct arena_info *arena, struct btt_sb *super) 91 { 92 return arena_read_bytes(arena, arena->infooff, super, 93 sizeof(struct btt_sb), 0); 94 } 95 96 /* 97 * 'raw' version of btt_map write 98 * Assumptions: 99 * mapping is in little-endian 100 * mapping contains 'E' and 'Z' flags as desired 101 */ 102 static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping, 103 unsigned long flags) 104 { 105 u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); 106 107 if (unlikely(lba >= arena->external_nlba)) 108 dev_err_ratelimited(to_dev(arena), 109 "%s: lba %#x out of range (max: %#x)\n", 110 __func__, lba, arena->external_nlba); 111 return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags); 112 } 113 114 static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping, 115 u32 z_flag, u32 e_flag, unsigned long rwb_flags) 116 { 117 u32 ze; 118 __le32 mapping_le; 119 120 /* 121 * This 'mapping' is supposed to be just the LBA mapping, without 122 * any flags set, so strip the flag bits. 123 */ 124 mapping = ent_lba(mapping); 125 126 ze = (z_flag << 1) + e_flag; 127 switch (ze) { 128 case 0: 129 /* 130 * We want to set neither of the Z or E flags, and 131 * in the actual layout, this means setting the bit 132 * positions of both to '1' to indicate a 'normal' 133 * map entry 134 */ 135 mapping |= MAP_ENT_NORMAL; 136 break; 137 case 1: 138 mapping |= (1 << MAP_ERR_SHIFT); 139 break; 140 case 2: 141 mapping |= (1 << MAP_TRIM_SHIFT); 142 break; 143 default: 144 /* 145 * The case where Z and E are both sent in as '1' could be 146 * construed as a valid 'normal' case, but we decide not to, 147 * to avoid confusion 148 */ 149 dev_err_ratelimited(to_dev(arena), 150 "Invalid use of Z and E flags\n"); 151 return -EIO; 152 } 153 154 mapping_le = cpu_to_le32(mapping); 155 return __btt_map_write(arena, lba, mapping_le, rwb_flags); 156 } 157 158 static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping, 159 int *trim, int *error, unsigned long rwb_flags) 160 { 161 int ret; 162 __le32 in; 163 u32 raw_mapping, postmap, ze, z_flag, e_flag; 164 u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); 165 166 if (unlikely(lba >= arena->external_nlba)) 167 dev_err_ratelimited(to_dev(arena), 168 "%s: lba %#x out of range (max: %#x)\n", 169 __func__, lba, arena->external_nlba); 170 171 ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags); 172 if (ret) 173 return ret; 174 175 raw_mapping = le32_to_cpu(in); 176 177 z_flag = ent_z_flag(raw_mapping); 178 e_flag = ent_e_flag(raw_mapping); 179 ze = (z_flag << 1) + e_flag; 180 postmap = ent_lba(raw_mapping); 181 182 /* Reuse the {z,e}_flag variables for *trim and *error */ 183 z_flag = 0; 184 e_flag = 0; 185 186 switch (ze) { 187 case 0: 188 /* Initial state. Return postmap = premap */ 189 *mapping = lba; 190 break; 191 case 1: 192 *mapping = postmap; 193 e_flag = 1; 194 break; 195 case 2: 196 *mapping = postmap; 197 z_flag = 1; 198 break; 199 case 3: 200 *mapping = postmap; 201 break; 202 default: 203 return -EIO; 204 } 205 206 if (trim) 207 *trim = z_flag; 208 if (error) 209 *error = e_flag; 210 211 return ret; 212 } 213 214 static int btt_log_group_read(struct arena_info *arena, u32 lane, 215 struct log_group *log) 216 { 217 return arena_read_bytes(arena, 218 arena->logoff + (lane * LOG_GRP_SIZE), log, 219 LOG_GRP_SIZE, 0); 220 } 221 222 static struct dentry *debugfs_root; 223 224 static void arena_debugfs_init(struct arena_info *a, struct dentry *parent, 225 int idx) 226 { 227 char dirname[32]; 228 struct dentry *d; 229 230 /* If for some reason, parent bttN was not created, exit */ 231 if (!parent) 232 return; 233 234 snprintf(dirname, 32, "arena%d", idx); 235 d = debugfs_create_dir(dirname, parent); 236 if (IS_ERR_OR_NULL(d)) 237 return; 238 a->debugfs_dir = d; 239 240 debugfs_create_x64("size", S_IRUGO, d, &a->size); 241 debugfs_create_x64("external_lba_start", S_IRUGO, d, 242 &a->external_lba_start); 243 debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba); 244 debugfs_create_u32("internal_lbasize", S_IRUGO, d, 245 &a->internal_lbasize); 246 debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba); 247 debugfs_create_u32("external_lbasize", S_IRUGO, d, 248 &a->external_lbasize); 249 debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree); 250 debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major); 251 debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor); 252 debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff); 253 debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff); 254 debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff); 255 debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff); 256 debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff); 257 debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off); 258 debugfs_create_x32("flags", S_IRUGO, d, &a->flags); 259 debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]); 260 debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]); 261 } 262 263 static void btt_debugfs_init(struct btt *btt) 264 { 265 int i = 0; 266 struct arena_info *arena; 267 268 btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev), 269 debugfs_root); 270 if (IS_ERR_OR_NULL(btt->debugfs_dir)) 271 return; 272 273 list_for_each_entry(arena, &btt->arena_list, list) { 274 arena_debugfs_init(arena, btt->debugfs_dir, i); 275 i++; 276 } 277 } 278 279 static u32 log_seq(struct log_group *log, int log_idx) 280 { 281 return le32_to_cpu(log->ent[log_idx].seq); 282 } 283 284 /* 285 * This function accepts two log entries, and uses the 286 * sequence number to find the 'older' entry. 287 * It also updates the sequence number in this old entry to 288 * make it the 'new' one if the mark_flag is set. 289 * Finally, it returns which of the entries was the older one. 290 * 291 * TODO The logic feels a bit kludge-y. make it better.. 292 */ 293 static int btt_log_get_old(struct arena_info *a, struct log_group *log) 294 { 295 int idx0 = a->log_index[0]; 296 int idx1 = a->log_index[1]; 297 int old; 298 299 /* 300 * the first ever time this is seen, the entry goes into [0] 301 * the next time, the following logic works out to put this 302 * (next) entry into [1] 303 */ 304 if (log_seq(log, idx0) == 0) { 305 log->ent[idx0].seq = cpu_to_le32(1); 306 return 0; 307 } 308 309 if (log_seq(log, idx0) == log_seq(log, idx1)) 310 return -EINVAL; 311 if (log_seq(log, idx0) + log_seq(log, idx1) > 5) 312 return -EINVAL; 313 314 if (log_seq(log, idx0) < log_seq(log, idx1)) { 315 if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1) 316 old = 0; 317 else 318 old = 1; 319 } else { 320 if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1) 321 old = 1; 322 else 323 old = 0; 324 } 325 326 return old; 327 } 328 329 /* 330 * This function copies the desired (old/new) log entry into ent if 331 * it is not NULL. It returns the sub-slot number (0 or 1) 332 * where the desired log entry was found. Negative return values 333 * indicate errors. 334 */ 335 static int btt_log_read(struct arena_info *arena, u32 lane, 336 struct log_entry *ent, int old_flag) 337 { 338 int ret; 339 int old_ent, ret_ent; 340 struct log_group log; 341 342 ret = btt_log_group_read(arena, lane, &log); 343 if (ret) 344 return -EIO; 345 346 old_ent = btt_log_get_old(arena, &log); 347 if (old_ent < 0 || old_ent > 1) { 348 dev_err(to_dev(arena), 349 "log corruption (%d): lane %d seq [%d, %d]\n", 350 old_ent, lane, log.ent[arena->log_index[0]].seq, 351 log.ent[arena->log_index[1]].seq); 352 /* TODO set error state? */ 353 return -EIO; 354 } 355 356 ret_ent = (old_flag ? old_ent : (1 - old_ent)); 357 358 if (ent != NULL) 359 memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE); 360 361 return ret_ent; 362 } 363 364 /* 365 * This function commits a log entry to media 366 * It does _not_ prepare the freelist entry for the next write 367 * btt_flog_write is the wrapper for updating the freelist elements 368 */ 369 static int __btt_log_write(struct arena_info *arena, u32 lane, 370 u32 sub, struct log_entry *ent, unsigned long flags) 371 { 372 int ret; 373 u32 group_slot = arena->log_index[sub]; 374 unsigned int log_half = LOG_ENT_SIZE / 2; 375 void *src = ent; 376 u64 ns_off; 377 378 ns_off = arena->logoff + (lane * LOG_GRP_SIZE) + 379 (group_slot * LOG_ENT_SIZE); 380 /* split the 16B write into atomic, durable halves */ 381 ret = arena_write_bytes(arena, ns_off, src, log_half, flags); 382 if (ret) 383 return ret; 384 385 ns_off += log_half; 386 src += log_half; 387 return arena_write_bytes(arena, ns_off, src, log_half, flags); 388 } 389 390 static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub, 391 struct log_entry *ent) 392 { 393 int ret; 394 395 ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC); 396 if (ret) 397 return ret; 398 399 /* prepare the next free entry */ 400 arena->freelist[lane].sub = 1 - arena->freelist[lane].sub; 401 if (++(arena->freelist[lane].seq) == 4) 402 arena->freelist[lane].seq = 1; 403 if (ent_e_flag(ent->old_map)) 404 arena->freelist[lane].has_err = 1; 405 arena->freelist[lane].block = le32_to_cpu(ent_lba(ent->old_map)); 406 407 return ret; 408 } 409 410 /* 411 * This function initializes the BTT map to the initial state, which is 412 * all-zeroes, and indicates an identity mapping 413 */ 414 static int btt_map_init(struct arena_info *arena) 415 { 416 int ret = -EINVAL; 417 void *zerobuf; 418 size_t offset = 0; 419 size_t chunk_size = SZ_2M; 420 size_t mapsize = arena->logoff - arena->mapoff; 421 422 zerobuf = kzalloc(chunk_size, GFP_KERNEL); 423 if (!zerobuf) 424 return -ENOMEM; 425 426 /* 427 * mapoff should always be at least 512B aligned. We rely on that to 428 * make sure rw_bytes does error clearing correctly, so make sure that 429 * is the case. 430 */ 431 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512), 432 "arena->mapoff: %#llx is unaligned\n", arena->mapoff); 433 434 while (mapsize) { 435 size_t size = min(mapsize, chunk_size); 436 437 dev_WARN_ONCE(to_dev(arena), size < 512, 438 "chunk size: %#zx is unaligned\n", size); 439 ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf, 440 size, 0); 441 if (ret) 442 goto free; 443 444 offset += size; 445 mapsize -= size; 446 cond_resched(); 447 } 448 449 free: 450 kfree(zerobuf); 451 return ret; 452 } 453 454 /* 455 * This function initializes the BTT log with 'fake' entries pointing 456 * to the initial reserved set of blocks as being free 457 */ 458 static int btt_log_init(struct arena_info *arena) 459 { 460 size_t logsize = arena->info2off - arena->logoff; 461 size_t chunk_size = SZ_4K, offset = 0; 462 struct log_entry ent; 463 void *zerobuf; 464 int ret; 465 u32 i; 466 467 zerobuf = kzalloc(chunk_size, GFP_KERNEL); 468 if (!zerobuf) 469 return -ENOMEM; 470 /* 471 * logoff should always be at least 512B aligned. We rely on that to 472 * make sure rw_bytes does error clearing correctly, so make sure that 473 * is the case. 474 */ 475 dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512), 476 "arena->logoff: %#llx is unaligned\n", arena->logoff); 477 478 while (logsize) { 479 size_t size = min(logsize, chunk_size); 480 481 dev_WARN_ONCE(to_dev(arena), size < 512, 482 "chunk size: %#zx is unaligned\n", size); 483 ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf, 484 size, 0); 485 if (ret) 486 goto free; 487 488 offset += size; 489 logsize -= size; 490 cond_resched(); 491 } 492 493 for (i = 0; i < arena->nfree; i++) { 494 ent.lba = cpu_to_le32(i); 495 ent.old_map = cpu_to_le32(arena->external_nlba + i); 496 ent.new_map = cpu_to_le32(arena->external_nlba + i); 497 ent.seq = cpu_to_le32(LOG_SEQ_INIT); 498 ret = __btt_log_write(arena, i, 0, &ent, 0); 499 if (ret) 500 goto free; 501 } 502 503 free: 504 kfree(zerobuf); 505 return ret; 506 } 507 508 static u64 to_namespace_offset(struct arena_info *arena, u64 lba) 509 { 510 return arena->dataoff + ((u64)lba * arena->internal_lbasize); 511 } 512 513 static int arena_clear_freelist_error(struct arena_info *arena, u32 lane) 514 { 515 int ret = 0; 516 517 if (arena->freelist[lane].has_err) { 518 void *zero_page = page_address(ZERO_PAGE(0)); 519 u32 lba = arena->freelist[lane].block; 520 u64 nsoff = to_namespace_offset(arena, lba); 521 unsigned long len = arena->sector_size; 522 523 mutex_lock(&arena->err_lock); 524 525 while (len) { 526 unsigned long chunk = min(len, PAGE_SIZE); 527 528 ret = arena_write_bytes(arena, nsoff, zero_page, 529 chunk, 0); 530 if (ret) 531 break; 532 len -= chunk; 533 nsoff += chunk; 534 if (len == 0) 535 arena->freelist[lane].has_err = 0; 536 } 537 mutex_unlock(&arena->err_lock); 538 } 539 return ret; 540 } 541 542 static int btt_freelist_init(struct arena_info *arena) 543 { 544 int old, new, ret; 545 u32 i, map_entry; 546 struct log_entry log_new, log_old; 547 548 arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry), 549 GFP_KERNEL); 550 if (!arena->freelist) 551 return -ENOMEM; 552 553 for (i = 0; i < arena->nfree; i++) { 554 old = btt_log_read(arena, i, &log_old, LOG_OLD_ENT); 555 if (old < 0) 556 return old; 557 558 new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT); 559 if (new < 0) 560 return new; 561 562 /* sub points to the next one to be overwritten */ 563 arena->freelist[i].sub = 1 - new; 564 arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq)); 565 arena->freelist[i].block = le32_to_cpu(log_new.old_map); 566 567 /* 568 * FIXME: if error clearing fails during init, we want to make 569 * the BTT read-only 570 */ 571 if (ent_e_flag(log_new.old_map)) { 572 ret = arena_clear_freelist_error(arena, i); 573 if (ret) 574 dev_err_ratelimited(to_dev(arena), 575 "Unable to clear known errors\n"); 576 } 577 578 /* This implies a newly created or untouched flog entry */ 579 if (log_new.old_map == log_new.new_map) 580 continue; 581 582 /* Check if map recovery is needed */ 583 ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry, 584 NULL, NULL, 0); 585 if (ret) 586 return ret; 587 if ((le32_to_cpu(log_new.new_map) != map_entry) && 588 (le32_to_cpu(log_new.old_map) == map_entry)) { 589 /* 590 * Last transaction wrote the flog, but wasn't able 591 * to complete the map write. So fix up the map. 592 */ 593 ret = btt_map_write(arena, le32_to_cpu(log_new.lba), 594 le32_to_cpu(log_new.new_map), 0, 0, 0); 595 if (ret) 596 return ret; 597 } 598 } 599 600 return 0; 601 } 602 603 static bool ent_is_padding(struct log_entry *ent) 604 { 605 return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0) 606 && (ent->seq == 0); 607 } 608 609 /* 610 * Detecting valid log indices: We read a log group (see the comments in btt.h 611 * for a description of a 'log_group' and its 'slots'), and iterate over its 612 * four slots. We expect that a padding slot will be all-zeroes, and use this 613 * to detect a padding slot vs. an actual entry. 614 * 615 * If a log_group is in the initial state, i.e. hasn't been used since the 616 * creation of this BTT layout, it will have three of the four slots with 617 * zeroes. We skip over these log_groups for the detection of log_index. If 618 * all log_groups are in the initial state (i.e. the BTT has never been 619 * written to), it is safe to assume the 'new format' of log entries in slots 620 * (0, 1). 621 */ 622 static int log_set_indices(struct arena_info *arena) 623 { 624 bool idx_set = false, initial_state = true; 625 int ret, log_index[2] = {-1, -1}; 626 u32 i, j, next_idx = 0; 627 struct log_group log; 628 u32 pad_count = 0; 629 630 for (i = 0; i < arena->nfree; i++) { 631 ret = btt_log_group_read(arena, i, &log); 632 if (ret < 0) 633 return ret; 634 635 for (j = 0; j < 4; j++) { 636 if (!idx_set) { 637 if (ent_is_padding(&log.ent[j])) { 638 pad_count++; 639 continue; 640 } else { 641 /* Skip if index has been recorded */ 642 if ((next_idx == 1) && 643 (j == log_index[0])) 644 continue; 645 /* valid entry, record index */ 646 log_index[next_idx] = j; 647 next_idx++; 648 } 649 if (next_idx == 2) { 650 /* two valid entries found */ 651 idx_set = true; 652 } else if (next_idx > 2) { 653 /* too many valid indices */ 654 return -ENXIO; 655 } 656 } else { 657 /* 658 * once the indices have been set, just verify 659 * that all subsequent log groups are either in 660 * their initial state or follow the same 661 * indices. 662 */ 663 if (j == log_index[0]) { 664 /* entry must be 'valid' */ 665 if (ent_is_padding(&log.ent[j])) 666 return -ENXIO; 667 } else if (j == log_index[1]) { 668 ; 669 /* 670 * log_index[1] can be padding if the 671 * lane never got used and it is still 672 * in the initial state (three 'padding' 673 * entries) 674 */ 675 } else { 676 /* entry must be invalid (padding) */ 677 if (!ent_is_padding(&log.ent[j])) 678 return -ENXIO; 679 } 680 } 681 } 682 /* 683 * If any of the log_groups have more than one valid, 684 * non-padding entry, then the we are no longer in the 685 * initial_state 686 */ 687 if (pad_count < 3) 688 initial_state = false; 689 pad_count = 0; 690 } 691 692 if (!initial_state && !idx_set) 693 return -ENXIO; 694 695 /* 696 * If all the entries in the log were in the initial state, 697 * assume new padding scheme 698 */ 699 if (initial_state) 700 log_index[1] = 1; 701 702 /* 703 * Only allow the known permutations of log/padding indices, 704 * i.e. (0, 1), and (0, 2) 705 */ 706 if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2))) 707 ; /* known index possibilities */ 708 else { 709 dev_err(to_dev(arena), "Found an unknown padding scheme\n"); 710 return -ENXIO; 711 } 712 713 arena->log_index[0] = log_index[0]; 714 arena->log_index[1] = log_index[1]; 715 dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]); 716 dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]); 717 return 0; 718 } 719 720 static int btt_rtt_init(struct arena_info *arena) 721 { 722 arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL); 723 if (arena->rtt == NULL) 724 return -ENOMEM; 725 726 return 0; 727 } 728 729 static int btt_maplocks_init(struct arena_info *arena) 730 { 731 u32 i; 732 733 arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock), 734 GFP_KERNEL); 735 if (!arena->map_locks) 736 return -ENOMEM; 737 738 for (i = 0; i < arena->nfree; i++) 739 spin_lock_init(&arena->map_locks[i].lock); 740 741 return 0; 742 } 743 744 static struct arena_info *alloc_arena(struct btt *btt, size_t size, 745 size_t start, size_t arena_off) 746 { 747 struct arena_info *arena; 748 u64 logsize, mapsize, datasize; 749 u64 available = size; 750 751 arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL); 752 if (!arena) 753 return NULL; 754 arena->nd_btt = btt->nd_btt; 755 arena->sector_size = btt->sector_size; 756 mutex_init(&arena->err_lock); 757 758 if (!size) 759 return arena; 760 761 arena->size = size; 762 arena->external_lba_start = start; 763 arena->external_lbasize = btt->lbasize; 764 arena->internal_lbasize = roundup(arena->external_lbasize, 765 INT_LBASIZE_ALIGNMENT); 766 arena->nfree = BTT_DEFAULT_NFREE; 767 arena->version_major = btt->nd_btt->version_major; 768 arena->version_minor = btt->nd_btt->version_minor; 769 770 if (available % BTT_PG_SIZE) 771 available -= (available % BTT_PG_SIZE); 772 773 /* Two pages are reserved for the super block and its copy */ 774 available -= 2 * BTT_PG_SIZE; 775 776 /* The log takes a fixed amount of space based on nfree */ 777 logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE); 778 available -= logsize; 779 780 /* Calculate optimal split between map and data area */ 781 arena->internal_nlba = div_u64(available - BTT_PG_SIZE, 782 arena->internal_lbasize + MAP_ENT_SIZE); 783 arena->external_nlba = arena->internal_nlba - arena->nfree; 784 785 mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE); 786 datasize = available - mapsize; 787 788 /* 'Absolute' values, relative to start of storage space */ 789 arena->infooff = arena_off; 790 arena->dataoff = arena->infooff + BTT_PG_SIZE; 791 arena->mapoff = arena->dataoff + datasize; 792 arena->logoff = arena->mapoff + mapsize; 793 arena->info2off = arena->logoff + logsize; 794 795 /* Default log indices are (0,1) */ 796 arena->log_index[0] = 0; 797 arena->log_index[1] = 1; 798 return arena; 799 } 800 801 static void free_arenas(struct btt *btt) 802 { 803 struct arena_info *arena, *next; 804 805 list_for_each_entry_safe(arena, next, &btt->arena_list, list) { 806 list_del(&arena->list); 807 kfree(arena->rtt); 808 kfree(arena->map_locks); 809 kfree(arena->freelist); 810 debugfs_remove_recursive(arena->debugfs_dir); 811 kfree(arena); 812 } 813 } 814 815 /* 816 * This function reads an existing valid btt superblock and 817 * populates the corresponding arena_info struct 818 */ 819 static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super, 820 u64 arena_off) 821 { 822 arena->internal_nlba = le32_to_cpu(super->internal_nlba); 823 arena->internal_lbasize = le32_to_cpu(super->internal_lbasize); 824 arena->external_nlba = le32_to_cpu(super->external_nlba); 825 arena->external_lbasize = le32_to_cpu(super->external_lbasize); 826 arena->nfree = le32_to_cpu(super->nfree); 827 arena->version_major = le16_to_cpu(super->version_major); 828 arena->version_minor = le16_to_cpu(super->version_minor); 829 830 arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off + 831 le64_to_cpu(super->nextoff)); 832 arena->infooff = arena_off; 833 arena->dataoff = arena_off + le64_to_cpu(super->dataoff); 834 arena->mapoff = arena_off + le64_to_cpu(super->mapoff); 835 arena->logoff = arena_off + le64_to_cpu(super->logoff); 836 arena->info2off = arena_off + le64_to_cpu(super->info2off); 837 838 arena->size = (le64_to_cpu(super->nextoff) > 0) 839 ? (le64_to_cpu(super->nextoff)) 840 : (arena->info2off - arena->infooff + BTT_PG_SIZE); 841 842 arena->flags = le32_to_cpu(super->flags); 843 } 844 845 static int discover_arenas(struct btt *btt) 846 { 847 int ret = 0; 848 struct arena_info *arena; 849 struct btt_sb *super; 850 size_t remaining = btt->rawsize; 851 u64 cur_nlba = 0; 852 size_t cur_off = 0; 853 int num_arenas = 0; 854 855 super = kzalloc(sizeof(*super), GFP_KERNEL); 856 if (!super) 857 return -ENOMEM; 858 859 while (remaining) { 860 /* Alloc memory for arena */ 861 arena = alloc_arena(btt, 0, 0, 0); 862 if (!arena) { 863 ret = -ENOMEM; 864 goto out_super; 865 } 866 867 arena->infooff = cur_off; 868 ret = btt_info_read(arena, super); 869 if (ret) 870 goto out; 871 872 if (!nd_btt_arena_is_valid(btt->nd_btt, super)) { 873 if (remaining == btt->rawsize) { 874 btt->init_state = INIT_NOTFOUND; 875 dev_info(to_dev(arena), "No existing arenas\n"); 876 goto out; 877 } else { 878 dev_err(to_dev(arena), 879 "Found corrupted metadata!\n"); 880 ret = -ENODEV; 881 goto out; 882 } 883 } 884 885 arena->external_lba_start = cur_nlba; 886 parse_arena_meta(arena, super, cur_off); 887 888 ret = log_set_indices(arena); 889 if (ret) { 890 dev_err(to_dev(arena), 891 "Unable to deduce log/padding indices\n"); 892 goto out; 893 } 894 895 ret = btt_freelist_init(arena); 896 if (ret) 897 goto out; 898 899 ret = btt_rtt_init(arena); 900 if (ret) 901 goto out; 902 903 ret = btt_maplocks_init(arena); 904 if (ret) 905 goto out; 906 907 list_add_tail(&arena->list, &btt->arena_list); 908 909 remaining -= arena->size; 910 cur_off += arena->size; 911 cur_nlba += arena->external_nlba; 912 num_arenas++; 913 914 if (arena->nextoff == 0) 915 break; 916 } 917 btt->num_arenas = num_arenas; 918 btt->nlba = cur_nlba; 919 btt->init_state = INIT_READY; 920 921 kfree(super); 922 return ret; 923 924 out: 925 kfree(arena); 926 free_arenas(btt); 927 out_super: 928 kfree(super); 929 return ret; 930 } 931 932 static int create_arenas(struct btt *btt) 933 { 934 size_t remaining = btt->rawsize; 935 size_t cur_off = 0; 936 937 while (remaining) { 938 struct arena_info *arena; 939 size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining); 940 941 remaining -= arena_size; 942 if (arena_size < ARENA_MIN_SIZE) 943 break; 944 945 arena = alloc_arena(btt, arena_size, btt->nlba, cur_off); 946 if (!arena) { 947 free_arenas(btt); 948 return -ENOMEM; 949 } 950 btt->nlba += arena->external_nlba; 951 if (remaining >= ARENA_MIN_SIZE) 952 arena->nextoff = arena->size; 953 else 954 arena->nextoff = 0; 955 cur_off += arena_size; 956 list_add_tail(&arena->list, &btt->arena_list); 957 } 958 959 return 0; 960 } 961 962 /* 963 * This function completes arena initialization by writing 964 * all the metadata. 965 * It is only called for an uninitialized arena when a write 966 * to that arena occurs for the first time. 967 */ 968 static int btt_arena_write_layout(struct arena_info *arena) 969 { 970 int ret; 971 u64 sum; 972 struct btt_sb *super; 973 struct nd_btt *nd_btt = arena->nd_btt; 974 const u8 *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev); 975 976 ret = btt_map_init(arena); 977 if (ret) 978 return ret; 979 980 ret = btt_log_init(arena); 981 if (ret) 982 return ret; 983 984 super = kzalloc(sizeof(struct btt_sb), GFP_NOIO); 985 if (!super) 986 return -ENOMEM; 987 988 strncpy(super->signature, BTT_SIG, BTT_SIG_LEN); 989 memcpy(super->uuid, nd_btt->uuid, 16); 990 memcpy(super->parent_uuid, parent_uuid, 16); 991 super->flags = cpu_to_le32(arena->flags); 992 super->version_major = cpu_to_le16(arena->version_major); 993 super->version_minor = cpu_to_le16(arena->version_minor); 994 super->external_lbasize = cpu_to_le32(arena->external_lbasize); 995 super->external_nlba = cpu_to_le32(arena->external_nlba); 996 super->internal_lbasize = cpu_to_le32(arena->internal_lbasize); 997 super->internal_nlba = cpu_to_le32(arena->internal_nlba); 998 super->nfree = cpu_to_le32(arena->nfree); 999 super->infosize = cpu_to_le32(sizeof(struct btt_sb)); 1000 super->nextoff = cpu_to_le64(arena->nextoff); 1001 /* 1002 * Subtract arena->infooff (arena start) so numbers are relative 1003 * to 'this' arena 1004 */ 1005 super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff); 1006 super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff); 1007 super->logoff = cpu_to_le64(arena->logoff - arena->infooff); 1008 super->info2off = cpu_to_le64(arena->info2off - arena->infooff); 1009 1010 super->flags = 0; 1011 sum = nd_sb_checksum((struct nd_gen_sb *) super); 1012 super->checksum = cpu_to_le64(sum); 1013 1014 ret = btt_info_write(arena, super); 1015 1016 kfree(super); 1017 return ret; 1018 } 1019 1020 /* 1021 * This function completes the initialization for the BTT namespace 1022 * such that it is ready to accept IOs 1023 */ 1024 static int btt_meta_init(struct btt *btt) 1025 { 1026 int ret = 0; 1027 struct arena_info *arena; 1028 1029 mutex_lock(&btt->init_lock); 1030 list_for_each_entry(arena, &btt->arena_list, list) { 1031 ret = btt_arena_write_layout(arena); 1032 if (ret) 1033 goto unlock; 1034 1035 ret = btt_freelist_init(arena); 1036 if (ret) 1037 goto unlock; 1038 1039 ret = btt_rtt_init(arena); 1040 if (ret) 1041 goto unlock; 1042 1043 ret = btt_maplocks_init(arena); 1044 if (ret) 1045 goto unlock; 1046 } 1047 1048 btt->init_state = INIT_READY; 1049 1050 unlock: 1051 mutex_unlock(&btt->init_lock); 1052 return ret; 1053 } 1054 1055 static u32 btt_meta_size(struct btt *btt) 1056 { 1057 return btt->lbasize - btt->sector_size; 1058 } 1059 1060 /* 1061 * This function calculates the arena in which the given LBA lies 1062 * by doing a linear walk. This is acceptable since we expect only 1063 * a few arenas. If we have backing devices that get much larger, 1064 * we can construct a balanced binary tree of arenas at init time 1065 * so that this range search becomes faster. 1066 */ 1067 static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap, 1068 struct arena_info **arena) 1069 { 1070 struct arena_info *arena_list; 1071 __u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size); 1072 1073 list_for_each_entry(arena_list, &btt->arena_list, list) { 1074 if (lba < arena_list->external_nlba) { 1075 *arena = arena_list; 1076 *premap = lba; 1077 return 0; 1078 } 1079 lba -= arena_list->external_nlba; 1080 } 1081 1082 return -EIO; 1083 } 1084 1085 /* 1086 * The following (lock_map, unlock_map) are mostly just to improve 1087 * readability, since they index into an array of locks 1088 */ 1089 static void lock_map(struct arena_info *arena, u32 premap) 1090 __acquires(&arena->map_locks[idx].lock) 1091 { 1092 u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; 1093 1094 spin_lock(&arena->map_locks[idx].lock); 1095 } 1096 1097 static void unlock_map(struct arena_info *arena, u32 premap) 1098 __releases(&arena->map_locks[idx].lock) 1099 { 1100 u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; 1101 1102 spin_unlock(&arena->map_locks[idx].lock); 1103 } 1104 1105 static int btt_data_read(struct arena_info *arena, struct page *page, 1106 unsigned int off, u32 lba, u32 len) 1107 { 1108 int ret; 1109 u64 nsoff = to_namespace_offset(arena, lba); 1110 void *mem = kmap_atomic(page); 1111 1112 ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); 1113 kunmap_atomic(mem); 1114 1115 return ret; 1116 } 1117 1118 static int btt_data_write(struct arena_info *arena, u32 lba, 1119 struct page *page, unsigned int off, u32 len) 1120 { 1121 int ret; 1122 u64 nsoff = to_namespace_offset(arena, lba); 1123 void *mem = kmap_atomic(page); 1124 1125 ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); 1126 kunmap_atomic(mem); 1127 1128 return ret; 1129 } 1130 1131 static void zero_fill_data(struct page *page, unsigned int off, u32 len) 1132 { 1133 void *mem = kmap_atomic(page); 1134 1135 memset(mem + off, 0, len); 1136 kunmap_atomic(mem); 1137 } 1138 1139 #ifdef CONFIG_BLK_DEV_INTEGRITY 1140 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, 1141 struct arena_info *arena, u32 postmap, int rw) 1142 { 1143 unsigned int len = btt_meta_size(btt); 1144 u64 meta_nsoff; 1145 int ret = 0; 1146 1147 if (bip == NULL) 1148 return 0; 1149 1150 meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size; 1151 1152 while (len) { 1153 unsigned int cur_len; 1154 struct bio_vec bv; 1155 void *mem; 1156 1157 bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1158 /* 1159 * The 'bv' obtained from bvec_iter_bvec has its .bv_len and 1160 * .bv_offset already adjusted for iter->bi_bvec_done, and we 1161 * can use those directly 1162 */ 1163 1164 cur_len = min(len, bv.bv_len); 1165 mem = kmap_atomic(bv.bv_page); 1166 if (rw) 1167 ret = arena_write_bytes(arena, meta_nsoff, 1168 mem + bv.bv_offset, cur_len, 1169 NVDIMM_IO_ATOMIC); 1170 else 1171 ret = arena_read_bytes(arena, meta_nsoff, 1172 mem + bv.bv_offset, cur_len, 1173 NVDIMM_IO_ATOMIC); 1174 1175 kunmap_atomic(mem); 1176 if (ret) 1177 return ret; 1178 1179 len -= cur_len; 1180 meta_nsoff += cur_len; 1181 if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len)) 1182 return -EIO; 1183 } 1184 1185 return ret; 1186 } 1187 1188 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1189 static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, 1190 struct arena_info *arena, u32 postmap, int rw) 1191 { 1192 return 0; 1193 } 1194 #endif 1195 1196 static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip, 1197 struct page *page, unsigned int off, sector_t sector, 1198 unsigned int len) 1199 { 1200 int ret = 0; 1201 int t_flag, e_flag; 1202 struct arena_info *arena = NULL; 1203 u32 lane = 0, premap, postmap; 1204 1205 while (len) { 1206 u32 cur_len; 1207 1208 lane = nd_region_acquire_lane(btt->nd_region); 1209 1210 ret = lba_to_arena(btt, sector, &premap, &arena); 1211 if (ret) 1212 goto out_lane; 1213 1214 cur_len = min(btt->sector_size, len); 1215 1216 ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag, 1217 NVDIMM_IO_ATOMIC); 1218 if (ret) 1219 goto out_lane; 1220 1221 /* 1222 * We loop to make sure that the post map LBA didn't change 1223 * from under us between writing the RTT and doing the actual 1224 * read. 1225 */ 1226 while (1) { 1227 u32 new_map; 1228 int new_t, new_e; 1229 1230 if (t_flag) { 1231 zero_fill_data(page, off, cur_len); 1232 goto out_lane; 1233 } 1234 1235 if (e_flag) { 1236 ret = -EIO; 1237 goto out_lane; 1238 } 1239 1240 arena->rtt[lane] = RTT_VALID | postmap; 1241 /* 1242 * Barrier to make sure this write is not reordered 1243 * to do the verification map_read before the RTT store 1244 */ 1245 barrier(); 1246 1247 ret = btt_map_read(arena, premap, &new_map, &new_t, 1248 &new_e, NVDIMM_IO_ATOMIC); 1249 if (ret) 1250 goto out_rtt; 1251 1252 if ((postmap == new_map) && (t_flag == new_t) && 1253 (e_flag == new_e)) 1254 break; 1255 1256 postmap = new_map; 1257 t_flag = new_t; 1258 e_flag = new_e; 1259 } 1260 1261 ret = btt_data_read(arena, page, off, postmap, cur_len); 1262 if (ret) { 1263 int rc; 1264 1265 /* Media error - set the e_flag */ 1266 rc = btt_map_write(arena, premap, postmap, 0, 1, 1267 NVDIMM_IO_ATOMIC); 1268 goto out_rtt; 1269 } 1270 1271 if (bip) { 1272 ret = btt_rw_integrity(btt, bip, arena, postmap, READ); 1273 if (ret) 1274 goto out_rtt; 1275 } 1276 1277 arena->rtt[lane] = RTT_INVALID; 1278 nd_region_release_lane(btt->nd_region, lane); 1279 1280 len -= cur_len; 1281 off += cur_len; 1282 sector += btt->sector_size >> SECTOR_SHIFT; 1283 } 1284 1285 return 0; 1286 1287 out_rtt: 1288 arena->rtt[lane] = RTT_INVALID; 1289 out_lane: 1290 nd_region_release_lane(btt->nd_region, lane); 1291 return ret; 1292 } 1293 1294 /* 1295 * Normally, arena_{read,write}_bytes will take care of the initial offset 1296 * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem, 1297 * we need the final, raw namespace offset here 1298 */ 1299 static bool btt_is_badblock(struct btt *btt, struct arena_info *arena, 1300 u32 postmap) 1301 { 1302 u64 nsoff = adjust_initial_offset(arena->nd_btt, 1303 to_namespace_offset(arena, postmap)); 1304 sector_t phys_sector = nsoff >> 9; 1305 1306 return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize); 1307 } 1308 1309 static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip, 1310 sector_t sector, struct page *page, unsigned int off, 1311 unsigned int len) 1312 { 1313 int ret = 0; 1314 struct arena_info *arena = NULL; 1315 u32 premap = 0, old_postmap, new_postmap, lane = 0, i; 1316 struct log_entry log; 1317 int sub; 1318 1319 while (len) { 1320 u32 cur_len; 1321 int e_flag; 1322 1323 retry: 1324 lane = nd_region_acquire_lane(btt->nd_region); 1325 1326 ret = lba_to_arena(btt, sector, &premap, &arena); 1327 if (ret) 1328 goto out_lane; 1329 cur_len = min(btt->sector_size, len); 1330 1331 if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) { 1332 ret = -EIO; 1333 goto out_lane; 1334 } 1335 1336 if (btt_is_badblock(btt, arena, arena->freelist[lane].block)) 1337 arena->freelist[lane].has_err = 1; 1338 1339 if (mutex_is_locked(&arena->err_lock) 1340 || arena->freelist[lane].has_err) { 1341 nd_region_release_lane(btt->nd_region, lane); 1342 1343 ret = arena_clear_freelist_error(arena, lane); 1344 if (ret) 1345 return ret; 1346 1347 /* OK to acquire a different lane/free block */ 1348 goto retry; 1349 } 1350 1351 new_postmap = arena->freelist[lane].block; 1352 1353 /* Wait if the new block is being read from */ 1354 for (i = 0; i < arena->nfree; i++) 1355 while (arena->rtt[i] == (RTT_VALID | new_postmap)) 1356 cpu_relax(); 1357 1358 1359 if (new_postmap >= arena->internal_nlba) { 1360 ret = -EIO; 1361 goto out_lane; 1362 } 1363 1364 ret = btt_data_write(arena, new_postmap, page, off, cur_len); 1365 if (ret) 1366 goto out_lane; 1367 1368 if (bip) { 1369 ret = btt_rw_integrity(btt, bip, arena, new_postmap, 1370 WRITE); 1371 if (ret) 1372 goto out_lane; 1373 } 1374 1375 lock_map(arena, premap); 1376 ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag, 1377 NVDIMM_IO_ATOMIC); 1378 if (ret) 1379 goto out_map; 1380 if (old_postmap >= arena->internal_nlba) { 1381 ret = -EIO; 1382 goto out_map; 1383 } 1384 if (e_flag) 1385 set_e_flag(old_postmap); 1386 1387 log.lba = cpu_to_le32(premap); 1388 log.old_map = cpu_to_le32(old_postmap); 1389 log.new_map = cpu_to_le32(new_postmap); 1390 log.seq = cpu_to_le32(arena->freelist[lane].seq); 1391 sub = arena->freelist[lane].sub; 1392 ret = btt_flog_write(arena, lane, sub, &log); 1393 if (ret) 1394 goto out_map; 1395 1396 ret = btt_map_write(arena, premap, new_postmap, 0, 0, 1397 NVDIMM_IO_ATOMIC); 1398 if (ret) 1399 goto out_map; 1400 1401 unlock_map(arena, premap); 1402 nd_region_release_lane(btt->nd_region, lane); 1403 1404 if (e_flag) { 1405 ret = arena_clear_freelist_error(arena, lane); 1406 if (ret) 1407 return ret; 1408 } 1409 1410 len -= cur_len; 1411 off += cur_len; 1412 sector += btt->sector_size >> SECTOR_SHIFT; 1413 } 1414 1415 return 0; 1416 1417 out_map: 1418 unlock_map(arena, premap); 1419 out_lane: 1420 nd_region_release_lane(btt->nd_region, lane); 1421 return ret; 1422 } 1423 1424 static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip, 1425 struct page *page, unsigned int len, unsigned int off, 1426 bool is_write, sector_t sector) 1427 { 1428 int ret; 1429 1430 if (!is_write) { 1431 ret = btt_read_pg(btt, bip, page, off, sector, len); 1432 flush_dcache_page(page); 1433 } else { 1434 flush_dcache_page(page); 1435 ret = btt_write_pg(btt, bip, sector, page, off, len); 1436 } 1437 1438 return ret; 1439 } 1440 1441 static blk_qc_t btt_make_request(struct request_queue *q, struct bio *bio) 1442 { 1443 struct bio_integrity_payload *bip = bio_integrity(bio); 1444 struct btt *btt = q->queuedata; 1445 struct bvec_iter iter; 1446 unsigned long start; 1447 struct bio_vec bvec; 1448 int err = 0; 1449 bool do_acct; 1450 1451 if (!bio_integrity_prep(bio)) 1452 return BLK_QC_T_NONE; 1453 1454 do_acct = nd_iostat_start(bio, &start); 1455 bio_for_each_segment(bvec, bio, iter) { 1456 unsigned int len = bvec.bv_len; 1457 1458 if (len > PAGE_SIZE || len < btt->sector_size || 1459 len % btt->sector_size) { 1460 dev_err_ratelimited(&btt->nd_btt->dev, 1461 "unaligned bio segment (len: %d)\n", len); 1462 bio->bi_status = BLK_STS_IOERR; 1463 break; 1464 } 1465 1466 err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset, 1467 op_is_write(bio_op(bio)), iter.bi_sector); 1468 if (err) { 1469 dev_err(&btt->nd_btt->dev, 1470 "io error in %s sector %lld, len %d,\n", 1471 (op_is_write(bio_op(bio))) ? "WRITE" : 1472 "READ", 1473 (unsigned long long) iter.bi_sector, len); 1474 bio->bi_status = errno_to_blk_status(err); 1475 break; 1476 } 1477 } 1478 if (do_acct) 1479 nd_iostat_end(bio, start); 1480 1481 bio_endio(bio); 1482 return BLK_QC_T_NONE; 1483 } 1484 1485 static int btt_rw_page(struct block_device *bdev, sector_t sector, 1486 struct page *page, bool is_write) 1487 { 1488 struct btt *btt = bdev->bd_disk->private_data; 1489 int rc; 1490 unsigned int len; 1491 1492 len = hpage_nr_pages(page) * PAGE_SIZE; 1493 rc = btt_do_bvec(btt, NULL, page, len, 0, is_write, sector); 1494 if (rc == 0) 1495 page_endio(page, is_write, 0); 1496 1497 return rc; 1498 } 1499 1500 1501 static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo) 1502 { 1503 /* some standard values */ 1504 geo->heads = 1 << 6; 1505 geo->sectors = 1 << 5; 1506 geo->cylinders = get_capacity(bd->bd_disk) >> 11; 1507 return 0; 1508 } 1509 1510 static const struct block_device_operations btt_fops = { 1511 .owner = THIS_MODULE, 1512 .rw_page = btt_rw_page, 1513 .getgeo = btt_getgeo, 1514 .revalidate_disk = nvdimm_revalidate_disk, 1515 }; 1516 1517 static int btt_blk_init(struct btt *btt) 1518 { 1519 struct nd_btt *nd_btt = btt->nd_btt; 1520 struct nd_namespace_common *ndns = nd_btt->ndns; 1521 1522 /* create a new disk and request queue for btt */ 1523 btt->btt_queue = blk_alloc_queue(GFP_KERNEL); 1524 if (!btt->btt_queue) 1525 return -ENOMEM; 1526 1527 btt->btt_disk = alloc_disk(0); 1528 if (!btt->btt_disk) { 1529 blk_cleanup_queue(btt->btt_queue); 1530 return -ENOMEM; 1531 } 1532 1533 nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name); 1534 btt->btt_disk->first_minor = 0; 1535 btt->btt_disk->fops = &btt_fops; 1536 btt->btt_disk->private_data = btt; 1537 btt->btt_disk->queue = btt->btt_queue; 1538 btt->btt_disk->flags = GENHD_FL_EXT_DEVT; 1539 btt->btt_disk->queue->backing_dev_info->capabilities |= 1540 BDI_CAP_SYNCHRONOUS_IO; 1541 1542 blk_queue_make_request(btt->btt_queue, btt_make_request); 1543 blk_queue_logical_block_size(btt->btt_queue, btt->sector_size); 1544 blk_queue_max_hw_sectors(btt->btt_queue, UINT_MAX); 1545 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, btt->btt_queue); 1546 btt->btt_queue->queuedata = btt; 1547 1548 set_capacity(btt->btt_disk, 0); 1549 device_add_disk(&btt->nd_btt->dev, btt->btt_disk); 1550 if (btt_meta_size(btt)) { 1551 int rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt)); 1552 1553 if (rc) { 1554 del_gendisk(btt->btt_disk); 1555 put_disk(btt->btt_disk); 1556 blk_cleanup_queue(btt->btt_queue); 1557 return rc; 1558 } 1559 } 1560 set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9); 1561 btt->nd_btt->size = btt->nlba * (u64)btt->sector_size; 1562 revalidate_disk(btt->btt_disk); 1563 1564 return 0; 1565 } 1566 1567 static void btt_blk_cleanup(struct btt *btt) 1568 { 1569 del_gendisk(btt->btt_disk); 1570 put_disk(btt->btt_disk); 1571 blk_cleanup_queue(btt->btt_queue); 1572 } 1573 1574 /** 1575 * btt_init - initialize a block translation table for the given device 1576 * @nd_btt: device with BTT geometry and backing device info 1577 * @rawsize: raw size in bytes of the backing device 1578 * @lbasize: lba size of the backing device 1579 * @uuid: A uuid for the backing device - this is stored on media 1580 * @maxlane: maximum number of parallel requests the device can handle 1581 * 1582 * Initialize a Block Translation Table on a backing device to provide 1583 * single sector power fail atomicity. 1584 * 1585 * Context: 1586 * Might sleep. 1587 * 1588 * Returns: 1589 * Pointer to a new struct btt on success, NULL on failure. 1590 */ 1591 static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize, 1592 u32 lbasize, u8 *uuid, struct nd_region *nd_region) 1593 { 1594 int ret; 1595 struct btt *btt; 1596 struct nd_namespace_io *nsio; 1597 struct device *dev = &nd_btt->dev; 1598 1599 btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL); 1600 if (!btt) 1601 return NULL; 1602 1603 btt->nd_btt = nd_btt; 1604 btt->rawsize = rawsize; 1605 btt->lbasize = lbasize; 1606 btt->sector_size = ((lbasize >= 4096) ? 4096 : 512); 1607 INIT_LIST_HEAD(&btt->arena_list); 1608 mutex_init(&btt->init_lock); 1609 btt->nd_region = nd_region; 1610 nsio = to_nd_namespace_io(&nd_btt->ndns->dev); 1611 btt->phys_bb = &nsio->bb; 1612 1613 ret = discover_arenas(btt); 1614 if (ret) { 1615 dev_err(dev, "init: error in arena_discover: %d\n", ret); 1616 return NULL; 1617 } 1618 1619 if (btt->init_state != INIT_READY && nd_region->ro) { 1620 dev_warn(dev, "%s is read-only, unable to init btt metadata\n", 1621 dev_name(&nd_region->dev)); 1622 return NULL; 1623 } else if (btt->init_state != INIT_READY) { 1624 btt->num_arenas = (rawsize / ARENA_MAX_SIZE) + 1625 ((rawsize % ARENA_MAX_SIZE) ? 1 : 0); 1626 dev_dbg(dev, "init: %d arenas for %llu rawsize\n", 1627 btt->num_arenas, rawsize); 1628 1629 ret = create_arenas(btt); 1630 if (ret) { 1631 dev_info(dev, "init: create_arenas: %d\n", ret); 1632 return NULL; 1633 } 1634 1635 ret = btt_meta_init(btt); 1636 if (ret) { 1637 dev_err(dev, "init: error in meta_init: %d\n", ret); 1638 return NULL; 1639 } 1640 } 1641 1642 ret = btt_blk_init(btt); 1643 if (ret) { 1644 dev_err(dev, "init: error in blk_init: %d\n", ret); 1645 return NULL; 1646 } 1647 1648 btt_debugfs_init(btt); 1649 1650 return btt; 1651 } 1652 1653 /** 1654 * btt_fini - de-initialize a BTT 1655 * @btt: the BTT handle that was generated by btt_init 1656 * 1657 * De-initialize a Block Translation Table on device removal 1658 * 1659 * Context: 1660 * Might sleep. 1661 */ 1662 static void btt_fini(struct btt *btt) 1663 { 1664 if (btt) { 1665 btt_blk_cleanup(btt); 1666 free_arenas(btt); 1667 debugfs_remove_recursive(btt->debugfs_dir); 1668 } 1669 } 1670 1671 int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns) 1672 { 1673 struct nd_btt *nd_btt = to_nd_btt(ndns->claim); 1674 struct nd_region *nd_region; 1675 struct btt_sb *btt_sb; 1676 struct btt *btt; 1677 size_t rawsize; 1678 1679 if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) { 1680 dev_dbg(&nd_btt->dev, "incomplete btt configuration\n"); 1681 return -ENODEV; 1682 } 1683 1684 btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL); 1685 if (!btt_sb) 1686 return -ENOMEM; 1687 1688 /* 1689 * If this returns < 0, that is ok as it just means there wasn't 1690 * an existing BTT, and we're creating a new one. We still need to 1691 * call this as we need the version dependent fields in nd_btt to be 1692 * set correctly based on the holder class 1693 */ 1694 nd_btt_version(nd_btt, ndns, btt_sb); 1695 1696 rawsize = nvdimm_namespace_capacity(ndns) - nd_btt->initial_offset; 1697 if (rawsize < ARENA_MIN_SIZE) { 1698 dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n", 1699 dev_name(&ndns->dev), 1700 ARENA_MIN_SIZE + nd_btt->initial_offset); 1701 return -ENXIO; 1702 } 1703 nd_region = to_nd_region(nd_btt->dev.parent); 1704 btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid, 1705 nd_region); 1706 if (!btt) 1707 return -ENOMEM; 1708 nd_btt->btt = btt; 1709 1710 return 0; 1711 } 1712 EXPORT_SYMBOL(nvdimm_namespace_attach_btt); 1713 1714 int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt) 1715 { 1716 struct btt *btt = nd_btt->btt; 1717 1718 btt_fini(btt); 1719 nd_btt->btt = NULL; 1720 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(nvdimm_namespace_detach_btt); 1724 1725 static int __init nd_btt_init(void) 1726 { 1727 int rc = 0; 1728 1729 debugfs_root = debugfs_create_dir("btt", NULL); 1730 if (IS_ERR_OR_NULL(debugfs_root)) 1731 rc = -ENXIO; 1732 1733 return rc; 1734 } 1735 1736 static void __exit nd_btt_exit(void) 1737 { 1738 debugfs_remove_recursive(debugfs_root); 1739 } 1740 1741 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT); 1742 MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>"); 1743 MODULE_LICENSE("GPL v2"); 1744 module_init(nd_btt_init); 1745 module_exit(nd_btt_exit); 1746