1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2015 Intel Corporation. All rights reserved. 8 * Copyright(c) 2017 T-Platforms. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * BSD LICENSE 15 * 16 * Copyright(c) 2015 Intel Corporation. All rights reserved. 17 * Copyright(c) 2017 T-Platforms. All Rights Reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * * Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * * Redistributions in binary form must reproduce the above copy 26 * notice, this list of conditions and the following disclaimer in 27 * the documentation and/or other materials provided with the 28 * distribution. 29 * * Neither the name of Intel Corporation nor the names of its 30 * contributors may be used to endorse or promote products derived 31 * from this software without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 44 * 45 * PCIe NTB Perf Linux driver 46 */ 47 48 /* 49 * How to use this tool, by example. 50 * 51 * Assuming $DBG_DIR is something like: 52 * '/sys/kernel/debug/ntb_perf/0000:00:03.0' 53 * Suppose aside from local device there is at least one remote device 54 * connected to NTB with index 0. 55 *----------------------------------------------------------------------------- 56 * Eg: install driver with specified chunk/total orders and dma-enabled flag 57 * 58 * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma 59 *----------------------------------------------------------------------------- 60 * Eg: check NTB ports (index) and MW mapping information 61 * 62 * root@self# cat $DBG_DIR/info 63 *----------------------------------------------------------------------------- 64 * Eg: start performance test with peer (index 0) and get the test metrics 65 * 66 * root@self# echo 0 > $DBG_DIR/run 67 * root@self# cat $DBG_DIR/run 68 */ 69 70 #include <linux/init.h> 71 #include <linux/kernel.h> 72 #include <linux/module.h> 73 #include <linux/sched.h> 74 #include <linux/wait.h> 75 #include <linux/dma-mapping.h> 76 #include <linux/dmaengine.h> 77 #include <linux/pci.h> 78 #include <linux/ktime.h> 79 #include <linux/slab.h> 80 #include <linux/delay.h> 81 #include <linux/sizes.h> 82 #include <linux/workqueue.h> 83 #include <linux/debugfs.h> 84 #include <linux/random.h> 85 #include <linux/ntb.h> 86 87 #define DRIVER_NAME "ntb_perf" 88 #define DRIVER_VERSION "2.0" 89 90 MODULE_LICENSE("Dual BSD/GPL"); 91 MODULE_VERSION(DRIVER_VERSION); 92 MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>"); 93 MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool"); 94 95 #define MAX_THREADS_CNT 32 96 #define DEF_THREADS_CNT 1 97 #define MAX_CHUNK_SIZE SZ_1M 98 #define MAX_CHUNK_ORDER 20 /* no larger than 1M */ 99 100 #define DMA_TRIES 100 101 #define DMA_MDELAY 10 102 103 #define MSG_TRIES 1000 104 #define MSG_UDELAY_LOW 1000000 105 #define MSG_UDELAY_HIGH 2000000 106 107 #define PERF_BUF_LEN 1024 108 109 static unsigned long max_mw_size; 110 module_param(max_mw_size, ulong, 0644); 111 MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size"); 112 113 static unsigned char chunk_order = 19; /* 512K */ 114 module_param(chunk_order, byte, 0644); 115 MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer"); 116 117 static unsigned char total_order = 30; /* 1G */ 118 module_param(total_order, byte, 0644); 119 MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer"); 120 121 static bool use_dma; /* default to 0 */ 122 module_param(use_dma, bool, 0644); 123 MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance"); 124 125 /*============================================================================== 126 * Perf driver data definition 127 *============================================================================== 128 */ 129 130 enum perf_cmd { 131 PERF_CMD_INVAL = -1,/* invalid spad command */ 132 PERF_CMD_SSIZE = 0, /* send out buffer size */ 133 PERF_CMD_RSIZE = 1, /* recv in buffer size */ 134 PERF_CMD_SXLAT = 2, /* send in buffer xlat */ 135 PERF_CMD_RXLAT = 3, /* recv out buffer xlat */ 136 PERF_CMD_CLEAR = 4, /* clear allocated memory */ 137 PERF_STS_DONE = 5, /* init is done */ 138 PERF_STS_LNKUP = 6, /* link up state flag */ 139 }; 140 141 struct perf_ctx; 142 143 struct perf_peer { 144 struct perf_ctx *perf; 145 int pidx; 146 int gidx; 147 148 /* Outbound MW params */ 149 u64 outbuf_xlat; 150 resource_size_t outbuf_size; 151 void __iomem *outbuf; 152 phys_addr_t out_phys_addr; 153 dma_addr_t dma_dst_addr; 154 /* Inbound MW params */ 155 dma_addr_t inbuf_xlat; 156 resource_size_t inbuf_size; 157 void *inbuf; 158 159 /* NTB connection setup service */ 160 struct work_struct service; 161 unsigned long sts; 162 163 struct completion init_comp; 164 }; 165 #define to_peer_service(__work) \ 166 container_of(__work, struct perf_peer, service) 167 168 struct perf_thread { 169 struct perf_ctx *perf; 170 int tidx; 171 172 /* DMA-based test sync parameters */ 173 atomic_t dma_sync; 174 wait_queue_head_t dma_wait; 175 struct dma_chan *dma_chan; 176 177 /* Data source and measured statistics */ 178 void *src; 179 u64 copied; 180 ktime_t duration; 181 int status; 182 struct work_struct work; 183 }; 184 #define to_thread_work(__work) \ 185 container_of(__work, struct perf_thread, work) 186 187 struct perf_ctx { 188 struct ntb_dev *ntb; 189 190 /* Global device index and peers descriptors */ 191 int gidx; 192 int pcnt; 193 struct perf_peer *peers; 194 195 /* Performance measuring work-threads interface */ 196 unsigned long busy_flag; 197 wait_queue_head_t twait; 198 atomic_t tsync; 199 u8 tcnt; 200 struct perf_peer *test_peer; 201 struct perf_thread threads[MAX_THREADS_CNT]; 202 203 /* Scratchpad/Message IO operations */ 204 int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data); 205 int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd, 206 u64 *data); 207 208 struct dentry *dbgfs_dir; 209 }; 210 211 /* 212 * Scratchpads-base commands interface 213 */ 214 #define PERF_SPAD_CNT(_pcnt) \ 215 (3*((_pcnt) + 1)) 216 #define PERF_SPAD_CMD(_gidx) \ 217 (3*(_gidx)) 218 #define PERF_SPAD_LDATA(_gidx) \ 219 (3*(_gidx) + 1) 220 #define PERF_SPAD_HDATA(_gidx) \ 221 (3*(_gidx) + 2) 222 #define PERF_SPAD_NOTIFY(_gidx) \ 223 (BIT_ULL(_gidx)) 224 225 /* 226 * Messages-base commands interface 227 */ 228 #define PERF_MSG_CNT 3 229 #define PERF_MSG_CMD 0 230 #define PERF_MSG_LDATA 1 231 #define PERF_MSG_HDATA 2 232 233 /*============================================================================== 234 * Static data declarations 235 *============================================================================== 236 */ 237 238 static struct dentry *perf_dbgfs_topdir; 239 240 static struct workqueue_struct *perf_wq __read_mostly; 241 242 /*============================================================================== 243 * NTB cross-link commands execution service 244 *============================================================================== 245 */ 246 247 static void perf_terminate_test(struct perf_ctx *perf); 248 249 static inline bool perf_link_is_up(struct perf_peer *peer) 250 { 251 u64 link; 252 253 link = ntb_link_is_up(peer->perf->ntb, NULL, NULL); 254 return !!(link & BIT_ULL_MASK(peer->pidx)); 255 } 256 257 static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, 258 u64 data) 259 { 260 struct perf_ctx *perf = peer->perf; 261 int try; 262 u32 sts; 263 264 dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); 265 266 /* 267 * Perform predefined number of attempts before give up. 268 * We are sending the data to the port specific scratchpad, so 269 * to prevent a multi-port access race-condition. Additionally 270 * there is no need in local locking since only thread-safe 271 * service work is using this method. 272 */ 273 for (try = 0; try < MSG_TRIES; try++) { 274 if (!perf_link_is_up(peer)) 275 return -ENOLINK; 276 277 sts = ntb_peer_spad_read(perf->ntb, peer->pidx, 278 PERF_SPAD_CMD(perf->gidx)); 279 if (sts != PERF_CMD_INVAL) { 280 usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); 281 continue; 282 } 283 284 ntb_peer_spad_write(perf->ntb, peer->pidx, 285 PERF_SPAD_LDATA(perf->gidx), 286 lower_32_bits(data)); 287 ntb_peer_spad_write(perf->ntb, peer->pidx, 288 PERF_SPAD_HDATA(perf->gidx), 289 upper_32_bits(data)); 290 ntb_peer_spad_write(perf->ntb, peer->pidx, 291 PERF_SPAD_CMD(perf->gidx), 292 cmd); 293 ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx)); 294 295 dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n", 296 PERF_SPAD_NOTIFY(peer->gidx)); 297 298 break; 299 } 300 301 return try < MSG_TRIES ? 0 : -EAGAIN; 302 } 303 304 static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx, 305 enum perf_cmd *cmd, u64 *data) 306 { 307 struct perf_peer *peer; 308 u32 val; 309 310 ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 311 312 /* 313 * We start scanning all over, since cleared DB may have been set 314 * by any peer. Yes, it makes peer with smaller index being 315 * serviced with greater priority, but it's convenient for spad 316 * and message code unification and simplicity. 317 */ 318 for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) { 319 peer = &perf->peers[*pidx]; 320 321 if (!perf_link_is_up(peer)) 322 continue; 323 324 val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx)); 325 if (val == PERF_CMD_INVAL) 326 continue; 327 328 *cmd = val; 329 330 val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx)); 331 *data = val; 332 333 val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx)); 334 *data |= (u64)val << 32; 335 336 /* Next command can be retrieved from now */ 337 ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 338 PERF_CMD_INVAL); 339 340 dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); 341 342 return 0; 343 } 344 345 return -ENODATA; 346 } 347 348 static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, 349 u64 data) 350 { 351 struct perf_ctx *perf = peer->perf; 352 int try, ret; 353 u64 outbits; 354 355 dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data); 356 357 /* 358 * Perform predefined number of attempts before give up. Message 359 * registers are free of race-condition problem when accessed 360 * from different ports, so we don't need splitting registers 361 * by global device index. We also won't have local locking, 362 * since the method is used from service work only. 363 */ 364 outbits = ntb_msg_outbits(perf->ntb); 365 for (try = 0; try < MSG_TRIES; try++) { 366 if (!perf_link_is_up(peer)) 367 return -ENOLINK; 368 369 ret = ntb_msg_clear_sts(perf->ntb, outbits); 370 if (ret) 371 return ret; 372 373 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA, 374 lower_32_bits(data)); 375 376 if (ntb_msg_read_sts(perf->ntb) & outbits) { 377 usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH); 378 continue; 379 } 380 381 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA, 382 upper_32_bits(data)); 383 384 /* This call shall trigger peer message event */ 385 ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd); 386 387 break; 388 } 389 390 return try < MSG_TRIES ? 0 : -EAGAIN; 391 } 392 393 static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx, 394 enum perf_cmd *cmd, u64 *data) 395 { 396 u64 inbits; 397 u32 val; 398 399 inbits = ntb_msg_inbits(perf->ntb); 400 401 if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3) 402 return -ENODATA; 403 404 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD); 405 *cmd = val; 406 407 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA); 408 *data = val; 409 410 val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA); 411 *data |= (u64)val << 32; 412 413 /* Next command can be retrieved from now */ 414 ntb_msg_clear_sts(perf->ntb, inbits); 415 416 dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data); 417 418 return 0; 419 } 420 421 static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data) 422 { 423 struct perf_ctx *perf = peer->perf; 424 425 if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT) 426 return perf->cmd_send(peer, cmd, data); 427 428 dev_err(&perf->ntb->dev, "Send invalid command\n"); 429 return -EINVAL; 430 } 431 432 static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd) 433 { 434 switch (cmd) { 435 case PERF_CMD_SSIZE: 436 case PERF_CMD_RSIZE: 437 case PERF_CMD_SXLAT: 438 case PERF_CMD_RXLAT: 439 case PERF_CMD_CLEAR: 440 break; 441 default: 442 dev_err(&peer->perf->ntb->dev, "Exec invalid command\n"); 443 return -EINVAL; 444 } 445 446 /* No need of memory barrier, since bit ops have invernal lock */ 447 set_bit(cmd, &peer->sts); 448 449 dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd); 450 451 (void)queue_work(system_highpri_wq, &peer->service); 452 453 return 0; 454 } 455 456 static int perf_cmd_recv(struct perf_ctx *perf) 457 { 458 struct perf_peer *peer; 459 int ret, pidx, cmd; 460 u64 data; 461 462 while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) { 463 peer = &perf->peers[pidx]; 464 465 switch (cmd) { 466 case PERF_CMD_SSIZE: 467 peer->inbuf_size = data; 468 return perf_cmd_exec(peer, PERF_CMD_RSIZE); 469 case PERF_CMD_SXLAT: 470 peer->outbuf_xlat = data; 471 return perf_cmd_exec(peer, PERF_CMD_RXLAT); 472 default: 473 dev_err(&perf->ntb->dev, "Recv invalid command\n"); 474 return -EINVAL; 475 } 476 } 477 478 /* Return 0 if no data left to process, otherwise an error */ 479 return ret == -ENODATA ? 0 : ret; 480 } 481 482 static void perf_link_event(void *ctx) 483 { 484 struct perf_ctx *perf = ctx; 485 struct perf_peer *peer; 486 bool lnk_up; 487 int pidx; 488 489 for (pidx = 0; pidx < perf->pcnt; pidx++) { 490 peer = &perf->peers[pidx]; 491 492 lnk_up = perf_link_is_up(peer); 493 494 if (lnk_up && 495 !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) { 496 perf_cmd_exec(peer, PERF_CMD_SSIZE); 497 } else if (!lnk_up && 498 test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) { 499 perf_cmd_exec(peer, PERF_CMD_CLEAR); 500 } 501 } 502 } 503 504 static void perf_db_event(void *ctx, int vec) 505 { 506 struct perf_ctx *perf = ctx; 507 508 dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec, 509 ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb)); 510 511 /* Just receive all available commands */ 512 (void)perf_cmd_recv(perf); 513 } 514 515 static void perf_msg_event(void *ctx) 516 { 517 struct perf_ctx *perf = ctx; 518 519 dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n", 520 ntb_msg_read_sts(perf->ntb)); 521 522 /* Messages are only sent one-by-one */ 523 (void)perf_cmd_recv(perf); 524 } 525 526 static const struct ntb_ctx_ops perf_ops = { 527 .link_event = perf_link_event, 528 .db_event = perf_db_event, 529 .msg_event = perf_msg_event 530 }; 531 532 static void perf_free_outbuf(struct perf_peer *peer) 533 { 534 (void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); 535 } 536 537 static int perf_setup_outbuf(struct perf_peer *peer) 538 { 539 struct perf_ctx *perf = peer->perf; 540 int ret; 541 542 /* Outbuf size can be unaligned due to custom max_mw_size */ 543 ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, 544 peer->outbuf_xlat, peer->outbuf_size); 545 if (ret) { 546 dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n"); 547 return ret; 548 } 549 550 /* Initialization is finally done */ 551 set_bit(PERF_STS_DONE, &peer->sts); 552 complete_all(&peer->init_comp); 553 554 return 0; 555 } 556 557 static void perf_free_inbuf(struct perf_peer *peer) 558 { 559 if (!peer->inbuf) 560 return; 561 562 (void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx); 563 dma_free_coherent(&peer->perf->ntb->pdev->dev, peer->inbuf_size, 564 peer->inbuf, peer->inbuf_xlat); 565 peer->inbuf = NULL; 566 } 567 568 static int perf_setup_inbuf(struct perf_peer *peer) 569 { 570 resource_size_t xlat_align, size_align, size_max; 571 struct perf_ctx *perf = peer->perf; 572 int ret; 573 574 /* Get inbound MW parameters */ 575 ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx, 576 &xlat_align, &size_align, &size_max); 577 if (ret) { 578 dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n"); 579 return ret; 580 } 581 582 if (peer->inbuf_size > size_max) { 583 dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n", 584 &peer->inbuf_size, &size_max); 585 return -EINVAL; 586 } 587 588 peer->inbuf_size = round_up(peer->inbuf_size, size_align); 589 590 perf_free_inbuf(peer); 591 592 peer->inbuf = dma_alloc_coherent(&perf->ntb->pdev->dev, 593 peer->inbuf_size, &peer->inbuf_xlat, 594 GFP_KERNEL); 595 if (!peer->inbuf) { 596 dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n", 597 &peer->inbuf_size); 598 return -ENOMEM; 599 } 600 if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) { 601 ret = -EINVAL; 602 dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n"); 603 goto err_free_inbuf; 604 } 605 606 ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx, 607 peer->inbuf_xlat, peer->inbuf_size); 608 if (ret) { 609 dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n"); 610 goto err_free_inbuf; 611 } 612 613 /* 614 * We submit inbuf xlat transmission cmd for execution here to follow 615 * the code architecture, even though this method is called from service 616 * work itself so the command will be executed right after it returns. 617 */ 618 (void)perf_cmd_exec(peer, PERF_CMD_SXLAT); 619 620 return 0; 621 622 err_free_inbuf: 623 perf_free_inbuf(peer); 624 625 return ret; 626 } 627 628 static void perf_service_work(struct work_struct *work) 629 { 630 struct perf_peer *peer = to_peer_service(work); 631 632 if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts)) 633 perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size); 634 635 if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts)) 636 perf_setup_inbuf(peer); 637 638 if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts)) 639 perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat); 640 641 if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts)) 642 perf_setup_outbuf(peer); 643 644 if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) { 645 init_completion(&peer->init_comp); 646 clear_bit(PERF_STS_DONE, &peer->sts); 647 if (test_bit(0, &peer->perf->busy_flag) && 648 peer == peer->perf->test_peer) { 649 dev_warn(&peer->perf->ntb->dev, 650 "Freeing while test on-fly\n"); 651 perf_terminate_test(peer->perf); 652 } 653 perf_free_outbuf(peer); 654 perf_free_inbuf(peer); 655 } 656 } 657 658 static int perf_init_service(struct perf_ctx *perf) 659 { 660 u64 mask; 661 662 if (ntb_peer_mw_count(perf->ntb) < perf->pcnt) { 663 dev_err(&perf->ntb->dev, "Not enough memory windows\n"); 664 return -EINVAL; 665 } 666 667 if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) { 668 perf->cmd_send = perf_msg_cmd_send; 669 perf->cmd_recv = perf_msg_cmd_recv; 670 671 dev_dbg(&perf->ntb->dev, "Message service initialized\n"); 672 673 return 0; 674 } 675 676 dev_dbg(&perf->ntb->dev, "Message service unsupported\n"); 677 678 mask = GENMASK_ULL(perf->pcnt, 0); 679 if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) && 680 (ntb_db_valid_mask(perf->ntb) & mask) == mask) { 681 perf->cmd_send = perf_spad_cmd_send; 682 perf->cmd_recv = perf_spad_cmd_recv; 683 684 dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n"); 685 686 return 0; 687 } 688 689 dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n"); 690 691 dev_err(&perf->ntb->dev, "Command services unsupported\n"); 692 693 return -EINVAL; 694 } 695 696 static int perf_enable_service(struct perf_ctx *perf) 697 { 698 u64 mask, incmd_bit; 699 int ret, sidx, scnt; 700 701 mask = ntb_db_valid_mask(perf->ntb); 702 (void)ntb_db_set_mask(perf->ntb, mask); 703 704 ret = ntb_set_ctx(perf->ntb, perf, &perf_ops); 705 if (ret) 706 return ret; 707 708 if (perf->cmd_send == perf_msg_cmd_send) { 709 u64 inbits, outbits; 710 711 inbits = ntb_msg_inbits(perf->ntb); 712 outbits = ntb_msg_outbits(perf->ntb); 713 (void)ntb_msg_set_mask(perf->ntb, inbits | outbits); 714 715 incmd_bit = BIT_ULL(__ffs64(inbits)); 716 ret = ntb_msg_clear_mask(perf->ntb, incmd_bit); 717 718 dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit); 719 } else { 720 scnt = ntb_spad_count(perf->ntb); 721 for (sidx = 0; sidx < scnt; sidx++) 722 ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL); 723 incmd_bit = PERF_SPAD_NOTIFY(perf->gidx); 724 ret = ntb_db_clear_mask(perf->ntb, incmd_bit); 725 726 dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit); 727 } 728 if (ret) { 729 ntb_clear_ctx(perf->ntb); 730 return ret; 731 } 732 733 ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 734 /* Might be not necessary */ 735 ntb_link_event(perf->ntb); 736 737 return 0; 738 } 739 740 static void perf_disable_service(struct perf_ctx *perf) 741 { 742 int pidx; 743 744 if (perf->cmd_send == perf_msg_cmd_send) { 745 u64 inbits; 746 747 inbits = ntb_msg_inbits(perf->ntb); 748 (void)ntb_msg_set_mask(perf->ntb, inbits); 749 } else { 750 (void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 751 } 752 753 ntb_clear_ctx(perf->ntb); 754 755 for (pidx = 0; pidx < perf->pcnt; pidx++) 756 perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR); 757 758 for (pidx = 0; pidx < perf->pcnt; pidx++) 759 flush_work(&perf->peers[pidx].service); 760 761 for (pidx = 0; pidx < perf->pcnt; pidx++) { 762 struct perf_peer *peer = &perf->peers[pidx]; 763 764 ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 0); 765 } 766 767 ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx)); 768 769 ntb_link_disable(perf->ntb); 770 } 771 772 /*============================================================================== 773 * Performance measuring work-thread 774 *============================================================================== 775 */ 776 777 static void perf_dma_copy_callback(void *data) 778 { 779 struct perf_thread *pthr = data; 780 781 atomic_dec(&pthr->dma_sync); 782 wake_up(&pthr->dma_wait); 783 } 784 785 static int perf_copy_chunk(struct perf_thread *pthr, 786 void __iomem *dst, void *src, size_t len) 787 { 788 struct dma_async_tx_descriptor *tx; 789 struct dmaengine_unmap_data *unmap; 790 struct device *dma_dev; 791 int try = 0, ret = 0; 792 struct perf_peer *peer = pthr->perf->test_peer; 793 void __iomem *vbase; 794 void __iomem *dst_vaddr; 795 dma_addr_t dst_dma_addr; 796 797 if (!use_dma) { 798 memcpy_toio(dst, src, len); 799 goto ret_check_tsync; 800 } 801 802 dma_dev = pthr->dma_chan->device->dev; 803 804 if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src), 805 offset_in_page(dst), len)) 806 return -EIO; 807 808 vbase = peer->outbuf; 809 dst_vaddr = dst; 810 dst_dma_addr = peer->dma_dst_addr + (dst_vaddr - vbase); 811 812 unmap = dmaengine_get_unmap_data(dma_dev, 1, GFP_NOWAIT); 813 if (!unmap) 814 return -ENOMEM; 815 816 unmap->len = len; 817 unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src), 818 offset_in_page(src), len, DMA_TO_DEVICE); 819 if (dma_mapping_error(dma_dev, unmap->addr[0])) { 820 ret = -EIO; 821 goto err_free_resource; 822 } 823 unmap->to_cnt = 1; 824 825 do { 826 tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, dst_dma_addr, 827 unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 828 if (!tx) 829 msleep(DMA_MDELAY); 830 } while (!tx && (try++ < DMA_TRIES)); 831 832 if (!tx) { 833 ret = -EIO; 834 goto err_free_resource; 835 } 836 837 tx->callback = perf_dma_copy_callback; 838 tx->callback_param = pthr; 839 dma_set_unmap(tx, unmap); 840 841 ret = dma_submit_error(dmaengine_submit(tx)); 842 if (ret) { 843 dmaengine_unmap_put(unmap); 844 goto err_free_resource; 845 } 846 847 dmaengine_unmap_put(unmap); 848 849 atomic_inc(&pthr->dma_sync); 850 dma_async_issue_pending(pthr->dma_chan); 851 852 ret_check_tsync: 853 return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR; 854 855 err_free_resource: 856 dmaengine_unmap_put(unmap); 857 858 return ret; 859 } 860 861 static bool perf_dma_filter(struct dma_chan *chan, void *data) 862 { 863 struct perf_ctx *perf = data; 864 int node; 865 866 node = dev_to_node(&perf->ntb->dev); 867 868 return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev); 869 } 870 871 static int perf_init_test(struct perf_thread *pthr) 872 { 873 struct perf_ctx *perf = pthr->perf; 874 dma_cap_mask_t dma_mask; 875 struct perf_peer *peer = pthr->perf->test_peer; 876 877 pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL, 878 dev_to_node(&perf->ntb->dev)); 879 if (!pthr->src) 880 return -ENOMEM; 881 882 get_random_bytes(pthr->src, perf->test_peer->outbuf_size); 883 884 if (!use_dma) 885 return 0; 886 887 dma_cap_zero(dma_mask); 888 dma_cap_set(DMA_MEMCPY, dma_mask); 889 pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf); 890 if (!pthr->dma_chan) { 891 dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n", 892 pthr->tidx); 893 goto err_free; 894 } 895 peer->dma_dst_addr = 896 dma_map_resource(pthr->dma_chan->device->dev, 897 peer->out_phys_addr, peer->outbuf_size, 898 DMA_FROM_DEVICE, 0); 899 if (dma_mapping_error(pthr->dma_chan->device->dev, 900 peer->dma_dst_addr)) { 901 dev_err(pthr->dma_chan->device->dev, "%d: Failed to map DMA addr\n", 902 pthr->tidx); 903 peer->dma_dst_addr = 0; 904 dma_release_channel(pthr->dma_chan); 905 goto err_free; 906 } 907 dev_dbg(pthr->dma_chan->device->dev, "%d: Map MMIO %pa to DMA addr %pad\n", 908 pthr->tidx, 909 &peer->out_phys_addr, 910 &peer->dma_dst_addr); 911 912 atomic_set(&pthr->dma_sync, 0); 913 return 0; 914 915 err_free: 916 atomic_dec(&perf->tsync); 917 wake_up(&perf->twait); 918 kfree(pthr->src); 919 return -ENODEV; 920 } 921 922 static int perf_run_test(struct perf_thread *pthr) 923 { 924 struct perf_peer *peer = pthr->perf->test_peer; 925 struct perf_ctx *perf = pthr->perf; 926 void __iomem *flt_dst, *bnd_dst; 927 u64 total_size, chunk_size; 928 void *flt_src; 929 int ret = 0; 930 931 total_size = 1ULL << total_order; 932 chunk_size = 1ULL << chunk_order; 933 chunk_size = min_t(u64, peer->outbuf_size, chunk_size); 934 935 flt_src = pthr->src; 936 bnd_dst = peer->outbuf + peer->outbuf_size; 937 flt_dst = peer->outbuf; 938 939 pthr->duration = ktime_get(); 940 941 /* Copied field is cleared on test launch stage */ 942 while (pthr->copied < total_size) { 943 ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size); 944 if (ret) { 945 dev_err(&perf->ntb->dev, "%d: Got error %d on test\n", 946 pthr->tidx, ret); 947 return ret; 948 } 949 950 pthr->copied += chunk_size; 951 952 flt_dst += chunk_size; 953 flt_src += chunk_size; 954 if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) { 955 flt_dst = peer->outbuf; 956 flt_src = pthr->src; 957 } 958 959 /* Give up CPU to give a chance for other threads to use it */ 960 schedule(); 961 } 962 963 return 0; 964 } 965 966 static int perf_sync_test(struct perf_thread *pthr) 967 { 968 struct perf_ctx *perf = pthr->perf; 969 970 if (!use_dma) 971 goto no_dma_ret; 972 973 wait_event(pthr->dma_wait, 974 (atomic_read(&pthr->dma_sync) == 0 || 975 atomic_read(&perf->tsync) < 0)); 976 977 if (atomic_read(&perf->tsync) < 0) 978 return -EINTR; 979 980 no_dma_ret: 981 pthr->duration = ktime_sub(ktime_get(), pthr->duration); 982 983 dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n", 984 pthr->tidx, pthr->copied); 985 986 dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n", 987 pthr->tidx, ktime_to_us(pthr->duration)); 988 989 dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx, 990 div64_u64(pthr->copied, ktime_to_us(pthr->duration))); 991 992 return 0; 993 } 994 995 static void perf_clear_test(struct perf_thread *pthr) 996 { 997 struct perf_ctx *perf = pthr->perf; 998 999 if (!use_dma) 1000 goto no_dma_notify; 1001 1002 /* 1003 * If test finished without errors, termination isn't needed. 1004 * We call it anyway just to be sure of the transfers completion. 1005 */ 1006 (void)dmaengine_terminate_sync(pthr->dma_chan); 1007 if (pthr->perf->test_peer->dma_dst_addr) 1008 dma_unmap_resource(pthr->dma_chan->device->dev, 1009 pthr->perf->test_peer->dma_dst_addr, 1010 pthr->perf->test_peer->outbuf_size, 1011 DMA_FROM_DEVICE, 0); 1012 1013 dma_release_channel(pthr->dma_chan); 1014 1015 no_dma_notify: 1016 atomic_dec(&perf->tsync); 1017 wake_up(&perf->twait); 1018 kfree(pthr->src); 1019 } 1020 1021 static void perf_thread_work(struct work_struct *work) 1022 { 1023 struct perf_thread *pthr = to_thread_work(work); 1024 int ret; 1025 1026 /* 1027 * Perform stages in compliance with use_dma flag value. 1028 * Test status is changed only if error happened, otherwise 1029 * status -ENODATA is kept while test is on-fly. Results 1030 * synchronization is performed only if test fininshed 1031 * without an error or interruption. 1032 */ 1033 ret = perf_init_test(pthr); 1034 if (ret) { 1035 pthr->status = ret; 1036 return; 1037 } 1038 1039 ret = perf_run_test(pthr); 1040 if (ret) { 1041 pthr->status = ret; 1042 goto err_clear_test; 1043 } 1044 1045 pthr->status = perf_sync_test(pthr); 1046 1047 err_clear_test: 1048 perf_clear_test(pthr); 1049 } 1050 1051 static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt) 1052 { 1053 if (tcnt == 0 || tcnt > MAX_THREADS_CNT) 1054 return -EINVAL; 1055 1056 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1057 return -EBUSY; 1058 1059 perf->tcnt = tcnt; 1060 1061 clear_bit_unlock(0, &perf->busy_flag); 1062 1063 return 0; 1064 } 1065 1066 static void perf_terminate_test(struct perf_ctx *perf) 1067 { 1068 int tidx; 1069 1070 atomic_set(&perf->tsync, -1); 1071 wake_up(&perf->twait); 1072 1073 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1074 wake_up(&perf->threads[tidx].dma_wait); 1075 cancel_work_sync(&perf->threads[tidx].work); 1076 } 1077 } 1078 1079 static int perf_submit_test(struct perf_peer *peer) 1080 { 1081 struct perf_ctx *perf = peer->perf; 1082 struct perf_thread *pthr; 1083 int tidx, ret; 1084 1085 ret = wait_for_completion_interruptible(&peer->init_comp); 1086 if (ret < 0) 1087 return ret; 1088 1089 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1090 return -EBUSY; 1091 1092 perf->test_peer = peer; 1093 atomic_set(&perf->tsync, perf->tcnt); 1094 1095 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1096 pthr = &perf->threads[tidx]; 1097 1098 pthr->status = -ENODATA; 1099 pthr->copied = 0; 1100 pthr->duration = ktime_set(0, 0); 1101 if (tidx < perf->tcnt) 1102 (void)queue_work(perf_wq, &pthr->work); 1103 } 1104 1105 ret = wait_event_interruptible(perf->twait, 1106 atomic_read(&perf->tsync) <= 0); 1107 if (ret == -ERESTARTSYS) { 1108 perf_terminate_test(perf); 1109 ret = -EINTR; 1110 } 1111 1112 clear_bit_unlock(0, &perf->busy_flag); 1113 1114 return ret; 1115 } 1116 1117 static int perf_read_stats(struct perf_ctx *perf, char *buf, 1118 size_t size, ssize_t *pos) 1119 { 1120 struct perf_thread *pthr; 1121 int tidx; 1122 1123 if (test_and_set_bit_lock(0, &perf->busy_flag)) 1124 return -EBUSY; 1125 1126 (*pos) += scnprintf(buf + *pos, size - *pos, 1127 " Peer %d test statistics:\n", perf->test_peer->pidx); 1128 1129 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1130 pthr = &perf->threads[tidx]; 1131 1132 if (pthr->status == -ENODATA) 1133 continue; 1134 1135 if (pthr->status) { 1136 (*pos) += scnprintf(buf + *pos, size - *pos, 1137 "%d: error status %d\n", tidx, pthr->status); 1138 continue; 1139 } 1140 1141 (*pos) += scnprintf(buf + *pos, size - *pos, 1142 "%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n", 1143 tidx, pthr->copied, ktime_to_us(pthr->duration), 1144 div64_u64(pthr->copied, ktime_to_us(pthr->duration))); 1145 } 1146 1147 clear_bit_unlock(0, &perf->busy_flag); 1148 1149 return 0; 1150 } 1151 1152 static void perf_init_threads(struct perf_ctx *perf) 1153 { 1154 struct perf_thread *pthr; 1155 int tidx; 1156 1157 perf->tcnt = DEF_THREADS_CNT; 1158 perf->test_peer = &perf->peers[0]; 1159 init_waitqueue_head(&perf->twait); 1160 1161 for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) { 1162 pthr = &perf->threads[tidx]; 1163 1164 pthr->perf = perf; 1165 pthr->tidx = tidx; 1166 pthr->status = -ENODATA; 1167 init_waitqueue_head(&pthr->dma_wait); 1168 INIT_WORK(&pthr->work, perf_thread_work); 1169 } 1170 } 1171 1172 static void perf_clear_threads(struct perf_ctx *perf) 1173 { 1174 perf_terminate_test(perf); 1175 } 1176 1177 /*============================================================================== 1178 * DebugFS nodes 1179 *============================================================================== 1180 */ 1181 1182 static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf, 1183 size_t size, loff_t *offp) 1184 { 1185 struct perf_ctx *perf = filep->private_data; 1186 struct perf_peer *peer; 1187 size_t buf_size; 1188 ssize_t pos = 0; 1189 int ret, pidx; 1190 char *buf; 1191 1192 buf_size = min_t(size_t, size, 0x1000U); 1193 1194 buf = kmalloc(buf_size, GFP_KERNEL); 1195 if (!buf) 1196 return -ENOMEM; 1197 1198 pos += scnprintf(buf + pos, buf_size - pos, 1199 " Performance measuring tool info:\n\n"); 1200 1201 pos += scnprintf(buf + pos, buf_size - pos, 1202 "Local port %d, Global index %d\n", ntb_port_number(perf->ntb), 1203 perf->gidx); 1204 pos += scnprintf(buf + pos, buf_size - pos, "Test status: "); 1205 if (test_bit(0, &perf->busy_flag)) { 1206 pos += scnprintf(buf + pos, buf_size - pos, 1207 "on-fly with port %d (%d)\n", 1208 ntb_peer_port_number(perf->ntb, perf->test_peer->pidx), 1209 perf->test_peer->pidx); 1210 } else { 1211 pos += scnprintf(buf + pos, buf_size - pos, "idle\n"); 1212 } 1213 1214 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1215 peer = &perf->peers[pidx]; 1216 1217 pos += scnprintf(buf + pos, buf_size - pos, 1218 "Port %d (%d), Global index %d:\n", 1219 ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx, 1220 peer->gidx); 1221 1222 pos += scnprintf(buf + pos, buf_size - pos, 1223 "\tLink status: %s\n", 1224 test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down"); 1225 1226 pos += scnprintf(buf + pos, buf_size - pos, 1227 "\tOut buffer addr 0x%pK\n", peer->outbuf); 1228 1229 pos += scnprintf(buf + pos, buf_size - pos, 1230 "\tOut buff phys addr %pa[p]\n", &peer->out_phys_addr); 1231 1232 pos += scnprintf(buf + pos, buf_size - pos, 1233 "\tOut buffer size %pa\n", &peer->outbuf_size); 1234 1235 pos += scnprintf(buf + pos, buf_size - pos, 1236 "\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat); 1237 1238 if (!peer->inbuf) { 1239 pos += scnprintf(buf + pos, buf_size - pos, 1240 "\tIn buffer addr: unallocated\n"); 1241 continue; 1242 } 1243 1244 pos += scnprintf(buf + pos, buf_size - pos, 1245 "\tIn buffer addr 0x%pK\n", peer->inbuf); 1246 1247 pos += scnprintf(buf + pos, buf_size - pos, 1248 "\tIn buffer size %pa\n", &peer->inbuf_size); 1249 1250 pos += scnprintf(buf + pos, buf_size - pos, 1251 "\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat); 1252 } 1253 1254 ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); 1255 kfree(buf); 1256 1257 return ret; 1258 } 1259 1260 static const struct file_operations perf_dbgfs_info = { 1261 .open = simple_open, 1262 .read = perf_dbgfs_read_info 1263 }; 1264 1265 static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf, 1266 size_t size, loff_t *offp) 1267 { 1268 struct perf_ctx *perf = filep->private_data; 1269 ssize_t ret, pos = 0; 1270 char *buf; 1271 1272 buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL); 1273 if (!buf) 1274 return -ENOMEM; 1275 1276 ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos); 1277 if (ret) 1278 goto err_free; 1279 1280 ret = simple_read_from_buffer(ubuf, size, offp, buf, pos); 1281 err_free: 1282 kfree(buf); 1283 1284 return ret; 1285 } 1286 1287 static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf, 1288 size_t size, loff_t *offp) 1289 { 1290 struct perf_ctx *perf = filep->private_data; 1291 struct perf_peer *peer; 1292 int pidx, ret; 1293 1294 ret = kstrtoint_from_user(ubuf, size, 0, &pidx); 1295 if (ret) 1296 return ret; 1297 1298 if (pidx < 0 || pidx >= perf->pcnt) 1299 return -EINVAL; 1300 1301 peer = &perf->peers[pidx]; 1302 1303 ret = perf_submit_test(peer); 1304 if (ret) 1305 return ret; 1306 1307 return size; 1308 } 1309 1310 static const struct file_operations perf_dbgfs_run = { 1311 .open = simple_open, 1312 .read = perf_dbgfs_read_run, 1313 .write = perf_dbgfs_write_run 1314 }; 1315 1316 static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf, 1317 size_t size, loff_t *offp) 1318 { 1319 struct perf_ctx *perf = filep->private_data; 1320 char buf[8]; 1321 ssize_t pos; 1322 1323 pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt); 1324 1325 return simple_read_from_buffer(ubuf, size, offp, buf, pos); 1326 } 1327 1328 static ssize_t perf_dbgfs_write_tcnt(struct file *filep, 1329 const char __user *ubuf, 1330 size_t size, loff_t *offp) 1331 { 1332 struct perf_ctx *perf = filep->private_data; 1333 int ret; 1334 u8 val; 1335 1336 ret = kstrtou8_from_user(ubuf, size, 0, &val); 1337 if (ret) 1338 return ret; 1339 1340 ret = perf_set_tcnt(perf, val); 1341 if (ret) 1342 return ret; 1343 1344 return size; 1345 } 1346 1347 static const struct file_operations perf_dbgfs_tcnt = { 1348 .open = simple_open, 1349 .read = perf_dbgfs_read_tcnt, 1350 .write = perf_dbgfs_write_tcnt 1351 }; 1352 1353 static void perf_setup_dbgfs(struct perf_ctx *perf) 1354 { 1355 struct pci_dev *pdev = perf->ntb->pdev; 1356 1357 perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir); 1358 if (!perf->dbgfs_dir) { 1359 dev_warn(&perf->ntb->dev, "DebugFS unsupported\n"); 1360 return; 1361 } 1362 1363 debugfs_create_file("info", 0600, perf->dbgfs_dir, perf, 1364 &perf_dbgfs_info); 1365 1366 debugfs_create_file("run", 0600, perf->dbgfs_dir, perf, 1367 &perf_dbgfs_run); 1368 1369 debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf, 1370 &perf_dbgfs_tcnt); 1371 1372 /* They are made read-only for test exec safety and integrity */ 1373 debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order); 1374 1375 debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order); 1376 1377 debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma); 1378 } 1379 1380 static void perf_clear_dbgfs(struct perf_ctx *perf) 1381 { 1382 debugfs_remove_recursive(perf->dbgfs_dir); 1383 } 1384 1385 /*============================================================================== 1386 * Basic driver initialization 1387 *============================================================================== 1388 */ 1389 1390 static struct perf_ctx *perf_create_data(struct ntb_dev *ntb) 1391 { 1392 struct perf_ctx *perf; 1393 1394 perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL); 1395 if (!perf) 1396 return ERR_PTR(-ENOMEM); 1397 1398 perf->pcnt = ntb_peer_port_count(ntb); 1399 perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers), 1400 GFP_KERNEL); 1401 if (!perf->peers) 1402 return ERR_PTR(-ENOMEM); 1403 1404 perf->ntb = ntb; 1405 1406 return perf; 1407 } 1408 1409 static int perf_setup_peer_mw(struct perf_peer *peer) 1410 { 1411 struct perf_ctx *perf = peer->perf; 1412 phys_addr_t phys_addr; 1413 int ret; 1414 1415 /* Get outbound MW parameters and map it */ 1416 ret = ntb_peer_mw_get_addr(perf->ntb, perf->gidx, &phys_addr, 1417 &peer->outbuf_size); 1418 if (ret) 1419 return ret; 1420 1421 peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr, 1422 peer->outbuf_size); 1423 if (!peer->outbuf) 1424 return -ENOMEM; 1425 1426 peer->out_phys_addr = phys_addr; 1427 1428 if (max_mw_size && peer->outbuf_size > max_mw_size) { 1429 peer->outbuf_size = max_mw_size; 1430 dev_warn(&peer->perf->ntb->dev, 1431 "Peer %d outbuf reduced to %pa\n", peer->pidx, 1432 &peer->outbuf_size); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int perf_init_peers(struct perf_ctx *perf) 1439 { 1440 struct perf_peer *peer; 1441 int pidx, lport, ret; 1442 1443 lport = ntb_port_number(perf->ntb); 1444 perf->gidx = -1; 1445 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1446 peer = &perf->peers[pidx]; 1447 1448 peer->perf = perf; 1449 peer->pidx = pidx; 1450 if (lport < ntb_peer_port_number(perf->ntb, pidx)) { 1451 if (perf->gidx == -1) 1452 perf->gidx = pidx; 1453 peer->gidx = pidx + 1; 1454 } else { 1455 peer->gidx = pidx; 1456 } 1457 INIT_WORK(&peer->service, perf_service_work); 1458 init_completion(&peer->init_comp); 1459 } 1460 if (perf->gidx == -1) 1461 perf->gidx = pidx; 1462 1463 /* 1464 * Hardware with only two ports may not have unique port 1465 * numbers. In this case, the gidxs should all be zero. 1466 */ 1467 if (perf->pcnt == 1 && ntb_port_number(perf->ntb) == 0 && 1468 ntb_peer_port_number(perf->ntb, 0) == 0) { 1469 perf->gidx = 0; 1470 perf->peers[0].gidx = 0; 1471 } 1472 1473 for (pidx = 0; pidx < perf->pcnt; pidx++) { 1474 ret = perf_setup_peer_mw(&perf->peers[pidx]); 1475 if (ret) 1476 return ret; 1477 } 1478 1479 dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx); 1480 1481 return 0; 1482 } 1483 1484 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) 1485 { 1486 struct perf_ctx *perf; 1487 int ret; 1488 1489 perf = perf_create_data(ntb); 1490 if (IS_ERR(perf)) 1491 return PTR_ERR(perf); 1492 1493 ret = perf_init_peers(perf); 1494 if (ret) 1495 return ret; 1496 1497 perf_init_threads(perf); 1498 1499 ret = perf_init_service(perf); 1500 if (ret) 1501 return ret; 1502 1503 ret = perf_enable_service(perf); 1504 if (ret) 1505 return ret; 1506 1507 perf_setup_dbgfs(perf); 1508 1509 return 0; 1510 } 1511 1512 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb) 1513 { 1514 struct perf_ctx *perf = ntb->ctx; 1515 1516 perf_clear_dbgfs(perf); 1517 1518 perf_disable_service(perf); 1519 1520 perf_clear_threads(perf); 1521 } 1522 1523 static struct ntb_client perf_client = { 1524 .ops = { 1525 .probe = perf_probe, 1526 .remove = perf_remove 1527 } 1528 }; 1529 1530 static int __init perf_init(void) 1531 { 1532 int ret; 1533 1534 if (chunk_order > MAX_CHUNK_ORDER) { 1535 chunk_order = MAX_CHUNK_ORDER; 1536 pr_info("Chunk order reduced to %hhu\n", chunk_order); 1537 } 1538 1539 if (total_order < chunk_order) { 1540 total_order = chunk_order; 1541 pr_info("Total data order reduced to %hhu\n", total_order); 1542 } 1543 1544 perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0); 1545 if (!perf_wq) 1546 return -ENOMEM; 1547 1548 if (debugfs_initialized()) 1549 perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL); 1550 1551 ret = ntb_register_client(&perf_client); 1552 if (ret) { 1553 debugfs_remove_recursive(perf_dbgfs_topdir); 1554 destroy_workqueue(perf_wq); 1555 } 1556 1557 return ret; 1558 } 1559 module_init(perf_init); 1560 1561 static void __exit perf_exit(void) 1562 { 1563 ntb_unregister_client(&perf_client); 1564 debugfs_remove_recursive(perf_dbgfs_topdir); 1565 destroy_workqueue(perf_wq); 1566 } 1567 module_exit(perf_exit); 1568