xref: /openbmc/linux/drivers/ntb/test/ntb_perf.c (revision 18afb028)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
8  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2015 Intel Corporation. All rights reserved.
17  *   Copyright(c) 2017 T-Platforms. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Perf Linux driver
46  */
47 
48 /*
49  * How to use this tool, by example.
50  *
51  * Assuming $DBG_DIR is something like:
52  * '/sys/kernel/debug/ntb_perf/0000:00:03.0'
53  * Suppose aside from local device there is at least one remote device
54  * connected to NTB with index 0.
55  *-----------------------------------------------------------------------------
56  * Eg: install driver with specified chunk/total orders and dma-enabled flag
57  *
58  * root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma
59  *-----------------------------------------------------------------------------
60  * Eg: check NTB ports (index) and MW mapping information
61  *
62  * root@self# cat $DBG_DIR/info
63  *-----------------------------------------------------------------------------
64  * Eg: start performance test with peer (index 0) and get the test metrics
65  *
66  * root@self# echo 0 > $DBG_DIR/run
67  * root@self# cat $DBG_DIR/run
68  */
69 
70 #include <linux/init.h>
71 #include <linux/kernel.h>
72 #include <linux/module.h>
73 #include <linux/sched.h>
74 #include <linux/wait.h>
75 #include <linux/dma-mapping.h>
76 #include <linux/dmaengine.h>
77 #include <linux/pci.h>
78 #include <linux/ktime.h>
79 #include <linux/slab.h>
80 #include <linux/delay.h>
81 #include <linux/sizes.h>
82 #include <linux/workqueue.h>
83 #include <linux/debugfs.h>
84 #include <linux/random.h>
85 #include <linux/ntb.h>
86 
87 #define DRIVER_NAME		"ntb_perf"
88 #define DRIVER_VERSION		"2.0"
89 
90 MODULE_LICENSE("Dual BSD/GPL");
91 MODULE_VERSION(DRIVER_VERSION);
92 MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>");
93 MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool");
94 
95 #define MAX_THREADS_CNT		32
96 #define DEF_THREADS_CNT		1
97 #define MAX_CHUNK_SIZE		SZ_1M
98 #define MAX_CHUNK_ORDER		20 /* no larger than 1M */
99 
100 #define DMA_TRIES		100
101 #define DMA_MDELAY		10
102 
103 #define MSG_TRIES		1000
104 #define MSG_UDELAY_LOW		1000000
105 #define MSG_UDELAY_HIGH		2000000
106 
107 #define PERF_BUF_LEN 1024
108 
109 static unsigned long max_mw_size;
110 module_param(max_mw_size, ulong, 0644);
111 MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size");
112 
113 static unsigned char chunk_order = 19; /* 512K */
114 module_param(chunk_order, byte, 0644);
115 MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer");
116 
117 static unsigned char total_order = 30; /* 1G */
118 module_param(total_order, byte, 0644);
119 MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer");
120 
121 static bool use_dma; /* default to 0 */
122 module_param(use_dma, bool, 0644);
123 MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance");
124 
125 /*==============================================================================
126  *                         Perf driver data definition
127  *==============================================================================
128  */
129 
130 enum perf_cmd {
131 	PERF_CMD_INVAL = -1,/* invalid spad command */
132 	PERF_CMD_SSIZE = 0, /* send out buffer size */
133 	PERF_CMD_RSIZE = 1, /* recv in  buffer size */
134 	PERF_CMD_SXLAT = 2, /* send in  buffer xlat */
135 	PERF_CMD_RXLAT = 3, /* recv out buffer xlat */
136 	PERF_CMD_CLEAR = 4, /* clear allocated memory */
137 	PERF_STS_DONE  = 5, /* init is done */
138 	PERF_STS_LNKUP = 6, /* link up state flag */
139 };
140 
141 struct perf_ctx;
142 
143 struct perf_peer {
144 	struct perf_ctx	*perf;
145 	int pidx;
146 	int gidx;
147 
148 	/* Outbound MW params */
149 	u64 outbuf_xlat;
150 	resource_size_t outbuf_size;
151 	void __iomem *outbuf;
152 	phys_addr_t out_phys_addr;
153 	dma_addr_t dma_dst_addr;
154 	/* Inbound MW params */
155 	dma_addr_t inbuf_xlat;
156 	resource_size_t inbuf_size;
157 	void		*inbuf;
158 
159 	/* NTB connection setup service */
160 	struct work_struct	service;
161 	unsigned long		sts;
162 
163 	struct completion init_comp;
164 };
165 #define to_peer_service(__work) \
166 	container_of(__work, struct perf_peer, service)
167 
168 struct perf_thread {
169 	struct perf_ctx *perf;
170 	int tidx;
171 
172 	/* DMA-based test sync parameters */
173 	atomic_t dma_sync;
174 	wait_queue_head_t dma_wait;
175 	struct dma_chan *dma_chan;
176 
177 	/* Data source and measured statistics */
178 	void *src;
179 	u64 copied;
180 	ktime_t duration;
181 	int status;
182 	struct work_struct work;
183 };
184 #define to_thread_work(__work) \
185 	container_of(__work, struct perf_thread, work)
186 
187 struct perf_ctx {
188 	struct ntb_dev *ntb;
189 
190 	/* Global device index and peers descriptors */
191 	int gidx;
192 	int pcnt;
193 	struct perf_peer *peers;
194 
195 	/* Performance measuring work-threads interface */
196 	unsigned long busy_flag;
197 	wait_queue_head_t twait;
198 	atomic_t tsync;
199 	u8 tcnt;
200 	struct perf_peer *test_peer;
201 	struct perf_thread threads[MAX_THREADS_CNT];
202 
203 	/* Scratchpad/Message IO operations */
204 	int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data);
205 	int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd,
206 			u64 *data);
207 
208 	struct dentry *dbgfs_dir;
209 };
210 
211 /*
212  * Scratchpads-base commands interface
213  */
214 #define PERF_SPAD_CNT(_pcnt) \
215 	(3*((_pcnt) + 1))
216 #define PERF_SPAD_CMD(_gidx) \
217 	(3*(_gidx))
218 #define PERF_SPAD_LDATA(_gidx) \
219 	(3*(_gidx) + 1)
220 #define PERF_SPAD_HDATA(_gidx) \
221 	(3*(_gidx) + 2)
222 #define PERF_SPAD_NOTIFY(_gidx) \
223 	(BIT_ULL(_gidx))
224 
225 /*
226  * Messages-base commands interface
227  */
228 #define PERF_MSG_CNT		3
229 #define PERF_MSG_CMD		0
230 #define PERF_MSG_LDATA		1
231 #define PERF_MSG_HDATA		2
232 
233 /*==============================================================================
234  *                           Static data declarations
235  *==============================================================================
236  */
237 
238 static struct dentry *perf_dbgfs_topdir;
239 
240 static struct workqueue_struct *perf_wq __read_mostly;
241 
242 /*==============================================================================
243  *                  NTB cross-link commands execution service
244  *==============================================================================
245  */
246 
247 static void perf_terminate_test(struct perf_ctx *perf);
248 
249 static inline bool perf_link_is_up(struct perf_peer *peer)
250 {
251 	u64 link;
252 
253 	link = ntb_link_is_up(peer->perf->ntb, NULL, NULL);
254 	return !!(link & BIT_ULL_MASK(peer->pidx));
255 }
256 
257 static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
258 			      u64 data)
259 {
260 	struct perf_ctx *perf = peer->perf;
261 	int try;
262 	u32 sts;
263 
264 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
265 
266 	/*
267 	 * Perform predefined number of attempts before give up.
268 	 * We are sending the data to the port specific scratchpad, so
269 	 * to prevent a multi-port access race-condition. Additionally
270 	 * there is no need in local locking since only thread-safe
271 	 * service work is using this method.
272 	 */
273 	for (try = 0; try < MSG_TRIES; try++) {
274 		if (!perf_link_is_up(peer))
275 			return -ENOLINK;
276 
277 		sts = ntb_peer_spad_read(perf->ntb, peer->pidx,
278 					 PERF_SPAD_CMD(perf->gidx));
279 		if (sts != PERF_CMD_INVAL) {
280 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
281 			continue;
282 		}
283 
284 		ntb_peer_spad_write(perf->ntb, peer->pidx,
285 				    PERF_SPAD_LDATA(perf->gidx),
286 				    lower_32_bits(data));
287 		ntb_peer_spad_write(perf->ntb, peer->pidx,
288 				    PERF_SPAD_HDATA(perf->gidx),
289 				    upper_32_bits(data));
290 		ntb_peer_spad_write(perf->ntb, peer->pidx,
291 				    PERF_SPAD_CMD(perf->gidx),
292 				    cmd);
293 		ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx));
294 
295 		dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n",
296 			PERF_SPAD_NOTIFY(peer->gidx));
297 
298 		break;
299 	}
300 
301 	return try < MSG_TRIES ? 0 : -EAGAIN;
302 }
303 
304 static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx,
305 			      enum perf_cmd *cmd, u64 *data)
306 {
307 	struct perf_peer *peer;
308 	u32 val;
309 
310 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
311 
312 	/*
313 	 * We start scanning all over, since cleared DB may have been set
314 	 * by any peer. Yes, it makes peer with smaller index being
315 	 * serviced with greater priority, but it's convenient for spad
316 	 * and message code unification and simplicity.
317 	 */
318 	for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) {
319 		peer = &perf->peers[*pidx];
320 
321 		if (!perf_link_is_up(peer))
322 			continue;
323 
324 		val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx));
325 		if (val == PERF_CMD_INVAL)
326 			continue;
327 
328 		*cmd = val;
329 
330 		val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx));
331 		*data = val;
332 
333 		val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx));
334 		*data |= (u64)val << 32;
335 
336 		/* Next command can be retrieved from now */
337 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx),
338 			       PERF_CMD_INVAL);
339 
340 		dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
341 
342 		return 0;
343 	}
344 
345 	return -ENODATA;
346 }
347 
348 static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
349 			     u64 data)
350 {
351 	struct perf_ctx *perf = peer->perf;
352 	int try, ret;
353 	u64 outbits;
354 
355 	dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
356 
357 	/*
358 	 * Perform predefined number of attempts before give up. Message
359 	 * registers are free of race-condition problem when accessed
360 	 * from different ports, so we don't need splitting registers
361 	 * by global device index. We also won't have local locking,
362 	 * since the method is used from service work only.
363 	 */
364 	outbits = ntb_msg_outbits(perf->ntb);
365 	for (try = 0; try < MSG_TRIES; try++) {
366 		if (!perf_link_is_up(peer))
367 			return -ENOLINK;
368 
369 		ret = ntb_msg_clear_sts(perf->ntb, outbits);
370 		if (ret)
371 			return ret;
372 
373 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA,
374 				   lower_32_bits(data));
375 
376 		if (ntb_msg_read_sts(perf->ntb) & outbits) {
377 			usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
378 			continue;
379 		}
380 
381 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA,
382 				   upper_32_bits(data));
383 
384 		/* This call shall trigger peer message event */
385 		ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd);
386 
387 		break;
388 	}
389 
390 	return try < MSG_TRIES ? 0 : -EAGAIN;
391 }
392 
393 static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx,
394 			     enum perf_cmd *cmd, u64 *data)
395 {
396 	u64 inbits;
397 	u32 val;
398 
399 	inbits = ntb_msg_inbits(perf->ntb);
400 
401 	if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3)
402 		return -ENODATA;
403 
404 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD);
405 	*cmd = val;
406 
407 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA);
408 	*data = val;
409 
410 	val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA);
411 	*data |= (u64)val << 32;
412 
413 	/* Next command can be retrieved from now */
414 	ntb_msg_clear_sts(perf->ntb, inbits);
415 
416 	dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
417 
418 	return 0;
419 }
420 
421 static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data)
422 {
423 	struct perf_ctx *perf = peer->perf;
424 
425 	if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT)
426 		return perf->cmd_send(peer, cmd, data);
427 
428 	dev_err(&perf->ntb->dev, "Send invalid command\n");
429 	return -EINVAL;
430 }
431 
432 static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd)
433 {
434 	switch (cmd) {
435 	case PERF_CMD_SSIZE:
436 	case PERF_CMD_RSIZE:
437 	case PERF_CMD_SXLAT:
438 	case PERF_CMD_RXLAT:
439 	case PERF_CMD_CLEAR:
440 		break;
441 	default:
442 		dev_err(&peer->perf->ntb->dev, "Exec invalid command\n");
443 		return -EINVAL;
444 	}
445 
446 	/* No need of memory barrier, since bit ops have invernal lock */
447 	set_bit(cmd, &peer->sts);
448 
449 	dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd);
450 
451 	(void)queue_work(system_highpri_wq, &peer->service);
452 
453 	return 0;
454 }
455 
456 static int perf_cmd_recv(struct perf_ctx *perf)
457 {
458 	struct perf_peer *peer;
459 	int ret, pidx, cmd;
460 	u64 data;
461 
462 	while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) {
463 		peer = &perf->peers[pidx];
464 
465 		switch (cmd) {
466 		case PERF_CMD_SSIZE:
467 			peer->inbuf_size = data;
468 			return perf_cmd_exec(peer, PERF_CMD_RSIZE);
469 		case PERF_CMD_SXLAT:
470 			peer->outbuf_xlat = data;
471 			return perf_cmd_exec(peer, PERF_CMD_RXLAT);
472 		default:
473 			dev_err(&perf->ntb->dev, "Recv invalid command\n");
474 			return -EINVAL;
475 		}
476 	}
477 
478 	/* Return 0 if no data left to process, otherwise an error */
479 	return ret == -ENODATA ? 0 : ret;
480 }
481 
482 static void perf_link_event(void *ctx)
483 {
484 	struct perf_ctx *perf = ctx;
485 	struct perf_peer *peer;
486 	bool lnk_up;
487 	int pidx;
488 
489 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
490 		peer = &perf->peers[pidx];
491 
492 		lnk_up = perf_link_is_up(peer);
493 
494 		if (lnk_up &&
495 		    !test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) {
496 			perf_cmd_exec(peer, PERF_CMD_SSIZE);
497 		} else if (!lnk_up &&
498 			   test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) {
499 			perf_cmd_exec(peer, PERF_CMD_CLEAR);
500 		}
501 	}
502 }
503 
504 static void perf_db_event(void *ctx, int vec)
505 {
506 	struct perf_ctx *perf = ctx;
507 
508 	dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec,
509 		ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb));
510 
511 	/* Just receive all available commands */
512 	(void)perf_cmd_recv(perf);
513 }
514 
515 static void perf_msg_event(void *ctx)
516 {
517 	struct perf_ctx *perf = ctx;
518 
519 	dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n",
520 		ntb_msg_read_sts(perf->ntb));
521 
522 	/* Messages are only sent one-by-one */
523 	(void)perf_cmd_recv(perf);
524 }
525 
526 static const struct ntb_ctx_ops perf_ops = {
527 	.link_event = perf_link_event,
528 	.db_event = perf_db_event,
529 	.msg_event = perf_msg_event
530 };
531 
532 static void perf_free_outbuf(struct perf_peer *peer)
533 {
534 	(void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
535 }
536 
537 static int perf_setup_outbuf(struct perf_peer *peer)
538 {
539 	struct perf_ctx *perf = peer->perf;
540 	int ret;
541 
542 	/* Outbuf size can be unaligned due to custom max_mw_size */
543 	ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
544 				    peer->outbuf_xlat, peer->outbuf_size);
545 	if (ret) {
546 		dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n");
547 		return ret;
548 	}
549 
550 	/* Initialization is finally done */
551 	set_bit(PERF_STS_DONE, &peer->sts);
552 	complete_all(&peer->init_comp);
553 
554 	return 0;
555 }
556 
557 static void perf_free_inbuf(struct perf_peer *peer)
558 {
559 	if (!peer->inbuf)
560 		return;
561 
562 	(void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
563 	dma_free_coherent(&peer->perf->ntb->pdev->dev, peer->inbuf_size,
564 			  peer->inbuf, peer->inbuf_xlat);
565 	peer->inbuf = NULL;
566 }
567 
568 static int perf_setup_inbuf(struct perf_peer *peer)
569 {
570 	resource_size_t xlat_align, size_align, size_max;
571 	struct perf_ctx *perf = peer->perf;
572 	int ret;
573 
574 	/* Get inbound MW parameters */
575 	ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx,
576 			       &xlat_align, &size_align, &size_max);
577 	if (ret) {
578 		dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n");
579 		return ret;
580 	}
581 
582 	if (peer->inbuf_size > size_max) {
583 		dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n",
584 			&peer->inbuf_size, &size_max);
585 		return -EINVAL;
586 	}
587 
588 	peer->inbuf_size = round_up(peer->inbuf_size, size_align);
589 
590 	perf_free_inbuf(peer);
591 
592 	peer->inbuf = dma_alloc_coherent(&perf->ntb->pdev->dev,
593 					 peer->inbuf_size, &peer->inbuf_xlat,
594 					 GFP_KERNEL);
595 	if (!peer->inbuf) {
596 		dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n",
597 			&peer->inbuf_size);
598 		return -ENOMEM;
599 	}
600 	if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) {
601 		ret = -EINVAL;
602 		dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n");
603 		goto err_free_inbuf;
604 	}
605 
606 	ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
607 			       peer->inbuf_xlat, peer->inbuf_size);
608 	if (ret) {
609 		dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n");
610 		goto err_free_inbuf;
611 	}
612 
613 	/*
614 	 * We submit inbuf xlat transmission cmd for execution here to follow
615 	 * the code architecture, even though this method is called from service
616 	 * work itself so the command will be executed right after it returns.
617 	 */
618 	(void)perf_cmd_exec(peer, PERF_CMD_SXLAT);
619 
620 	return 0;
621 
622 err_free_inbuf:
623 	perf_free_inbuf(peer);
624 
625 	return ret;
626 }
627 
628 static void perf_service_work(struct work_struct *work)
629 {
630 	struct perf_peer *peer = to_peer_service(work);
631 
632 	if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts))
633 		perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size);
634 
635 	if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts))
636 		perf_setup_inbuf(peer);
637 
638 	if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts))
639 		perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat);
640 
641 	if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts))
642 		perf_setup_outbuf(peer);
643 
644 	if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) {
645 		init_completion(&peer->init_comp);
646 		clear_bit(PERF_STS_DONE, &peer->sts);
647 		if (test_bit(0, &peer->perf->busy_flag) &&
648 		    peer == peer->perf->test_peer) {
649 			dev_warn(&peer->perf->ntb->dev,
650 				"Freeing while test on-fly\n");
651 			perf_terminate_test(peer->perf);
652 		}
653 		perf_free_outbuf(peer);
654 		perf_free_inbuf(peer);
655 	}
656 }
657 
658 static int perf_init_service(struct perf_ctx *perf)
659 {
660 	u64 mask;
661 
662 	if (ntb_peer_mw_count(perf->ntb) < perf->pcnt) {
663 		dev_err(&perf->ntb->dev, "Not enough memory windows\n");
664 		return -EINVAL;
665 	}
666 
667 	if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) {
668 		perf->cmd_send = perf_msg_cmd_send;
669 		perf->cmd_recv = perf_msg_cmd_recv;
670 
671 		dev_dbg(&perf->ntb->dev, "Message service initialized\n");
672 
673 		return 0;
674 	}
675 
676 	dev_dbg(&perf->ntb->dev, "Message service unsupported\n");
677 
678 	mask = GENMASK_ULL(perf->pcnt, 0);
679 	if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) &&
680 	    (ntb_db_valid_mask(perf->ntb) & mask) == mask) {
681 		perf->cmd_send = perf_spad_cmd_send;
682 		perf->cmd_recv = perf_spad_cmd_recv;
683 
684 		dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n");
685 
686 		return 0;
687 	}
688 
689 	dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n");
690 
691 	dev_err(&perf->ntb->dev, "Command services unsupported\n");
692 
693 	return -EINVAL;
694 }
695 
696 static int perf_enable_service(struct perf_ctx *perf)
697 {
698 	u64 mask, incmd_bit;
699 	int ret, sidx, scnt;
700 
701 	mask = ntb_db_valid_mask(perf->ntb);
702 	(void)ntb_db_set_mask(perf->ntb, mask);
703 
704 	ret = ntb_set_ctx(perf->ntb, perf, &perf_ops);
705 	if (ret)
706 		return ret;
707 
708 	if (perf->cmd_send == perf_msg_cmd_send) {
709 		u64 inbits, outbits;
710 
711 		inbits = ntb_msg_inbits(perf->ntb);
712 		outbits = ntb_msg_outbits(perf->ntb);
713 		(void)ntb_msg_set_mask(perf->ntb, inbits | outbits);
714 
715 		incmd_bit = BIT_ULL(__ffs64(inbits));
716 		ret = ntb_msg_clear_mask(perf->ntb, incmd_bit);
717 
718 		dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit);
719 	} else {
720 		scnt = ntb_spad_count(perf->ntb);
721 		for (sidx = 0; sidx < scnt; sidx++)
722 			ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL);
723 		incmd_bit = PERF_SPAD_NOTIFY(perf->gidx);
724 		ret = ntb_db_clear_mask(perf->ntb, incmd_bit);
725 
726 		dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit);
727 	}
728 	if (ret) {
729 		ntb_clear_ctx(perf->ntb);
730 		return ret;
731 	}
732 
733 	ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
734 	/* Might be not necessary */
735 	ntb_link_event(perf->ntb);
736 
737 	return 0;
738 }
739 
740 static void perf_disable_service(struct perf_ctx *perf)
741 {
742 	int pidx;
743 
744 	if (perf->cmd_send == perf_msg_cmd_send) {
745 		u64 inbits;
746 
747 		inbits = ntb_msg_inbits(perf->ntb);
748 		(void)ntb_msg_set_mask(perf->ntb, inbits);
749 	} else {
750 		(void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
751 	}
752 
753 	ntb_clear_ctx(perf->ntb);
754 
755 	for (pidx = 0; pidx < perf->pcnt; pidx++)
756 		perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR);
757 
758 	for (pidx = 0; pidx < perf->pcnt; pidx++)
759 		flush_work(&perf->peers[pidx].service);
760 
761 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
762 		struct perf_peer *peer = &perf->peers[pidx];
763 
764 		ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx), 0);
765 	}
766 
767 	ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
768 
769 	ntb_link_disable(perf->ntb);
770 }
771 
772 /*==============================================================================
773  *                      Performance measuring work-thread
774  *==============================================================================
775  */
776 
777 static void perf_dma_copy_callback(void *data)
778 {
779 	struct perf_thread *pthr = data;
780 
781 	atomic_dec(&pthr->dma_sync);
782 	wake_up(&pthr->dma_wait);
783 }
784 
785 static int perf_copy_chunk(struct perf_thread *pthr,
786 			   void __iomem *dst, void *src, size_t len)
787 {
788 	struct dma_async_tx_descriptor *tx;
789 	struct dmaengine_unmap_data *unmap;
790 	struct device *dma_dev;
791 	int try = 0, ret = 0;
792 	struct perf_peer *peer = pthr->perf->test_peer;
793 	void __iomem *vbase;
794 	void __iomem *dst_vaddr;
795 	dma_addr_t dst_dma_addr;
796 
797 	if (!use_dma) {
798 		memcpy_toio(dst, src, len);
799 		goto ret_check_tsync;
800 	}
801 
802 	dma_dev = pthr->dma_chan->device->dev;
803 
804 	if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src),
805 				 offset_in_page(dst), len))
806 		return -EIO;
807 
808 	vbase = peer->outbuf;
809 	dst_vaddr = dst;
810 	dst_dma_addr = peer->dma_dst_addr + (dst_vaddr - vbase);
811 
812 	unmap = dmaengine_get_unmap_data(dma_dev, 1, GFP_NOWAIT);
813 	if (!unmap)
814 		return -ENOMEM;
815 
816 	unmap->len = len;
817 	unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src),
818 		offset_in_page(src), len, DMA_TO_DEVICE);
819 	if (dma_mapping_error(dma_dev, unmap->addr[0])) {
820 		ret = -EIO;
821 		goto err_free_resource;
822 	}
823 	unmap->to_cnt = 1;
824 
825 	do {
826 		tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, dst_dma_addr,
827 			unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
828 		if (!tx)
829 			msleep(DMA_MDELAY);
830 	} while (!tx && (try++ < DMA_TRIES));
831 
832 	if (!tx) {
833 		ret = -EIO;
834 		goto err_free_resource;
835 	}
836 
837 	tx->callback = perf_dma_copy_callback;
838 	tx->callback_param = pthr;
839 	dma_set_unmap(tx, unmap);
840 
841 	ret = dma_submit_error(dmaengine_submit(tx));
842 	if (ret) {
843 		dmaengine_unmap_put(unmap);
844 		goto err_free_resource;
845 	}
846 
847 	dmaengine_unmap_put(unmap);
848 
849 	atomic_inc(&pthr->dma_sync);
850 	dma_async_issue_pending(pthr->dma_chan);
851 
852 ret_check_tsync:
853 	return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR;
854 
855 err_free_resource:
856 	dmaengine_unmap_put(unmap);
857 
858 	return ret;
859 }
860 
861 static bool perf_dma_filter(struct dma_chan *chan, void *data)
862 {
863 	struct perf_ctx *perf = data;
864 	int node;
865 
866 	node = dev_to_node(&perf->ntb->dev);
867 
868 	return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev);
869 }
870 
871 static int perf_init_test(struct perf_thread *pthr)
872 {
873 	struct perf_ctx *perf = pthr->perf;
874 	dma_cap_mask_t dma_mask;
875 	struct perf_peer *peer = pthr->perf->test_peer;
876 
877 	pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL,
878 				 dev_to_node(&perf->ntb->dev));
879 	if (!pthr->src)
880 		return -ENOMEM;
881 
882 	get_random_bytes(pthr->src, perf->test_peer->outbuf_size);
883 
884 	if (!use_dma)
885 		return 0;
886 
887 	dma_cap_zero(dma_mask);
888 	dma_cap_set(DMA_MEMCPY, dma_mask);
889 	pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf);
890 	if (!pthr->dma_chan) {
891 		dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n",
892 			pthr->tidx);
893 		goto err_free;
894 	}
895 	peer->dma_dst_addr =
896 		dma_map_resource(pthr->dma_chan->device->dev,
897 				 peer->out_phys_addr, peer->outbuf_size,
898 				 DMA_FROM_DEVICE, 0);
899 	if (dma_mapping_error(pthr->dma_chan->device->dev,
900 			      peer->dma_dst_addr)) {
901 		dev_err(pthr->dma_chan->device->dev, "%d: Failed to map DMA addr\n",
902 			pthr->tidx);
903 		peer->dma_dst_addr = 0;
904 		dma_release_channel(pthr->dma_chan);
905 		goto err_free;
906 	}
907 	dev_dbg(pthr->dma_chan->device->dev, "%d: Map MMIO %pa to DMA addr %pad\n",
908 			pthr->tidx,
909 			&peer->out_phys_addr,
910 			&peer->dma_dst_addr);
911 
912 	atomic_set(&pthr->dma_sync, 0);
913 	return 0;
914 
915 err_free:
916 	atomic_dec(&perf->tsync);
917 	wake_up(&perf->twait);
918 	kfree(pthr->src);
919 	return -ENODEV;
920 }
921 
922 static int perf_run_test(struct perf_thread *pthr)
923 {
924 	struct perf_peer *peer = pthr->perf->test_peer;
925 	struct perf_ctx *perf = pthr->perf;
926 	void __iomem *flt_dst, *bnd_dst;
927 	u64 total_size, chunk_size;
928 	void *flt_src;
929 	int ret = 0;
930 
931 	total_size = 1ULL << total_order;
932 	chunk_size = 1ULL << chunk_order;
933 	chunk_size = min_t(u64, peer->outbuf_size, chunk_size);
934 
935 	flt_src = pthr->src;
936 	bnd_dst = peer->outbuf + peer->outbuf_size;
937 	flt_dst = peer->outbuf;
938 
939 	pthr->duration = ktime_get();
940 
941 	/* Copied field is cleared on test launch stage */
942 	while (pthr->copied < total_size) {
943 		ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size);
944 		if (ret) {
945 			dev_err(&perf->ntb->dev, "%d: Got error %d on test\n",
946 				pthr->tidx, ret);
947 			return ret;
948 		}
949 
950 		pthr->copied += chunk_size;
951 
952 		flt_dst += chunk_size;
953 		flt_src += chunk_size;
954 		if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) {
955 			flt_dst = peer->outbuf;
956 			flt_src = pthr->src;
957 		}
958 
959 		/* Give up CPU to give a chance for other threads to use it */
960 		schedule();
961 	}
962 
963 	return 0;
964 }
965 
966 static int perf_sync_test(struct perf_thread *pthr)
967 {
968 	struct perf_ctx *perf = pthr->perf;
969 
970 	if (!use_dma)
971 		goto no_dma_ret;
972 
973 	wait_event(pthr->dma_wait,
974 		   (atomic_read(&pthr->dma_sync) == 0 ||
975 		    atomic_read(&perf->tsync) < 0));
976 
977 	if (atomic_read(&perf->tsync) < 0)
978 		return -EINTR;
979 
980 no_dma_ret:
981 	pthr->duration = ktime_sub(ktime_get(), pthr->duration);
982 
983 	dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n",
984 		pthr->tidx, pthr->copied);
985 
986 	dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n",
987 		pthr->tidx, ktime_to_us(pthr->duration));
988 
989 	dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx,
990 		div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
991 
992 	return 0;
993 }
994 
995 static void perf_clear_test(struct perf_thread *pthr)
996 {
997 	struct perf_ctx *perf = pthr->perf;
998 
999 	if (!use_dma)
1000 		goto no_dma_notify;
1001 
1002 	/*
1003 	 * If test finished without errors, termination isn't needed.
1004 	 * We call it anyway just to be sure of the transfers completion.
1005 	 */
1006 	(void)dmaengine_terminate_sync(pthr->dma_chan);
1007 	if (pthr->perf->test_peer->dma_dst_addr)
1008 		dma_unmap_resource(pthr->dma_chan->device->dev,
1009 				   pthr->perf->test_peer->dma_dst_addr,
1010 				   pthr->perf->test_peer->outbuf_size,
1011 				   DMA_FROM_DEVICE, 0);
1012 
1013 	dma_release_channel(pthr->dma_chan);
1014 
1015 no_dma_notify:
1016 	atomic_dec(&perf->tsync);
1017 	wake_up(&perf->twait);
1018 	kfree(pthr->src);
1019 }
1020 
1021 static void perf_thread_work(struct work_struct *work)
1022 {
1023 	struct perf_thread *pthr = to_thread_work(work);
1024 	int ret;
1025 
1026 	/*
1027 	 * Perform stages in compliance with use_dma flag value.
1028 	 * Test status is changed only if error happened, otherwise
1029 	 * status -ENODATA is kept while test is on-fly. Results
1030 	 * synchronization is performed only if test fininshed
1031 	 * without an error or interruption.
1032 	 */
1033 	ret = perf_init_test(pthr);
1034 	if (ret) {
1035 		pthr->status = ret;
1036 		return;
1037 	}
1038 
1039 	ret = perf_run_test(pthr);
1040 	if (ret) {
1041 		pthr->status = ret;
1042 		goto err_clear_test;
1043 	}
1044 
1045 	pthr->status = perf_sync_test(pthr);
1046 
1047 err_clear_test:
1048 	perf_clear_test(pthr);
1049 }
1050 
1051 static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt)
1052 {
1053 	if (tcnt == 0 || tcnt > MAX_THREADS_CNT)
1054 		return -EINVAL;
1055 
1056 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1057 		return -EBUSY;
1058 
1059 	perf->tcnt = tcnt;
1060 
1061 	clear_bit_unlock(0, &perf->busy_flag);
1062 
1063 	return 0;
1064 }
1065 
1066 static void perf_terminate_test(struct perf_ctx *perf)
1067 {
1068 	int tidx;
1069 
1070 	atomic_set(&perf->tsync, -1);
1071 	wake_up(&perf->twait);
1072 
1073 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1074 		wake_up(&perf->threads[tidx].dma_wait);
1075 		cancel_work_sync(&perf->threads[tidx].work);
1076 	}
1077 }
1078 
1079 static int perf_submit_test(struct perf_peer *peer)
1080 {
1081 	struct perf_ctx *perf = peer->perf;
1082 	struct perf_thread *pthr;
1083 	int tidx, ret;
1084 
1085 	ret = wait_for_completion_interruptible(&peer->init_comp);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1090 		return -EBUSY;
1091 
1092 	perf->test_peer = peer;
1093 	atomic_set(&perf->tsync, perf->tcnt);
1094 
1095 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1096 		pthr = &perf->threads[tidx];
1097 
1098 		pthr->status = -ENODATA;
1099 		pthr->copied = 0;
1100 		pthr->duration = ktime_set(0, 0);
1101 		if (tidx < perf->tcnt)
1102 			(void)queue_work(perf_wq, &pthr->work);
1103 	}
1104 
1105 	ret = wait_event_interruptible(perf->twait,
1106 				       atomic_read(&perf->tsync) <= 0);
1107 	if (ret == -ERESTARTSYS) {
1108 		perf_terminate_test(perf);
1109 		ret = -EINTR;
1110 	}
1111 
1112 	clear_bit_unlock(0, &perf->busy_flag);
1113 
1114 	return ret;
1115 }
1116 
1117 static int perf_read_stats(struct perf_ctx *perf, char *buf,
1118 			   size_t size, ssize_t *pos)
1119 {
1120 	struct perf_thread *pthr;
1121 	int tidx;
1122 
1123 	if (test_and_set_bit_lock(0, &perf->busy_flag))
1124 		return -EBUSY;
1125 
1126 	(*pos) += scnprintf(buf + *pos, size - *pos,
1127 		"    Peer %d test statistics:\n", perf->test_peer->pidx);
1128 
1129 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1130 		pthr = &perf->threads[tidx];
1131 
1132 		if (pthr->status == -ENODATA)
1133 			continue;
1134 
1135 		if (pthr->status) {
1136 			(*pos) += scnprintf(buf + *pos, size - *pos,
1137 				"%d: error status %d\n", tidx, pthr->status);
1138 			continue;
1139 		}
1140 
1141 		(*pos) += scnprintf(buf + *pos, size - *pos,
1142 			"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
1143 			tidx, pthr->copied, ktime_to_us(pthr->duration),
1144 			div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
1145 	}
1146 
1147 	clear_bit_unlock(0, &perf->busy_flag);
1148 
1149 	return 0;
1150 }
1151 
1152 static void perf_init_threads(struct perf_ctx *perf)
1153 {
1154 	struct perf_thread *pthr;
1155 	int tidx;
1156 
1157 	perf->tcnt = DEF_THREADS_CNT;
1158 	perf->test_peer = &perf->peers[0];
1159 	init_waitqueue_head(&perf->twait);
1160 
1161 	for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
1162 		pthr = &perf->threads[tidx];
1163 
1164 		pthr->perf = perf;
1165 		pthr->tidx = tidx;
1166 		pthr->status = -ENODATA;
1167 		init_waitqueue_head(&pthr->dma_wait);
1168 		INIT_WORK(&pthr->work, perf_thread_work);
1169 	}
1170 }
1171 
1172 static void perf_clear_threads(struct perf_ctx *perf)
1173 {
1174 	perf_terminate_test(perf);
1175 }
1176 
1177 /*==============================================================================
1178  *                               DebugFS nodes
1179  *==============================================================================
1180  */
1181 
1182 static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf,
1183 				    size_t size, loff_t *offp)
1184 {
1185 	struct perf_ctx *perf = filep->private_data;
1186 	struct perf_peer *peer;
1187 	size_t buf_size;
1188 	ssize_t pos = 0;
1189 	int ret, pidx;
1190 	char *buf;
1191 
1192 	buf_size = min_t(size_t, size, 0x1000U);
1193 
1194 	buf = kmalloc(buf_size, GFP_KERNEL);
1195 	if (!buf)
1196 		return -ENOMEM;
1197 
1198 	pos += scnprintf(buf + pos, buf_size - pos,
1199 		"    Performance measuring tool info:\n\n");
1200 
1201 	pos += scnprintf(buf + pos, buf_size - pos,
1202 		"Local port %d, Global index %d\n", ntb_port_number(perf->ntb),
1203 		perf->gidx);
1204 	pos += scnprintf(buf + pos, buf_size - pos, "Test status: ");
1205 	if (test_bit(0, &perf->busy_flag)) {
1206 		pos += scnprintf(buf + pos, buf_size - pos,
1207 			"on-fly with port %d (%d)\n",
1208 			ntb_peer_port_number(perf->ntb, perf->test_peer->pidx),
1209 			perf->test_peer->pidx);
1210 	} else {
1211 		pos += scnprintf(buf + pos, buf_size - pos, "idle\n");
1212 	}
1213 
1214 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1215 		peer = &perf->peers[pidx];
1216 
1217 		pos += scnprintf(buf + pos, buf_size - pos,
1218 			"Port %d (%d), Global index %d:\n",
1219 			ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx,
1220 			peer->gidx);
1221 
1222 		pos += scnprintf(buf + pos, buf_size - pos,
1223 			"\tLink status: %s\n",
1224 			test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down");
1225 
1226 		pos += scnprintf(buf + pos, buf_size - pos,
1227 			"\tOut buffer addr 0x%pK\n", peer->outbuf);
1228 
1229 		pos += scnprintf(buf + pos, buf_size - pos,
1230 			"\tOut buff phys addr %pa[p]\n", &peer->out_phys_addr);
1231 
1232 		pos += scnprintf(buf + pos, buf_size - pos,
1233 			"\tOut buffer size %pa\n", &peer->outbuf_size);
1234 
1235 		pos += scnprintf(buf + pos, buf_size - pos,
1236 			"\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat);
1237 
1238 		if (!peer->inbuf) {
1239 			pos += scnprintf(buf + pos, buf_size - pos,
1240 				"\tIn buffer addr: unallocated\n");
1241 			continue;
1242 		}
1243 
1244 		pos += scnprintf(buf + pos, buf_size - pos,
1245 			"\tIn buffer addr 0x%pK\n", peer->inbuf);
1246 
1247 		pos += scnprintf(buf + pos, buf_size - pos,
1248 			"\tIn buffer size %pa\n", &peer->inbuf_size);
1249 
1250 		pos += scnprintf(buf + pos, buf_size - pos,
1251 			"\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat);
1252 	}
1253 
1254 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1255 	kfree(buf);
1256 
1257 	return ret;
1258 }
1259 
1260 static const struct file_operations perf_dbgfs_info = {
1261 	.open = simple_open,
1262 	.read = perf_dbgfs_read_info
1263 };
1264 
1265 static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf,
1266 				   size_t size, loff_t *offp)
1267 {
1268 	struct perf_ctx *perf = filep->private_data;
1269 	ssize_t ret, pos = 0;
1270 	char *buf;
1271 
1272 	buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL);
1273 	if (!buf)
1274 		return -ENOMEM;
1275 
1276 	ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos);
1277 	if (ret)
1278 		goto err_free;
1279 
1280 	ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
1281 err_free:
1282 	kfree(buf);
1283 
1284 	return ret;
1285 }
1286 
1287 static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf,
1288 				    size_t size, loff_t *offp)
1289 {
1290 	struct perf_ctx *perf = filep->private_data;
1291 	struct perf_peer *peer;
1292 	int pidx, ret;
1293 
1294 	ret = kstrtoint_from_user(ubuf, size, 0, &pidx);
1295 	if (ret)
1296 		return ret;
1297 
1298 	if (pidx < 0 || pidx >= perf->pcnt)
1299 		return -EINVAL;
1300 
1301 	peer = &perf->peers[pidx];
1302 
1303 	ret = perf_submit_test(peer);
1304 	if (ret)
1305 		return ret;
1306 
1307 	return size;
1308 }
1309 
1310 static const struct file_operations perf_dbgfs_run = {
1311 	.open = simple_open,
1312 	.read = perf_dbgfs_read_run,
1313 	.write = perf_dbgfs_write_run
1314 };
1315 
1316 static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf,
1317 				    size_t size, loff_t *offp)
1318 {
1319 	struct perf_ctx *perf = filep->private_data;
1320 	char buf[8];
1321 	ssize_t pos;
1322 
1323 	pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt);
1324 
1325 	return simple_read_from_buffer(ubuf, size, offp, buf, pos);
1326 }
1327 
1328 static ssize_t perf_dbgfs_write_tcnt(struct file *filep,
1329 				     const char __user *ubuf,
1330 				     size_t size, loff_t *offp)
1331 {
1332 	struct perf_ctx *perf = filep->private_data;
1333 	int ret;
1334 	u8 val;
1335 
1336 	ret = kstrtou8_from_user(ubuf, size, 0, &val);
1337 	if (ret)
1338 		return ret;
1339 
1340 	ret = perf_set_tcnt(perf, val);
1341 	if (ret)
1342 		return ret;
1343 
1344 	return size;
1345 }
1346 
1347 static const struct file_operations perf_dbgfs_tcnt = {
1348 	.open = simple_open,
1349 	.read = perf_dbgfs_read_tcnt,
1350 	.write = perf_dbgfs_write_tcnt
1351 };
1352 
1353 static void perf_setup_dbgfs(struct perf_ctx *perf)
1354 {
1355 	struct pci_dev *pdev = perf->ntb->pdev;
1356 
1357 	perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir);
1358 	if (IS_ERR(perf->dbgfs_dir)) {
1359 		dev_warn(&perf->ntb->dev, "DebugFS unsupported\n");
1360 		return;
1361 	}
1362 
1363 	debugfs_create_file("info", 0600, perf->dbgfs_dir, perf,
1364 			    &perf_dbgfs_info);
1365 
1366 	debugfs_create_file("run", 0600, perf->dbgfs_dir, perf,
1367 			    &perf_dbgfs_run);
1368 
1369 	debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf,
1370 			    &perf_dbgfs_tcnt);
1371 
1372 	/* They are made read-only for test exec safety and integrity */
1373 	debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order);
1374 
1375 	debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order);
1376 
1377 	debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma);
1378 }
1379 
1380 static void perf_clear_dbgfs(struct perf_ctx *perf)
1381 {
1382 	debugfs_remove_recursive(perf->dbgfs_dir);
1383 }
1384 
1385 /*==============================================================================
1386  *                        Basic driver initialization
1387  *==============================================================================
1388  */
1389 
1390 static struct perf_ctx *perf_create_data(struct ntb_dev *ntb)
1391 {
1392 	struct perf_ctx *perf;
1393 
1394 	perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL);
1395 	if (!perf)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	perf->pcnt = ntb_peer_port_count(ntb);
1399 	perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers),
1400 				  GFP_KERNEL);
1401 	if (!perf->peers)
1402 		return ERR_PTR(-ENOMEM);
1403 
1404 	perf->ntb = ntb;
1405 
1406 	return perf;
1407 }
1408 
1409 static int perf_setup_peer_mw(struct perf_peer *peer)
1410 {
1411 	struct perf_ctx *perf = peer->perf;
1412 	phys_addr_t phys_addr;
1413 	int ret;
1414 
1415 	/* Get outbound MW parameters and map it */
1416 	ret = ntb_peer_mw_get_addr(perf->ntb, perf->gidx, &phys_addr,
1417 				   &peer->outbuf_size);
1418 	if (ret)
1419 		return ret;
1420 
1421 	peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr,
1422 					peer->outbuf_size);
1423 	if (!peer->outbuf)
1424 		return -ENOMEM;
1425 
1426 	peer->out_phys_addr = phys_addr;
1427 
1428 	if (max_mw_size && peer->outbuf_size > max_mw_size) {
1429 		peer->outbuf_size = max_mw_size;
1430 		dev_warn(&peer->perf->ntb->dev,
1431 			"Peer %d outbuf reduced to %pa\n", peer->pidx,
1432 			&peer->outbuf_size);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int perf_init_peers(struct perf_ctx *perf)
1439 {
1440 	struct perf_peer *peer;
1441 	int pidx, lport, ret;
1442 
1443 	lport = ntb_port_number(perf->ntb);
1444 	perf->gidx = -1;
1445 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1446 		peer = &perf->peers[pidx];
1447 
1448 		peer->perf = perf;
1449 		peer->pidx = pidx;
1450 		if (lport < ntb_peer_port_number(perf->ntb, pidx)) {
1451 			if (perf->gidx == -1)
1452 				perf->gidx = pidx;
1453 			peer->gidx = pidx + 1;
1454 		} else {
1455 			peer->gidx = pidx;
1456 		}
1457 		INIT_WORK(&peer->service, perf_service_work);
1458 		init_completion(&peer->init_comp);
1459 	}
1460 	if (perf->gidx == -1)
1461 		perf->gidx = pidx;
1462 
1463 	/*
1464 	 * Hardware with only two ports may not have unique port
1465 	 * numbers. In this case, the gidxs should all be zero.
1466 	 */
1467 	if (perf->pcnt == 1 &&  ntb_port_number(perf->ntb) == 0 &&
1468 	    ntb_peer_port_number(perf->ntb, 0) == 0) {
1469 		perf->gidx = 0;
1470 		perf->peers[0].gidx = 0;
1471 	}
1472 
1473 	for (pidx = 0; pidx < perf->pcnt; pidx++) {
1474 		ret = perf_setup_peer_mw(&perf->peers[pidx]);
1475 		if (ret)
1476 			return ret;
1477 	}
1478 
1479 	dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx);
1480 
1481 	return 0;
1482 }
1483 
1484 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
1485 {
1486 	struct perf_ctx *perf;
1487 	int ret;
1488 
1489 	perf = perf_create_data(ntb);
1490 	if (IS_ERR(perf))
1491 		return PTR_ERR(perf);
1492 
1493 	ret = perf_init_peers(perf);
1494 	if (ret)
1495 		return ret;
1496 
1497 	perf_init_threads(perf);
1498 
1499 	ret = perf_init_service(perf);
1500 	if (ret)
1501 		return ret;
1502 
1503 	ret = perf_enable_service(perf);
1504 	if (ret)
1505 		return ret;
1506 
1507 	perf_setup_dbgfs(perf);
1508 
1509 	return 0;
1510 }
1511 
1512 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
1513 {
1514 	struct perf_ctx *perf = ntb->ctx;
1515 
1516 	perf_clear_dbgfs(perf);
1517 
1518 	perf_disable_service(perf);
1519 
1520 	perf_clear_threads(perf);
1521 }
1522 
1523 static struct ntb_client perf_client = {
1524 	.ops = {
1525 		.probe = perf_probe,
1526 		.remove = perf_remove
1527 	}
1528 };
1529 
1530 static int __init perf_init(void)
1531 {
1532 	int ret;
1533 
1534 	if (chunk_order > MAX_CHUNK_ORDER) {
1535 		chunk_order = MAX_CHUNK_ORDER;
1536 		pr_info("Chunk order reduced to %hhu\n", chunk_order);
1537 	}
1538 
1539 	if (total_order < chunk_order) {
1540 		total_order = chunk_order;
1541 		pr_info("Total data order reduced to %hhu\n", total_order);
1542 	}
1543 
1544 	perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0);
1545 	if (!perf_wq)
1546 		return -ENOMEM;
1547 
1548 	if (debugfs_initialized())
1549 		perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1550 
1551 	ret = ntb_register_client(&perf_client);
1552 	if (ret) {
1553 		debugfs_remove_recursive(perf_dbgfs_topdir);
1554 		destroy_workqueue(perf_wq);
1555 	}
1556 
1557 	return ret;
1558 }
1559 module_init(perf_init);
1560 
1561 static void __exit perf_exit(void)
1562 {
1563 	ntb_unregister_client(&perf_client);
1564 	debugfs_remove_recursive(perf_dbgfs_topdir);
1565 	destroy_workqueue(perf_wq);
1566 }
1567 module_exit(perf_exit);
1568